汽车悬架系统的主动振动控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
汽车悬架系统是车辆中极其重要的组件,一个设计优良的悬架系统可以提升车辆底盘的整体性能、改善乘坐舒适度、保证行车安全。随着人们对汽车性能要求的日益提高,传统的被动悬架系统以及半主动悬架系统已逐渐不能满足司乘人员对车辆舒适性和安全性的要求,尤其在较为恶劣的路面环境下。相比之下,汽车主动悬架系统在改善乘坐舒适度以及车辆操作性方面具有较大优势,是汽车悬架设计的主要趋势。在主动悬架系统中,执行机构被放置在车身与车架之间,平行于悬架组件,能增加和衰减系统中的能量,以协助悬架系统控制车身姿态、降低刹车的不良影响,进而增加乘坐舒适度和行车安全性能。本论文针对汽车主动悬架系统设计中的核心问题——控制算法设计进行理论研究与实验验证,分别针对四分之一主动悬架系统、不确定半车主动悬架系统以及带有液压执行器的全车主动悬架系统进行相应的控制算法设计,改善乘坐舒适度和行车安全性能,主要研究内容可概括为:
     有别于经典的汽车主动悬架系统全频域H∞控制方法,本文针对四分之一主动悬架系统,将人体生理结构考虑到控制器设计当中,提出特定频率段下的H∞控制器设计方法,针对性地抑制人体敏感频域段内的扰动,提升乘坐的舒适性。通过对H∞基础理论的研究和发展,避免了传统权重函数法在处理有限频域问题上的复杂性和高度经验依赖性。同全频域H∞控制相比较,有限频域H∞控制方法从扰动到控制输出的H∞性能指标在所设计频域范围内更小,针对性更强,扰动抑制效果明显,同时,悬架行程约束以及车辆安全性能约束也都在控制器设计过程中得到保证。考虑到实际应用中可能存在执行器输入时滞问题,本文提出了输入时滞情况下的主动悬架系统有限频域H∞控制器设计方法,在控制器设计过程中考虑到输入时滞的影响,保证闭环系统即使存在输入时滞的情况下,有限频域H∞性能指标依然能够得到保证。进一步,为处理实际控制中测量信号的不完全可测问题,基于动态输出反馈的有限频域H∞控制器设计方法被提出,弥补全状态反馈过于依赖信号测量的缺陷。
     本文进一步针对非线性不确定半车主动悬架系统进行振动抑制算法研究,提出一种多目标自适应backs tepping控制策略,使得闭环系统即使在含有不确定参数的情况下,车身垂直动态和俯仰角动态均可快速维持稳定,进而提升司乘人员乘坐的舒适性,同时悬架行程约束、安全性能约束以及执行器幅值约束等悬架设计需满足的约束条件也均可得到保证,实现对非线性不确定半车主动悬架系统的多目标振动抑制控制研究,此外,通过选取一个特殊的衰减多项式作为参考轨迹,所提出的多目标自适应backstepping控制策略可以保证闭环系统最终稳定在预设的时间内。
     对主动悬架控制而言,对于执行机构的依赖性使得主动悬架系统的可靠性是非常重要的问题之一,在主动控制中,执行器可能存在饱和、卡死以及失效等现象,这些现象会严重造成闭环系统性能衰减,甚至不稳定。此外,任何的机械系统,除参数不确定外,还常常伴随有未建模动态、摩擦扰动以及未知干扰等不确定的非线性项,本文针对上述现象,分别提出抗饱和自适应鲁棒控制策略和容错自适应鲁棒控制策略,针对执行器饱和问题和执行器故障现象进行主动控制,降低系统发生执行器幅值饱和和故障时的性能衰减,增强系统的可靠性。
     当前主动悬架控制系统的研究,大都忽略执行机构的动态,即假定执行机构为理想力发生机构,此种假设通常导致控制器设计的不精确。针对此情况,本文将实际中常用的液压执行机构的动态性能考虑到控制算法设计过程中,提出了多目标自适应backstepping控制器设计方法,并且为克服标准backstepping控制中带来的“级数爆炸”现象,发展了一种基于滤波器的自适应backstepping控制方法,避免了对虚拟控制导数的求取,简化设计过程的复杂性。此外,针对七自由度液压全车主动悬架系统,结合H∞控制与自适应鲁棒控制各自的优势,提出一种基于自适应鲁棒技术的H∞控制策略,使得闭环系统对液压执行机构中含有的参数不确定性具有自适应能力,对执行器的非线性不确定项具有鲁棒能力,同时车身系统的H∞性能指标以及时域约束均可能得到满足,后续的仿真结果验证了所提出算法的有效性。
     理论设计完成之后,本文将应用四分之一主动悬架振动实验台,对上述提出的两类控制算法——有限频域H∞控制算法和自适应鲁棒控制算法进行物理实验验证,通过实验结果的分析和比较,验证所提出控制算法的有效性,并同上述相应的理论分析结果相吻合,进一步佐证算法设计的合理性和实际应用价值。
Vehicle suspension systems are of vital importance for signifcantly improving pas-senger comfort and handling characteristics. A well-designed suspension system can pro-mote the whole performances of automobile chassis. With increased requirements forvehicle performances, traditional passive suspensions or semi-active suspensions are in-adequate in improving ride comfort or road holding, especially under those extreme poorroad conditions. In contrast, active suspension systems have a potential to improve theride comfort and vehicle maneuverability. In active suspensions, actuators are placed be-tween the car body and wheel-axle parallel to the suspension elements, and are able toboth add and dissipate energy from the system, which enables the suspension to controlthe attitude of the vehicle, to reduce the efects of braking and the vehicle roll duringcornering maneuvers to increase ride comfort and vehicle road handling. The present dis-sertation focuses on the control law design for vehicle active suspensions to improve ridecomfort and ride safety, where quarter-car model, half-car model and full-car model areestablished successively to be the control plants. The main researches are summarized asfollows.
