基于先进工艺的低电压低功耗流水线模数转换器研究与设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着第三代移动通信(3G)网络的快速发展,通信终端产品和消费类电子产品需求剧增,应用于这些产品中的10至12位数十兆赫兹低功耗流水线模数转换器成为了国际学术界和工业界研究的热点。通常这类模数转换器作为重要的数模混合信号模块嵌入在整个应用系统的SOC上,需要能兼容数字工艺和数字系统的低电源电压,并且追求低功耗。本论文对流水线模数转换器进行了全面的分析,在先进工艺下从低电压、低功耗的角度对12位数十兆赫兹流水线模数转换器在系统层面和电路结构层面做了深入研究,主要研究内容如下:
     (1)提出了新型低功耗低电压两级运算放大器。它可以工作在1.2V甚至更低的电源电压下,在两级运算放大器的第一级和第二级都采用Class-AB技术,从而增大了压摆率和跨导,缩短了信号建立时间。在相同的功耗和负载情况下,新型运算放大器可以达到普通两级运放的两倍带宽。
     (2)采用了采样前端路径匹配电路,消减了无采样保持器情况下信号通路的不对称引起的非线性。提出采样前端时序产生电路,根据现有的时钟树结构,通过增加与门和输入两倍的采样频率时钟,可以精确实现前端时序,避免了采用传统时钟电路实现时反向器链太长、时间延迟不易控制、时钟抖动(Jitter)大的现象。
     (3)分析了65nm 1.2V CMOS先进工艺下,所出现的负偏置温度不稳定性(NBTI)、阱临近效应(WPE)和浅沟槽隔离(STI)应力效应等非理性因素及其对电路性能的影响。依据这些非理性因素的物理模型,研究了克服这些非理想效应的物理版图优化方案,提高了物理版图设计的可制造性和后仿真性能。
     (4)提出了改进型CMOS开关作为余量增益电路(MDAC)中信号通路开关,在低电压(1.2V)和相同尺寸下,改进型CMOS开关相比传统CMOS开关导通电阻要小50%。
     (5)采用了高性能低抖动的片上时钟驱动电路。利用测试板输入差分正弦波,再通过芯片内部的预防大电路产生时钟信号,这种方式抑制了共模抖动,时钟抖动可以达到0.5ps以下,并且可以通过设计、仿真预防大电路预估时钟抖动的大小。基于上述研究,本论文完成了两个低电压低功耗模数转换器设计实例:第一个是采用中芯国际集成电路制造有限公司(SMIC) 0.13um 1.2V,单层多晶、八层金属混合信号CMOS工艺实现的12-B 40-MS/s流水线模数转换器,测试结果表明,在输入10.2兆赫兹信号下,此模数转换器的信噪失真比(SNDR)为60.2dB,信号噪声比(SNR)为60.5dB,无杂散动态范围(SFDR)可以达到78.2dB,总谐波失真可以达到-75.5dB,差分非线性(DNL)为±0.45 LSB,积分非线性(INL)为-6-4 LSB,在1.2V电源电压下功耗为15.6m,W;第二个是采用SMIC 65nm 1.2V单层多晶、七层金属、低泄漏CMOS工艺实现的12-B 50-MS/s流水线模数转换器,已送出流片,后仿真性能在TT 75°工艺角下SFDR为83.2dB, SNR为74.1dB, SNDR为73.4dB,有效位数(ENOB)为11.9位,在1.2V电源电压下,总体功耗为59mW。
With the rapid development of the third generation mobile communication network, communication terminal products and consumer electronics products surge in demand, the low-power pipelined ADCs applied in these applications, with 10 to 12 bits and several tens of MHz, have become the international academic and industrial research focus. In general, this type of ADC, as an important mixed-signal module, is embedded in the SOC of the application systems. So this type of ADC needs to be compatible with digital CMOS process and low supply voltage, and lower dissipation. In this dissertation, the pipelined ADC is given with in-depth analysis, and from the low-voltage low-power point of view, the ADC with 12-B and several tens of MHz is given thorough studies at both the system level and circuit level, which includes
     (1) Two novel low-power low-voltage amplifiers are proposed and designed, which can work at 1.2V or even lower supply voltage. With the same load and dissipation, the novel amplifiers can provide two times GBW compared with the normal two-stage amplifiers by taking use of Class-AB technique in both stage 1 and stage 2, which enhances the slew rate and transconductance, and shorten the signal settling time.
