气动旋转位置伺服控制技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
气动技术因其特有的优点而广泛应用于自动化生产的各个领域,由于实际的需求和技术的推动,促使其向更精密的伺服控制方向发展。但是,由于气动伺服系统的强非线性,对其实现高精度的有效控制一直是个难题。迄今为止,学者们主要针对气动直线位置伺服控制进行了大量的研究,而对气动旋转位置伺服控制的研究很少。在工业自动化和机器人领域,存在大量的旋转位置伺服控制需求,因此,对气动旋转位置伺服控制的研究具有实际的应用价值。
     摆动气缸是一种常见的气动旋转驱动装置,由于摆动气缸较小的行程和较大的摩擦力矩使得对其实现高性能的位置伺服控制比较难,目前摆动气缸伺服定位的精度还不能满足实际应用的需求。论文对比例流量阀控制的摆动气缸位置伺服系统的系统非线性特性的补偿方法、线性化数学模型的建立方法以及能够适应负载变化的控制策略等方面进行了深入的理论分析和实验研究。
     首先基于理论分析和实验,研究了与控制过程相关的系统特性,即工作点位置、负载大小和摆动气缸两腔初始压力等工作参数以及摩擦力矩对系统特性的影响,分析了系统存在的粘滑振荡现象、位移波动现象等产生的原因。
     针对比例流量阀的非线性特性和系统的位移波动现象,提出了两种相应的辅助控制方法:比例阀输入输出线性化的非线性补偿方法,位置控制+压力差辅助控制的复合控制方法。非线性补偿方法能够减弱系统的非线性强度,改善系统特性,降低系统的控制难度,也为建立更准确的线性模型打下了基础。位置控制+压力差辅助控制的复合控制方法则可以有效避免位移波动现象的发生,提高系统的定位精度。
     为了避免摩擦力矩这一非线性因素对模型准确性的影响,提出了一种能够更准确地反映系统特性的线性化数学模型的建立方法。该方法在充分考虑压力差动态过程与摩擦力矩无关这一特点的基础上,将压力差动态过程用近似线性化方程表示,并与运动方程相结合构成三阶状态空间线性模型,采用系统辨识的方法确定模型参数。同时,为了补偿比例流量阀的非线性特性,提高线性模型的准确性,将比例阀非线性补偿环节和比例流量阀控摆动气缸系统看作一个整体,作为辨识对象。又考虑到系统特性与工作点位置有关这一特点,采用了定位辨识法。通过实验研究,验证了该方法的可行性。
     为了解决系统在压力差反馈控制下稳态误差较大的问题,提出了比例+速度和压力差微分反馈控制方法(PVDDP)。根据所建线性化数学模型,从理论上分析了该方法的可行性。实验结果表明,PVDDP控制在工作点位置和负载变化较小时可获得较好的控制效果,但是适应负载和工作点位置大范围变化的能力较差。
Pneumatic technology has been widely used in industrial automation area because of its unique advantages. The actual requirements and technical impetus motivate the development of the pneumatic servo technology. However, due to its strong nonlinearities, it is difficult for a pneumatic servo system to achieve higher control precision. So far, most of the research work reported has been focused on the position control of the linear cylinder, and fewer researches on the position control of the rotary actuator were reported. In the fields of industrial automation and robot, there is a wide requirement for rotation position servo control. Therefore, it is of practical value to conduct study on the pneumatic rotation position servo control.
    Pneumatic rotary actuator is an actuating device of rotation motion used widely in pneumatic systems. However, its smaller stroke and larger friction torque make it more difficult to implement angular position servo control of high performance. At present, the positioning precision couldn't meet the practical requirement. In this paper, a pneumatic rotary actuator position servo system with proportional flow valves as the control devices is studied. The study is conducted in the following aspects: compensation method of the nonlinear characteristics, method of establishing linear model, control strategy and so on.
    System characteristics are investigated thoroughly through theoretical analysis and experiments. The influence of the nonlinear friction and the operating parameters, including positions of the operating points, magnitude of the payloads and the initial pressures in the two chambers, is studied first. Then, some particular phenomena such as stick-slip oscillation and displacement fluctuation around the desired position are analyzed.
    Corresponding to the nonlinear property of the proportional flow valve and the displacement fluctuation phenomenon of the system, two auxiliary control approaches are proposed. One is the compensation method of the valves' nonlinear property, and the other is the composite control scheme integrating position control mode with pressure difference auxiliary control mode. Using the nonlinear compensation method, the system characteristics can be improved and the control of the system can be facilitated. With the composite control scheme, the displacement fluctuation phenomenon can be avoided effectively and the positioning accuracy can be improved.