     The control problem for quarter-car active suspensions in fnite frequency domain isinvestigated. Diferent from the traditional H_∞control approaches which design the con-trollers within the full frequency domain, this dissertation handles the H_∞control problemfor active vehicle suspensions in specifc frequency domain. By developing fundamentaltheory of disturbance attenuation control, the H_∞norm is reduced in concerned frequencyband to improve the drivers’ and passengers’ comfort. Compared with the full frequen-cy H_∞control technology, the proposed approach suppresses the road disturbances moreefectively for the concerned frequency range. Moreover, the necessary performance con-straints within the active suspension design are guaranteed in the whole time domain.Next, in view of the possible actuator input delay, the fnite frequency method is devel-oped to deal with the problem of suspension control with actuator input delay. In addition,state feedback control, which depends on the premise that all the state variables are on-line measurable, usually leads into higher cost and additional complexity, and sometimes,not all the state variables can be measured on-line. To response this situation, a dynamicoutput feedback control algorithm is proposed in this dissertation according to part of themeasured states.
     This dissertation proposes an adaptive backstepping control strategy for half-car un-certain active suspensions with hard constraints. An adaptive backstepping controller isdesigned to stabilize the attitude of vehicle and meanwhile improve ride comfort in thepresence of parameter uncertainties, where suspension spaces, dynamic tire loads and ac-tuator saturations are considered as time domain constraints. Furthermore, a referencetrajectory is planned to keep the vertical and pitch motions of car body to stabilize in pre-determined time, which helps adjust accelerations accordingly to high or low levels forimproving ride comfort.
     In response to the possible actuator saturation and actuator failures, the saturatedadaptive robust control strategy and the fault tolerant adaptive robust control approachare proposed to deal with the problems of actuator saturation and fault accommodationof active suspension systems. Comparative simulation studies are then given to verify theefectiveness of the proposed control approaches, in which one can see that the designedanti-windup controller and fault tolerant controller can reach good performances eventhough actuator saturation or failures happen.
     Difering from the existing results, in most of which the efect of actuator dynamic isneglected, this dissertation considers the electro-hydraulic systems as actuators to supplythe active forces into suspension systems. Furthermore, to overcome the explorationof terms problem existing in standard backstepping, a flter-based backstepping controlstrategy is subsequently proposed. Based on the above analysis and design, the problemof vibration suppression for full-car active suspension systems is investigated, whose aimis to stabilize the attitude of vehicle and meanwhile improve ride comfort. A full-carmodel is adopted and electro-hydraulic actuators with highly nonlinear characteristics areconsidered to form the basis of accurate control. In this part, the H_∞performance is in-troduced to realize the disturbance suppression by selecting the actuator forces as virtualinputs, and an adaptive robust control technology is further used to design controllerswhich help real force inputs track virtual ones. The resulting controllers are robust a-gainst both actuator parametric uncertainties and actuator uncertain nonlinearities, andthe following stability analysis for the closed-loop system is given within the Lyapunovframework.