     (2) A matching network in the sampling front-end is proposed, which can reduce the non-linearity caused by asymmetric signal path in case of no S/H module. A method to generate the timing of the sampling front-end is proposed. The precise front-end timing is realized by adding AND gate to the existing clock structure and inputting twice sampling frequency clock, which can avoid the phenomenon of much long inverter chain, difficulties of controlling the delay time and large clock jitter, caused by the realization with traditional clock circuits.
     (3) The negative bias temperture instability (NBTI), the well proximity effect (WPE), the shallow trench isolation (STI) stress effect and other non-ideal factors, are introducd, and the impact on the circuits from these effects are also given. According to the SPICE model of these effects, the layout solution for these effects is proposed, which improves the performance of the the design-for-manufacture (DFM) and the back-end simulation results.
     (4) The improved CMOS switches are proposed in the signal path of the MDAC. With the same voltage (1.2V) and size, the improved CMOS switches are with resistance which is 50% lower than that of the normal CMOS switches.
     (5) A high-performance low-jitter on-chip clock driver is used. The differential sine waves are required to be put into the chip and shaped by the on-chip pre-amplifying circuits to generate clock, by which the common-mode signal jitter is inhibited, and clock jitter can be reduced to 0.5ps or even lower. The clock jitter can be monitored by the back-end simulation. Based on the above research, two cases of low-voltage low-power ADC design are presented in the thesis. One is a 12-B 40-MS/s pipelined ADC based on SMIC 0.13-um 1.2-V 1P8M mixed signal CMOS process. The measured results show that the pipelined ADC are with 60.5-dB SNDR,60.2-dB SNR,78.2-dB SFDR,-75.5-dB THD,±0.45 LSB DNL,-6~4 LSB INL and 15.6-mW consumption under 1.2-V. the other is a 12-B 50-MS/s pipelined ADC based on SMIC 65-nm 1.2-V 1P7M, low-leakage CMOS process, which has been tapeout. The back-end simulation results show that the pipelined ADC are with 73.4-dB SNDR,74.1-dB SNR,83.2-dB
     SFDR,11.9-B ENOB and 59-mW dissipation under 1.2V supply voltage.
引文
[1]Murmann, ADC Performance Survey 1997-2010 [Online]. Available: http://www.stanford.edu/-murmann/adcsurvey.html
    [2]Leuciuc, W. Evans, H. Ji, E. Naviasky and X. He. A 12-b 56MS/s Pipelined ADC in 65nm CMOS.In:IEEE Custom Intergrated Circuits Conference,2009,9(2):267-270
    [3]Kang-Jin Lee, Kyoung-Jun Moon, Kwang-Sung Ma. A 65nm CMOS 1.2V 12b 30MS/s ADC with Capacitive Reference Scaling. In:IEEE Custom Intergrated Circuits Conference,2008, MP(04):165-168
    [4]H. Yu, S. W. Chin, B. C. Wong. A 12b 50MSPS 34mW Pipelined ADC. In:IEEE Custom Intergrated Circuits Conference,2008,12(2):297-300
    [5]Hee-Cheol Choi, Young-Ju Kim, Myung-Hwan Lee. A 12b 50MS/s 10.2mA 0.18μm CMOS Nyquist ADC with a Fully Differential Class-AB Switched OP-AMP.In:Symposium on VLSI Circuits Digest of Technical Papers,2008,220-221.
    [6]Yen-Chuan Huang, Tai-Cheng Lee. A 10b 100MS/s 4.5mW Pipelined ADC with a Time Sharing Technique. In:IEEE International Solid-State Circuits Conference.2010.16(05), 300-301.
    [7]Martin Trojer, Mauro Cleris, Ulrich Gaier. A 1.2V 56mW 10 bit 165Ms/s Pipeline-ADC for HDVideo Applications. In:Proc. Eur. Solid-State Circuits Conf. (ESSCIRC).2008.270-273.