    To minimize the influence of the nonlinear friction torque, a method of establishing linearized mathematic model that can reveal the system behaviors more precisely is
引文
1 李建藩.气压传动系统动力学.广州:华南理工大学出版社,1991
    2 SMC(中国)有限公司.现代实用气动技术.第二版.北京:机械工业出版社,2003
    3 (德)德泊特,斯托尔著,李宝仁译.气动技术——低成本综合自动化.北京:机械工业出版社,1999
    4 李小宁.气动技术发展的趋势.机械制造与自动化,2003(2):1-4
    5 陆鑫盛,周洪.气动自动化系统的优化设计.上海:上海科学技术文献出版社,2000
    6 Moore P, Pu Junsheng. Pneumatic Servo Actuator Technology: Current Practice and New Developments. IEE Colloquium, 1996(2): 311-316
    7 路甬祥,阮健,陈行.气动技术的发展方向.液压与气动,1991(2):1-3
    8 王祖温,杨庆俊.气压位置控制系统研究现状及展望.机械工程学报,2003(12):10-16
    9 Shearer J L. Nonlinear Analog Study of a High Pressure Pneumatic Servomechanism. Trans. American Society of Mechanical Engineers, 1957(5): 143-148
    10 李尚义,王春燕,许宏光.一种新型的气压控制系统.机械,1994,21(3):12-14
    11 Wang Jihong, Pu Junsheng, Moore Philip R, Zhang Zongmao. Modelling Study and Servo-control of Air Motor Systems. Int. J. Control, 1998, 71 (3): 459-476
    12 Shunmugham R Pandian, Fumiaki Takemure, Yasuhiro Hayakawa, Sadao Kawamura. Control Performance of an Air Motor-Can Air Motors Peplace Electric Motors? Proceedings of the 1999 IEEE International Conference on Robotics & Automation, 1999: 518-524
    13 傅晓云,刘浩,李宝仁.摆动气缸位置伺服控制系统的建模与仿真.机床与液压,2004(8):48-49
    14 Wang Peng, Peng Guangzheng, Wu Qinghe. Pneumatic Rotary Actuator Angle Control Aystem. Journal of Beijing Institute of Technology (English Edition), 2003, 12(4): 362-365
    15 贺保国,彭光正,伍清河.模糊PID控制在气动摆缸位置伺服控制中的应用.液压与气动,2004(1):24-26
    16 陈伟.开关阀式气动马达位置伺服系统的研究.组合机床与自动化加工技术,2002(8):57-59
    17 陈伟,张剑.气动机器人气马达关节的研制.液压与气动,2002(10):1-2
    18 张剑.开关阀式气动马达位置伺服控制系统的研究.哈尔滨工业大学硕士学位论 文,2001
    19 周洪.气动伺服定位技术及其应用.液压与气动,1999(1):18-21
    20 Pedro Luis Andrighetto, Antonio Carlos Valdiero, César Nowaczyk Vincensi. Experimental Comparisons of the Control Solutions for Pneumatic Servo Actuators. ABCM Symposium Series in Mechatronics, 2004: 399-408
    21 Shu Ning, Gary M Bone. High Steady-state Accuracy Pneumatic Servo Positioning System with PVA/PV Control and Friction Compensation. Proceedings of the 2002 IEEE International Conference on Robotics & Automation, 2002: 2824-2829
    22 Van Varseveld, Robert B, Bone Gary M. Accurate Position Control of a Pneumatic Actuator Using On/Off Solenoid Valves. IEEE/ASME Transactions on Mechatronics, 1997, 2(7): 195-204
    23 Sarmad Aziz, Bary M Bone. Automatic Tuning of an Accurate Position Controller for Pneumatic Actuators. Proceedings of the 1998 IEEE International Conference on Intelligent Robots and Systems, 1998: 1782-1788
    24 Lai J Y, Meng C H, Singh R. Accurate Position Control of a Pneumatic Actuator. Transactions of ASME, Journal of Dynamic Systems Measurement and Control, 1990, 112: 734-739
    25 Sittun Z, Pavkovic D, Novakovic B. Servo Pneumatic Position Control Using Fuzzy PID Gain Scheduling. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, June, 2004, 126(2): 376-387