     Experimental verifcations for quarter-car active suspensions are given to show thepractical application of the proposed control algorithms (fnite frequency H_∞control andadaptive robust control), from which the efectiveness and practical merits of the proposedmethod are verifed.
引文
[1]余志生.汽车理论[M].第四版.北京:机械工业出版社,2007:1-278.
    [2]王望予.汽车设计[M].第四版.北京:机械工业出版社,2011:1-287.
    [3]高会军.基于参数依赖Lyapunov函数的不确定动态系统的分析与综合[D].哈尔滨:哈尔滨工业大学,2005:162-179.
    [4]郭大蕾.车辆悬架振动的神经网络半主动控制[D].杭州:浙江大学,2008:1-4.
    [5]孙建民.车辆主动悬架系统控制技术研究[D].哈尔滨:哈尔滨工程大学,2003:1-8.
    [6]孙鹏远.基于LMI优化的主动悬架多目标控制研究[D].长春:吉林大学,2004:1-6.
    [7]方子帆.基于MR阻尼器的半主动悬架控制方法研究[D].重庆:重庆大学,2006:1-12.
    [8]王其东.基于多体理论的汽车悬架系统分析、设计与控制研究[D].合肥:合肥工业大学,2002:1-9.
    [9]Hrovat D. Survey of advanced suspension developments and related optimal con-trol applications[J]. Automatica,1997,33(10):1781-1817.
    [10]Cao D, Song X, Ahmadian M. Editors'perspectives:Road vehicle suspension design, dynamics, and control[J]. Vehicle System Dynamics,2011,49(1/2):3-28.
    [11]Chen H, Guo K. Constrained H∞control of active suspensions:An LMI ap-proach[J]. IEEE Transactions on Control Systems Technology,2005,13(3):412-421.
    [12]Karnopp D. How significant are transfer function relations and invariant points for a quarter car suspension model?[J]. Vehicle System Dynamics,2009,47(4):457-464.
    [13]Appleyard M, Wellstead P. Active suspensions:somebackground[J]. IET Conrrol Theory&Applications,1995,142(2):123-128.
    [14]Poussot-Vassal C, Spelta C, Sename O, et al. Survey and performance evaluation on some automotive semi-active suspension control methods:a comparative study on a single-corner model[J]. Annual Reviews in Control,2012,36:148-160.
    [15] Canale M, Milanese M, Novara C. Semi-Active suspension control using fastmodel-predictive techniques[J]. IEEE Transactions on Control Systems Technolo-gy,2006,14(6):1034–1046.
    [16] Swevers J, Lauwerys C, Vandersmissen B, et al. A model-free control structure forthe on-line tuning of the semi-active suspension of a passenger car[J]. MechanicalSystems and Signal Processing,2007,21:1422–1436.
    [17] Howell M, Frost G, Gordon T, et al. Continuous action reinforcement learingapplied to vehicle suspension control[J]. Mechatronics,1997,7(3):263–276.
    [18] Paulides J, Encica L, Lomonova E, et al. Design considerations for a semi-activeelectromagnetic suspension system[J]. IEEE Transactions on Magnetics,2006,42(10):3446–3448.
    [19] Ieluzzi M, Turco P, Montiglio M. Development of a heavy truck semi-active sus-pension control[J]. Control Engineering Practice,2006,14:305–312.
    [20] Bolandhemmat H, Clark C, Golnaraghi F. Development of a systematic and prac-tical methodology for the design of vehicles semi-active suspension control sys-tem[J]. Vehicle System Dynamics,2009,48(5):567–585.
    [21] Zapateiro M, Pozo F, Karimi H, et al. Semiactive control methodologies for sus-pension control with magnetorheological dampers[J]. IEEE/ASME Transactionson Mechatronics,2012,17(2):370–380.
    [22] Eathakota V, Singh A, Krishna K. Two models of force actuator based active sus-pension mechanisms for mobility on uneven terrain[J]. Acta Astronautica,2010,67:1233–1247.
    [23] Lin Y, Lin C, Shieh N. A hybrid evolutionary approach for robust active suspensiondesign of light rail vehicles[J]. IEEE Transactions on Control Systems Technology,2006,14(4):695–706.
    [24] Evers W, Besselink I, Teerhuis A, et al. On the achievable performance usingvariable geometry active secondary suspension systems in commercial vehicles[J].Vehicle System Dynamics,2011,49(10):1553–1573.