    [8]K. Bult. Analog design in deep sub-micron CMOS. In:Proc. European-Solid-State Circuits Conf., Sept.2000, pp.11-17.
    [9]M. Abo and P. R. Gray. A 1.5-V,10-bit,14.3-MS/s CMOS pipeline analog-to-digital converter[J]. IEEE Journal Solid-State Circuits, vol.34, pp.599-606, May 1999.
    [10]T. Brooks et al. A cascaded sigma-delta pipeline A/D converter with 1.25 MHz signal bandwidth and 89 dB SNR[J]. IEEE Journal Solid-State Circuits, vol.32, no.12, pp. 1896-1906, Dec.1997.
    [11]U.Moon et al. Switched-Capacitor Circuit Techniques in Submicron Low-Voltage CMOS. In: IEEE Int. Conf. On VLSI and CAD, ICVC99, pp.349-358,1999.
    [12]D. Chang, L. Wu, and U. Moon. A 1.4-V 10-Bit 25-MS/S Pipelined ADC Using Opamp-Reset Switching Technique[J]. IEEE Journal Solid-State Circuits, vol.38, no.8, pp.1401-1404, Aug.2003.
    [13]D. Chang and U. Moon. A 0.9 V 9 mW 1 MSPS Digitally Calibrated ADC with 75 dB SFDR. In:Proc. IEEE Symp. VLSI Circuits, Jun.2003, pp.461-464
    [14]L. Sumanen. Pipeline Analog-to-Digital Converters for Wide-Band Wireless Communications[D]. Finland:Helsinki University of Technology,2002
    [15]W.Sheng E. Sanchez-Sinencio. System design considerations of wideband muti-standard receiver for third generation mobile system applications. In:2000 Southwest Symposium on Mixed-Signal Design pp.103-108,Feb.2000
    [1]Robert Wang, Ken Martin, David Johns, Gangadhar Burra. A 3.3mW 12MS/s 10b Pipelined ADC in 90nm Digital CMOS. In:ISSCC 2005 Dig. Tech. Papers, pp.278-279, Feb.2005.
    [2]Y. Chiu, P. R. Gray, and B. Nikolic. A 1.8 V 14 b 10 MS/s pipelined ADC in 0.18μm CMOS with 99 dB SFDR. In:ISSCC 2004 Dig. Tech. Papers, pp.458-459, Feb.2004.
    [3]S. H. Lewis. Optimizing the stage resolution in pipelined, multistage, analog-to-digital converters for video rate applications[J]. IEEE Trans. Circuits Syst. II, vol.39, no.8, pp. 516-523, Aug.1992.
    [4]S. H. Lewis and P. R. Gray. A pipelined 5-Msamples/s 9-bit analog-to-digital converter[J]. IEEE Journal Solid-State Circuits, vol. SC-22, pp.954-961, Dec.,1987.
    [5]S. H. Lewis, et al.10b 20Msample/s analog-to-digital converter[J]. IEEE Journal Solid-State Circuits, vol.27, pp.351-358, March 1992.
    [6]D. Cline. Noise, Speed, and Power Trade-offs in Pipelined Analog to Digital Converters [D]. Berkeley:University of California,1995.
    [7]B. Razavi. Principles of Data Conversion System Design [M]. New York:IEEE Press,1995.
    [8]Shinagawa, Y. Akazawa and T. Wakimoto. Jitter Analysis of High-Speed Sampling Systems[J]. IEEE Journal of Solid-Sate Circuits, vol.25, no.1, pp.220-4, Feb.1990.
    [9]P. W. Li, M. J. Chin, P. R. Gray, R. Castello. A ratio-independent algorithmic analog-to-digital conversion technique[J]. IEEE Journal of Solid-State Circuits, vol. SC-19, no.6, pp.828-836, Dec.1984.
    [10]H. Onodera, T. Tateishi, and K. Tamaru. A cyclic A/D converter that does not require ratio-matched components[J]. IEEE Journal of Solid-State Circuits, vol.23, pp.152-158, Feb. 1988.
    [11]S.-Y. Chin, C.-Y. Wu. A CMOS ratio-independent and gain-insensitive algorithmic analog-to-digital converter[J]. IEEE Journal of Solid-State Circuits, vol.31, no.8, pp.1201-1207, Aug.1996.