    26 杨清海,河合素直,曾祥荣.气动位置伺服系统的高精度控制.液压与气动,1994(6):11-15
    27 朱春波.基于压力比例阀的气动位置伺服系统控制策略研究.哈尔滨工业大学博士论文,2001
    28 张百海,程海峰,马延峰,彭光正.气缸摩擦力特性实验研究.北京理工大学学报,2005,25(6):493~486
    29 Belforte G, Alfio N D, Raparelli T. Experimental Analysis of Friction Forces in Pneumatic Cylinders. The Journal of Fluid Control, 1990, 20(1): 42-60
    30 Yukio Terashima, Yukio Kawakami, Sunao Kawai. A Study on the Effect of Friction Characteristics in Pneumatic Cylinder. Proceedings of the 4th International Symposium on Fluid Power Transmission and Control (ISFP'2003), 2003: 352-357
    31 Xie Zugang, Tao Guoliang. Study on Cylinders at Very Low Velocities. Proceedings of the 4th International Symposium on Fluid Power Transmission and Control (ISFP'2003), 2003: 358-361
    32 陶国良,王宣银,杨华勇.气动比例/伺服位置控制系统的摩擦力特性研究.液压气动与密封,2001(2):9-12
    33 马幼捷.直接反馈线性化(DFL)的理论体系研究.青岛大学学报,1997(12):86-91
    34 杨庆俊.高性能气压位置伺服系统控制研究.哈尔滨工业大学博士论文,2002
    35 Edmond Richer, Yildidm Hurmuzlu. A High Performance Pneumatic Force Actuator System: Part Ⅰ-Nonlinear Mathematical Model. Transactions of ASME, Journal of Dynamic Systems Measurement and Control, 2000, 122(3): 416-425
    36 李宝仁,吴金波,杜经民.高压气动位置伺服系统的控制策略研究.液压气动与密封,2002(2):5-7
    37 王宣银.开关阀控气缸力伺服系统的研究.工程机械,1997(12):24-26
    38 陶国良,毛文杰,王宣银.气动伺服系统机理建模的实验研究.液压气动与密封,1999(5):26-31
    39 黄维钢,王显正,马培荪.气动脉宽调制位置伺服系统的研究.液压气动与密封,1997(4):26-29
    40 Sorli M, Gastaldi L, Codina E, Heras S de las. Dynamic Analysis of Pneumatic Actuators. Simulation Practice and Theory, 1999(7): 591-602
    41 Bashir M Y Noud, Farid Al-Bender, Jan Swevers, Paul Vauherck, and Hendrik Van Brussel. Modelling a Pneumatic Servo Positioning System with Friciton. Proceedings of the American Control Conference, 2000: 1067-1071
    42 Wang J, Wang J D, Moore P R, Pu J. Modelling Study, Analysis and Robust Servocontrol of Pneumatic Cylinder Actuator Systems. IEE Proceedings: Control Theory and Applications, 2001, 148(1): 35-42
    43 刘延俊,李兆文,陈正洪.气动比例位置系统的建模与仿真研究.机床与液压,2002(4):56-58
    44 王宣银.PCM气动伺服系统的建模研究.机床与液压,1997(4)
    45 吴振顺.气压传动与控制.哈尔滨:哈尔滨工业大学出版社,1995
    46 杨庆俊,包钢,聂伯勋,王祖温.比例方向阀控气动缸动力机构建模.哈尔滨工业大学学报,2001(4):495-498
    47 Kawakami Y, Akao J, Kawai S. Some Considerations on the Dynamic Characteristics of Pneumatic Cylinder. The Journal of Fluid Control, 1989, 19(2): 22-36
    48 李宝仁,许耀铭,李壮云.气动位置伺服系统的建模与控制.华中理工大学学报,1996(4):60-62
    49 周洪,路甬祥.电—气伺服系统的辨识建模.液压工业,1988(3)
    50 Shih Ming Chang, Tseng Shy I. Identification and Position Control of a Servo Pneumatic Cylinder. Control Engineering Practice, 1995(9): 1285-1290
    51 王宣银,陶国良,陈大军等.开关阀控气动伺服系统的辨识建模.液压气动与密封,1997(3):9-11
    52 Schutle H, Hahn H. Identification with Blended Multi-model Approach in the Frequency Domain: an Application to a Servo Pneumatic Actuator. IEEE/ASME international Conference on Advanced Intelligent Mechatronics Proceedings, 2001: 757-762
    53 郑学明,李尚义,刘庆和.气动PCM位置伺服系统的研究.哈尔滨工业大学学报,1995(3):9-13