    [25] Du H, Zhang N, Naghdy F. Robust control of vehicle electrorheological suspensionsubject to measurement noises[J]. Vehicle System Dynamics,2011,49(1-2):257–275.
    [26] Wang J, Shen S. Integrated vehicle ride and roll control via active suspensions[J].Vehicle System Dynamics,2008,46:495–508.
    [27] Lin J, Lian R. DSP-based self-organising fuzzy controller for active suspensionsystems[J]. Vehicle System Dynamics,2008,46(12):1123–1139.
    [28] I.Youn, Im J, Tomizuka M. Level and attitude control of the active suspensionsystem with integral and derivative action[J]. Vehicle System Dynamics,2006,44(9):659–674.
    [29] Du H, Zhang N, Lam J. Parameter-dependent input-delayed control of uncertainvehicle suspensions[J]. Journal of Sound and Vibration,2008,317:537–556.
    [30] Thompson A, Davis B. Computation of the rms state variables and control forcesin a half-car model with preview active suspension using spectral decompositionmethods[J]. Journal of Sound and Vibration,2005,285:571–583.
    [31] D’Amato F, Viassolo D. Fuzzy control for active suspensions[J]. Mechatronics,2000,10:897–920.
    [32] Yoshimura T, Nakaminami K, Kurimoto M, et al. Active suspension of passengercars using linear and fuzzy-logic controls[J]. Control Engineering Practice,1999,7:41–47.
    [33] Maciejewski I. Control system design of active seat suspensions[J]. Journal ofSound and Vibration,2012,331:1291–1309.
    [34] Hac A. Suspension oprimization of a2-DOF vehicle model using a stochasticpptimal control technique[J]. Journal of Sound and Vibration,1985,100(3):343–357.
    [35] Chen S, Chou J, Zheng L, et al. Design of robust-stable and quadratic fnite-horizonoptimal controllers with low trajectory sensitivity for uncertain active suspensionsystems[J]. Vehicle System Dynamics,2010,48(8):945–965.
    [36] Tung S, Juang Y, Lee W, et al. Optimization of the exponential stabilization prob-lem in active suspension system using PSO[J]. Expert Systems with Applications,2011,38:14044–14051.
    [37] Doyle J, Glover K, Khargonekar P, et al. State-space solutions to standard H2and H∞control problem[J]. IEEE Transactions on Automatic Control,1994,39(8):1575–1587.
    [38] Doyle J, Zhou K, Glover K, et al. Mixed H2and H∞Performance Objectives II:Optimal Control[J]. IEEE Transactions on Automatic Control,1994,39(8):1575–1587.
    [39] Gahinet P, Apkarian P. A linear matrix inequality approach to H∞control[J]. In-ternational Journal of Robust&Nonlinear Control,1994,4:421–448.
    [40]Oliveira J, Oliveira R, V.Leite, et al. A linear matrix inequality approach to H∞control[J]. Automatica,2004,40:1053-1061.
    [41]彭晨,岳东.网络环境下不确定时滞系统鲁棒H∞控制[J].自动化学报,2007,33(10):1093-1096.
    [42]Yamashita M,, Fujimori K, et al. Application of H∞control to active Suspension systems[J]. Automatica,1994,30(11):1717-1729.
    [43]Du H, Zhang N. H∞, control of active vehicle suspensions with actuator time de-lay[J]. Journal of Sound and Vibration,2007,301:236-252.
    [44]Chen H, Liu Z, Sun P. Application of constrained H∞, sontrol to active suspension systems on half-Car models[J]. Journal of Dynamic Systems, Measurement, and Control,2005,127:345-354.
    [45]Du H, Zhang N. Designing H∞/GH2static output feedback controller for vehicle suspensions using linear matrix inequalities and genetic algorithms [J]. Vehicle System Dynamics,2008,46(5):385-412.
    [46]Amirifar R, Sadati N. Low-order H∞, controller design for an active suspension system via LMIs[J]. IEEE Transactions on Industrial Electronics,2006,53(2):554-560.
    [47]Du H, Lam J, Sze K. Non-fragile H∞, vibration control for uncertain structural systems[J]. Journal of Sound and Vibration,2004,273:1031-1045.
    [48]Hayakawa K, Matsumoto K, Yamashita M, et al. Robust H∞, output feedback con-trol of decoupled automobile active suspension sy stems [J]. IEEE Transactions on Automatic Control,1999,44(2):392-396.
    [49]Guo L, Zhang L. Robust H∞, control of active vehicle suspension under non-stationary running [J]. Journal of Sound and Vibration,2012,331:5824-5837.