    [12]B.-S. Song, M. F. Tompsett, K. R. Lakshmikumar. A 12-bit 1-Msample/s capacitor error-averaging pipelined A/D converter[J]. IEEE Journal of Solid-State Circuits, vol.23, no. 6, pp.1324-1333, Dec.1988.
    [13]Y. Chiu. Inherently linear capacitor error-averaging techniques for pipelined A/D conversion[J]. IEEE Transactions on Circuits and Systems Ⅱ:Analog and Digital Signal Processing, vol.47, no.3, pp.229-232, Mar.2000.
    [14]H.-S. Chen, B.-S. Song and K. Bacrania. A 14-b 20-Msamples/s CMOS pipelined ADC [J]. IEEE Journal of Solid-State Circuits, vol.36, pp.997-1001, Jun.2001.
    [15]J. Wu, B. Leung, and S. Sutarja. A mismatch independent DNL pipelined analog to digital converter. In:IEEE International Symposium on Circuits and Systems, vol.5, pp.461-464, 1994.
    [16]P. C. Yu, H.-S. Lee. A 2.5-V,12-b,5-MSample/s pipelined CMOS ADC[J]. IEEE Journal of Solid-State Circuits, vol.31, no.12, pp.1854-61, Dec.1996.
    [17]Y. Ren, B. H. Leung, and Y.-M. Lin. A mismatch-independent DNL pipelined analog-to-digital converter[J]. IEEE Transactions on Circuits and Systems Ⅱ:Analog and Digital Signal Processing, vol.46, pp.517-526, May 1999.
    [18]施宇峰.10比特1.8伏100兆赫兹流水线模数转换器[D].上海:复旦大学,2005.
    [19]陈廷乾.高速、高精度流水线模数转换器设计研究[D].上海:复旦大学,2005.
    [1]Y. D. Jeon, S.-C. Lee, et al. A 4.7mW 0.32 mm2 10b 30MS/s Pipelined ADC without a Front-End S/H in 90nm CMOS. In:ISSCC Dig. Tech. Papers, pp.456-457, Feb.,2007.
    [2]Yu, H., Chin, S. W.& Wong, B. C. A 12b 50MSPS 34 mW pipelined ADC. In:Proc. IEEE Custom Integrated Circuits Conf. (CICC),2008, pp.297-300. Sep.2008.
    [3]Hee-Cheol Choi, Young-Ju Kim, Myung-Hwan Lee. A 12b 50MS/s 10.2mA 0.18μm CMOS Nyquist ADC with a Fully Differential Class-AB Switched OP-AMP. In:2008 Symposium on VLSI Circuits Dig. Tech Papers, pp.220-221, Aug.2008.
    [4]Leuciuc, W. Evans, H. Ji. A 12-b 56MS/s Pipelined ADC in 65nm CMOS. In:Proc. In:IEEE Custom Integrated Circuits Conf. (CICC),2009, pp.267-270. Sep.2009.
    [5]Kang-Jin Lee, Kyoung-Jun Moon. A 65nm CMOS 1.2V 12b 30MS/s ADC with Capacitive Reference Scaling. In:Proc. IEEE Custom Integrated Circuits Conf. (CICC),2008, pp.165-168. Sep.2008.
    [6]Byung-Geun Lee, Byung-Moo Min. A 14b 100MS/s Pipelined ADC with a Merged Active S/H and First MDAC. In:ISSCC 2008, pp.247-249. Feb.2008.
    [7]J. Li, X. Zeng, L. Xie, J. Chen, J. Zhang, and Y. Guo. A 1.8-V 22-mW 10-bit 30-MS/s subsampling pipelined CMOS ADC. In:Proc. IEEE Custom Integrated Circuits Conf. (CICC),2006, pp.513-516.
    [8]L. Sumanen, M. Waltari, and K. A. I. Halonen. A 10-bit 200-MS/s CMOS parallel pipeline A/D converter[J]. IEEE Journal of Solid-State Circuits, vol.36, pp.1048-1055, July 2001.