    54 李铭,彭光正.模糊PID控制算法在气缸位置伺服控制中的应用.液压与气动,2004(10):55-56
    55 朱春波,包钢,程树康,王祖温.基于比例阀的气动伺服系统神经网络控制方法的研究.中国机械工程,2001(12):1411-1414
    56 陈正洪,刘延俊,王勇.气动比例位置系统的神经网络控制.机床与液压,2005(1):8-10
    57 Wang Jihong, Pu Junsheng, Moore Philip. A Practical Control Strategy for Servo Pneumatic Actuator Systems. Control Engineering Practice, 1999, 12(7): 1483-1488
    58 李小虎,杜彦亭,朱仁宗,董龙雷.基于补偿原理的Ⅰ-PD算法对气动位置伺服系统的控制.机床与液压,2004(1):58-60
    59 Han Koo Lee, Gi Sang Choi, Gi Heung Choi. A Study on Tracking Position Control of Pneumatic Actuators. Mechatronics, 2002(12): 813-831
    60 Nortitsugu T, Takaiwa M. Robust Positioning Control of Pneumatic Servo System with Pressure Control Loop. Proceedings of the IEEE International Conference on Robotics & Automation, 1995: 2613-2618
    61 王燕波,包钢,李军,王祖温.气压垂直伺服定位系统的实验研究.液压与气动,2004(6):53-55
    62 周洪,路甬祥.电—气比例/伺服控制系统的最优状态反馈控制研究.航空学报,1990(10):431—436
    63 杨庆俊,王祖温,路建萍.基于反馈线性化的气压伺服系统非线性H_∞控制.南京理工大学学报,2002(1):52-26
    64 王祖温,孟宪超,包钢.基于QFT的开关阀控气动位置伺服系统鲁棒控制.机械工程学报,2004,40(7):75-80
    65 李柱吉,则次俊郎.空气压伺服系统鲁棒极点配置控制.信息与控制,1993(6):187-192
    66 Song Junbo, Ishida Yoshihisa. Robust Tracking Controller Design for Pneumatic Servo System. International Journal of Engineering Science, 1997, 35(10): 905-920
    67 Paulm Arun K, Mishra J K, Radke M G. Reduced Order Sliding Mode Control for Pneumatic Actuator. IEEE Transactions on Control Systems Technology, 1994, 2(3): 271-276
    68 Surgenor B W, Vaughan N D. Continuous Sliding Mode Control of a Pneumatic Actuator. Transactions of ASME, Journal of Dynamic Systems Measurement and Control, 1997, 119(3): 578-581
    69 Pandian S R, Hayakawa Y, Kanazawa Y, Kamoyama Y, Kawamura S. Practical Design of Sliding Mode Controller for Pneumatic Actuator. Transactions of ASME, Journal of Dynamic Systems Measurement and Control, 1997, 119(3): 666-674
    70 Barth Eric J, Hang Jianlong, Goldfarb Michael. Sliding Mode Approach to PWM Controlled Pneumatic Systems. Proceedings of American Control Conference, 2002: 2362-2367
    71 Song Junbo, Ishida Yoshihisa. A robust Sliding Mode Control for Pneumatic Servo Systems. International Journal of Engineering Science, 1997, 35(8): 711-723
    72 Shih, Mingchang, Ma Mingan. Position Control of a Pneumatic Rodless Cylinder Using Sliding Mode M-D-PWM Control the High Speed Solenoid Valves. JSME International Journal, Series C, 1998, 41 (2): 236-241
    73 Laghrouche S, Smaoui M, Brun X, Plestan F. Robust Second Order Sliding Mode Controller for Electropneumatic Actuator. Proceedings of the American Control Conference, 2004: 5090-5095
    74 Edmond Richer, Yildirim Hurmuzlu. A High Performance Pneumatic Force Actuator System: Part Ⅱ-Nonlinear Controller Design. Transactions of ASME, Journal of Dynamic Systems Measurement and Control, 2000, 122(3): 426-434
    75 Tang J, Walker G. Variable Structure Control of a Pneumatci Actuator. Transactions of ASME, Journal of Dynamic Systems Measurement and Control, 1995, 117(3): 88-92