    [9]S. Limotyrakis, S. D. Kulchycki, D. K. Su, and B. A. Wooley. A 150-MS/s 8-b 71-mW CMOS Time-Interleaved ADC[J]. IEEE Journal Solid-State Circuits, vol.40, pp.1057-1067, May 2005
    [10]B.-M. Min, P. Kim, F.W. Bowman, D.M. Boisvert and A.J. Aude. A 69-mW 10-bit 80-MSample/s Pipelined CMOS ADC[J]. IEEE Journal of Solid-State Circuits, Dec 2003, pp. 2031-2039
    [11]D. Nairn. A 10-b 3-V 100-MS/s pipelined ADC. In:Proc. IEEE Custom Integrated Circuits Conf. (CICC), May 2000, pp.257-260.
    [12]W. Yang, D. Kelly, L. Mehr, M. T. Sayuk, and L. Singer. A 3-V 340-mW 14-B 75-Msample/S CMOS ADC With 85-dB SFDR At Nyquist Input[J]. IEEE Journal Solid-State Circuits, vol.36, pp.1931-1936, Dec.2001.
    [13]Shouri Chatterjee and Peter R. Kinget. A 0.5-V 1-Msps Track-and-Hold Circuit With 60-dB SNDR[J]. IEEE Journal of Solid-State Circuits, vol.42, no.4, pp.722-729. April 2007
    [14]Patrick Y. Wu, Vincent Sin-Luen Cheung, and Howard C. Luong. A 1-V 100-MS/s 8-bit CMOS Switched-Opamp Pipelined ADC Using Loading-Free Architecture [J].IEEE Journal Of Solid-State Circuits, vol.42, no.4, pp.730-738. April 2007
    [15]Gil-Cho Ahn,Min Gyu Kim. A 1V 10b 30MSPS Switched-RC Pipelined ADC. In:IEEE Custom Integrated Circuits Conference(CICC), may 2007, pp.325-328
    [16]Josh Carnes, Gil-Cho Ahn and Un-Ku Moon. A 1V 10b 60MS/s Hybrid Opamp-Reset/Switched-RC Pipelined ADC.In:IEEE Asian Solid-State Circuits Conference, pp.236-239,November 2007
    [17]K. Bult, G. J. G. M. Geelen. A Fast-Settling CMOS Op Amp for SC Circuits with 90-dB DC Gain[J]. IEEE Journal Solid-State Circuits,1990, vol 25, no.6. pp.1379-1384.
    [18]M. Fan, J. Ren, N. Li, F. Ye, J. Xu. A 1.8-V 11-Bit 40-MS/S 21-mW Pipelined ADC [J].Aanalog Integrated Circuits and Signals Processing. (2010) 63, pp.495-501, Jan.2010.
    [19]Kush Gulati and H.S. Lee. A High-Swing CMOS Telescopic Operational Amplifier [J]. IEEE Journal of Solid-State Circuits, vol.33, no.12, pp.2010-2019, Dec.1998.
    [20]M. Fan, J. Ren, G. Shu, Y. Guo, N. Li, F. Ye, and J. Xu. A 12-Bit 40-MS/s SHA-Less Pipelined ADC Using Front-End RC Matching Technique [J]. Journal of Semiconductors. 2010 (accepted).
    [21]R. Hogervorst. Design of Low-Voltage Low-Power CMOS Operational Amplifier Cells [M]. Delft, the Netherlands:Delft University Press,1996.
    [22]O. Choksi, L. R. Carley.Analysis of Switched-Capacitor Common-Mode Feedback Circuit [J]. IEEE Transactions on Circuits and Systems II:Analog and Digital Signal Processing, vol. 50, no.12, pp.906-917, Dec.2003.
    [23]L. Sumanen. Pipeline Analog-to-Digital Converters for Wideband Wireless Communications [D]. Doctoral Thesis, Helsinki University of Technology, Espoo 2002.
    [24]B.-M. Min, P. Kim, F. W. Bowman, D. Boisvert, and A. J. Aude. A 69-mW 10-bit 80-MSample/s pipelined CMOS ADC [J]. IEEE Journal Solid-State Circuits, vol.38, no.12, pp.2031-2039, Dec.2003.
    [25]Waltari, K. Halonen.1-V,9-Bit Pipelined Switched-Opamp ADC [J]. IEEE Journal Solid-State Circuits, vol.36, no.1, pp.129-134, Jan.2001.
    [26]M. Abo, P. R. Gray. A 1.5-V,10-bit,14.3-MS/s CMOS pipeline analog-to-digital converter [J]. IEEE Journal Solid-State Circuits, vol.34, pp.599-606, May.1999
    [27]M. Abo. Design for Reliability of Low-voltage, Switched-capacitor Circuits [D]. Doctoral Thesis, University of California, Berkeley, Nov.1999.
    [28]Std1241-2000, IEEE Standard for Terminology and Test Methods for Analog-to-Digital Converters [S]. IEEE,2001
    [1]N. Kimizuka, T. Yamamoto, T. Mogami, K. Yamaguchi, K. Imai, and T. Horiuchi.Impact of bias temperature instability for direct-tunneling ultra-thin gate oxide on MOSFET scaling. In: VLSI Symp. Tech. Dig.,1999, pp.73-74.
    [2]D. Vinay Kumar,K. Narasimhulu,P. S. Reddy. Impact of Reducing STI-Induced Stress on Layout Dependence of MOSFET Characteristics [J]. IEEE Transactions On Electron Devices, Vol.52, No.7, pp.440-443, July 2005
    [3]Nicole Wils, Hans P.Tuinhout, Maurice Meijer.Characterization of STI Edge Effects on CMOS Variability [J]. IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING,VOL.22,NO.1, pp.59-65, FEBRUARY 2009
    [4]Yi-Ming Sheu, Ke-Wei Su, Shiyang Tian. Modeling the Well-Edge Proximity Effect in Highly Scaled MOSFETs[J]. IEEE Transactions On Electron Devices, Vol.53, No.11, pp.2792-2797, November 2006
    [5]D. Vinay Kumar,K. Narasimhulu,P. S. Reddy.Evaluation of the Impact of Layout on Device and Analog Circuit Performance With Lateral Asymmetric Channel MOSFETs[J]. IEEE Transactions On Electron Devices, Vol.52, No.7, pp.1603-1609, July 2005
    [6]T. B. Hook, et al. Lateral Ion Implant Straggle and Mask Proximity Effect[J]. IEEE Trans. Elec. Dev. pp.1946-1951, Sept 2003
    [7]Bianchi, et al.. Accurate Modeling of Trench Isolation Induced Mechanical Stress Effects on MOSFET Electrical Performance. In:2002 IEEE IEDM, pp.117-120.
    [8]K. W. Su, et al.. A Scaleable Model for STI Mechanical Stress Effect on Layout Dependence of MOS Electrical Characteriza-tion.In:2003 IEEE CICC, pp.245-248.
    [9]BSIM 4.5.0 Manual, available at http://www-device.eecs.berkeley.edu/-bsim3/bsim4.html
    [10]CMC, http://www.geia.org/index.asp?bid=597.
    [11]Lianfeng Yang, Meng Cui, James Ma. Advanced Spice Modeling for 65nm CMOS Technology. In:9th International conference on solid-state and integrated-circuit technology (ICSICT),2008,PP.436-439
    [12]P.G. Drennan,M.L. Kniffin,D.R. Locascio.implications of proximity effects for analog design.in:IEEE 2006 custom integrated circuits conference (CICC),pp.169-176.
    [13]Pratap Narayan Singh, Ashish Kumar.A 1.2v 11b 100Msps 15mW ADC realized using 2.5b pipelined stage followed by time interleaved SAR in 65nm digital CMOS process. In:IEEE 2008 Custom Intergrated Circuits Conference (CICC), pp.305-308,2008.
    [14]Yun Chiu Gray, P.R. Nikolic, B.A 1.8 V 14 b 10 MS/s pipelined ADC in 0.18um CMOS with 99 dB SFDR. ISSCC Dig. Tech. Papers,pp.458-539,Feb.2004
    [15]S. Narayan, K. Ashish, D.Chandrajit, M.Rakesh.20mW,125 Msps,10 bit Pipelined ADC in 65nm Standard Digital CMOS Process. Custom Integrated Circuits Conference,2007. pp 189-192,16-19 Sept.2007
    [16]Martin Trojer, Mauro Cleris, Ulrich Gaier. A 1.2V 56mW 10 bit 165Ms/s Pipeline-ADC for HDVideo Applications. In:ESSCIRC 2008, pp.270-273.