    76 钱坤,董新民,谢寿生,刘建勋.滑模控制方法在气动伺服控制系统中的应用.液压与气动,2004(6):9-12
    77 周洪,路甬祥.采用自适应控制的电—气比例/伺服控制系统的研究.信息与控制,2001(4):7-12
    78 Kenji Araki, Akiatsu Yamamoto. Model Reference Adaptive Control of a Pneumatic Servo with a Constant Trace Algorithm. The Journal of Fluid Control, 1990, 20(4): 30-47
    79 王宣银.气动位置伺服系统的线性二次高斯LQG自校正控制的研究.动力工程,2001(4):1372-1375
    80 李宝仁,朱玉泉,许耀铭.气动位置伺服系统的自适应控制系统.中国机械工程,1998(3):4-8
    81 Yamada Yuuji, Tanaka Kanya, Uchikado Shigeru. Adaptive Pole-allocation Control with Multi-rate Neural Network for Pneumatic Servo System. IEEE Conference on Control Applications-Proceedings, 2000: 190-195
    82 Li Baoren, Xu Yaoming. An Adaptive Variable Gain Control for a Novel Pneumatic Position Servo System. Proceedings of the IEEE International Conference on Industrial Technology, 1994: 63-67
    83 Gross D C, Rattan K S. Pneumatic Cylinder Trajectory Tracking Control Using a Feedforward Multilayer Neural Network. IEEE, 1997: 777-783
    84 陈金兵,柴森春,张百海,宁汝新,赵彤.神经网络控制在气缸位置伺服控制中的应用.液压与气动,2004(5):52-54
    85 王宣银,陶国良.气动机械臂模糊控制的研究.液压气动与密封,2001(3):5-6
    86 薛阳,彭光正,贺保国,伍清河.气动位置伺服系统的非对称模糊PID控制.控制理论与应用,2004,20(1):129-133
    87 薛阳,彭光正,范萌,伍清河.气动位置伺服系统的带α因子的非对称模糊PID控制.北京理工大学学报,2003,23(1):71-74
    88 Xue Yang, Peng Guangzheng, Fan Meng, Wu Qinghe. New Asymmetric Fuzzy PID Control for Pneumatic Position Control System. Journal of Beijing Institute of Technology, 2004, 13(1): 28-32
    89 Shibata S, Jindai M, Shimizu A. Neuro-Fuzzy Control for Pneumatic Servo System. IEEE, 2000: 1761-1766
    90 颜志国,刑科礼,温济全.智能控制在气动比例位置系统中的应用.机床与液压,2003(4):159-161
    91 Shih Mingehang, Lu Chingsham. Fuzzy Sliding Mode Position Control of a Ball Screw Driven by Pneumatic Servomotor. Machatronics, 1995, 5(4): 421-431
    92 机电一体化技术手册编委会编.机电一体化技术手册,第一卷(下册).第二版.北京:机械工业出版社,1999
    93 Olsson H, Astrom KJ, Canudas de Wit C, Gafvert M, Lischinsky P. Friction Models and Friction Compensation. 1997
    94 Brain Armstrong-Hélouvry, Pierre Dupont, Carlos Csnudas de wit. A Survey of Models, Analysis Tools and Compensation Methods for the Control of Machines with Friciton. Automatic, 1994, 30(7): 1093-1138
    95 Haessig D A, Friedland B. On the Modeling and Simulation of Friction. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, 1991, 113(3): 354-362
    96 王沫然编著.Simulink 4建模及动态仿真.北京:电子工业出版社,2002
    97 薛定宇,陈阳泉著.基于Matlab/Simulink的系统仿真技术与应用.北京:清华大学出版社,2002
    98 陈维山,赵杰.机电系统计算机控制.哈尔滨:哈尔滨工业大学出版社,1999
    99 刘金琨.先进PID控制及其MATLAB仿真.北京:电子工业出版社,2003
    100 Lennart Ljung.系统辨识使用者的理论.第二版.北京:清华大学出版社,2002
    101 夏德钤,翁贻方.自动控制理论.第二版.北京:机械工业出版社,2004
    102 关景泰.机电液控制技术.第一版.上海:同济大学出版社,2003.2
    103 冯冬青,谢宋和等.模糊智能控制.北京:化学工业出版社,1998
    104 佟绍成,王涛等著.模糊控制系统的设计及稳定性分析.第一版.北京:科学出版社,2004
    105 Kevin M Passino, Stethen Yurkovich. 模糊控制.北京:清华大学出版社,2002
    106 丛爽.神经网络、模糊系统及其在运动控制中的应用.第一版.合肥:中国科技大学出版社,2001

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700