    [17]Byung-Geun Lee, Byung-Moo Min.A 14-b 100-MS/s Pipelined ADC With a Merged SHA and First MDAC. IEEE Journal Of Solid-State Circuits, Vol.43, No.12, December 2008
    [18]Wei-Hsuan Tu, Tzung-Hung Kang. A 1.2V 30mW 8b 800MS/s Time-interleaved ADC in 65nm CMOS. In:2008 Symposium on VLSI Circuits Digest of Technical Papers.pp.72-73, June.2008
    [19]Shinagawa M, Akazawa Y, Wakimoto T. Jitter Analysis of High-Speed Sampling Systems [J]. IEEE Journal of Solid-State Circuits,25:220-224,1990.
    [20]Ali A M A, Dillon C, Sneed R, et al. A 14-bit 125 MS/s IF/RF Sampling Pipelined ADC with 100 dB SFDR and 50 fs Jitter [J]. IEEE Journal of Solid-State Circuits,41:1846-1855, 2006.
    [21]Zanchi A, Papantonopoulos I, and Tsay F. Measurement and Spice prediction of subpicosecond clock jitter in A/D converters. In:proc. ISCAS,5:557-560,2005.
    [22]L. Chen, L. Luo, J. Ren. Analysis and Design of Low-Jitter Clock Driver for Wideband ADC[J]. Journal of Fudan University, Vol.48 No.4, pp.499-505, Aug.2009.
    [1]Seung-Tak Ryu,Bang-Sup Song.A 10-bit 50-MS/s Pipelined ADC With Opamp Current Reuse[J].IEEE Journal Of Solid-State Circuits, vol.42, no.3,pp.475-485. March 2007
    [2]C. Hee-Choi, K. Young-Ju and L. Myung-Hwan. A 12b 50MS/s 10.2mA 0.18um CMOS Nyquist ADC with a Fully Differential Class-AB Switched OP-AMP. In:Symp. VLSI Circuits Dig. Of Tech. Papers, pp.220-221, June,2008.
    [3]Dan J.Huber and Rodney J.Chandler. A 10b 160MS/s 84mW 1V Subranging ADC in 90nm CMOS. In:ISSCC Dig. Tech. Papers, pp.455-456, Feb.2007.
    [4]Yavari, M. and shoaei, O. Low-Voltage Low-Power Fast-Settling CMOS Operational Transcondutance Amplifiers For Switched-Capacitor Applications[J]. IEE proc.-circuits Devices Syst. vol.151, no 6, December 2004.
    [5]R. Hogervorst. Design of Low-Voltage Low-Power CMOS Operational Amplifier Cells [M]. Delft, The Netherlands:Delft University Press,1996.
    [6]Choksi, O.and Richard Carley, L. Analysis of Switched-Capacitor Common-Mode Feedback Circuit[J]. IEEE Trans. Circuits Syst Ⅱ, vol.50, no.12, pp.906-916,2003.
    [7]Fan M. and Ren J. A Novel Low-Voltage Operational Amplifier For Low-Power Pipelined Adcs[J]. Journal of Semiconductors, vol.30, no.1, pp.0150091-0150094, January 2009.
    [8]Masato Yoshioka, Masahiro Kudo, Toshihiko Mori. A 0.8V 10b 8OMS/s 6.5mW Pipelined ADC with Regulated Overdrive Voltage Biasing. In:ISSCC 2007,25.1, PP.452-453,Feb. 2007
    [9]Fan M., Ren J., Guo Y., Li Y., Li N., Ye F., Xu J.. Low-Voltage Low-Power Operational Amplifier For SC Circuits[J]. Electronics Letters, vol.45, no.25, pp.1274-1276, Dec.2009.
    [10]Dan J. Huber, Rodney J. Chandler, Asad A. Abidi. A 10b 160MS/s 84mW 1V Subranging ADC in 90nm CMOS. In:ISSCC 2007 pp.454-455. Feb.2007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700