    [50]Chen P, Huang A. Adaptive sliding control of non-autonomous active suspension systems with time-varying loadings[J]. Journal of Sound and Vibration,2005,282:1119-1135.
    [51]Choi S, Han Y. Vibration control of electrorheological seat suspension with human-body model using sliding mode control[J]. Journal of Sound and Vibration,2007,303:391-404.
    [52]Al-Holou N, Lahdhiri T, Joo D, et al. Sliding mode neural network inference fuzzy logic control for active suspension systems [J]. IEEE Transactions on Fuzzy Systems,2002,10(2):234-246.
    [53] Yagiz N, Hacioglu Y, Taskin Y. Fuzzy sliding-mode control of active suspension-s[J]. IEEE Transactions on Industrial Electronics,2008,55(11):3883–3890.
    [54] Sam Y, Osmana J, Ghani M. A class of proportional-integral sliding mode controlwith application to active suspension system[J]. Systems&Control Letters,2004,51:217–223.
    [55] Huang S, Lin W. Adaptive fuzzy controller with sliding surface for vehicle suspen-sion control[J]. IEEE Transactions on Fuzzy Systems,2003,11(4):550–559.
    [56] Lin J, Lian R, Huang C, et al. Enhanced fuzzy sliding mode controller for activesuspension systems[J]. Mechatronics,2009,19:1178–1190.
    [57] Lin J, Huang C. Nonlinear backstepping active suspension design applied to ahalf-car model[J]. Vehicle System Dynamics,2004,42(6):373–393.
    [58] Yagiz N, Hacioglu Y. Backstepping control of a vehicle with active suspensions[J].Control Engineering Practice,2008,16:1457–1467.
    [59] Kaddissi C, Kenne J, Saad M. Drive by wire control of an electro-hydraulic activesuspension a backstepping approach[C]//Proceedings of the2005IEEE Conferenceon Control Applications. Toronto: IEEE Press,2005:28–31.
    [60] Krstic M, Kanellakopoulos I, Kokotovic P. Nonlinear and adaptive control de-sign[M]. New York: Wiley,1995.
    [61] Astrom K, Wittenmark B. Adaptive control[M]. the2nd edition.[S.l.]: Addison-Wesley Publication Co,1995.
    [62] Landau I. Adaptive control-the model reference approach[M]. New York: Dekker,1995.
    [63] Narendra K, Valavani L. Stable adaptive controller design-direct control[J]. IEEETransactions on Automatic Control,1978,23:570–583.
    [64] Narendra K, Lin Y, Valavani L. Stable adaptive controller design-part ii: proof ofstability[J]. IEEE Transactions on Automatic Control,1980,25:440–448.
    [65] Sunwoo M, Cheok K, Huang N. Model reference adaptive control for vehicleactive suspension systems[J]. IEEE Transactions on Industrial Electronics,1991,38(3):217–222.
    [66] Huang S, Chen H. Adaptive sliding controller with self-tuning fuzzy compensationfor vehicle suspension control[J]. Mechatronics,2006,16:607–622.
    [67] Yao B. Desired compensation adaptive robust control[J]. ASME Journal of Dy-namic systems, measurement and control,2009,131:1–7.
    [68] Hong Y, Yao B. A globally stable saturated desired compensation adaptive robustcontrol for linear motor systems with comparative experiments[J]. Automatica,2007,43(10):1840–1848.
    [69] Yao B. Advanced motion control: from classical PID to nonlinear adaptive robustcontrol[C]//The11th IEEE international workshop on advanced motion control.Nagaoka: IEEE Press,2010:815–829.
    [70] Gong J, Yao B. Output feedback neural network adaptive robust control of a classof SISO nonlinear systems[J]. ASME Journal of Dynamic systems, measurementand control,2006,128(2):227–235.
    [71] Yao B, Xu L. Output feedback adaptive robust control of uncertain linear sys-tems with disturbances[J]. ASME Journal of Dynamic systems, measurement andcontrol,2006,128(4):1–9.
    [72] Yao B, Tomizuka M. Adaptive robust control of MIMO nonlinear systems in semi-strict feedback forms[J]. Automatica,2001,37:1305–1321.
    [73] Yao B, Xu L. Observer based adaptive robust control of nonlinear systems withdynamic uncertainties[J]. International Journal of Robust and Nonlinear Control,2001,15:335–356.
    [74] Yao J G B. Neural network adaptive robust control of nonlinear systems in semi-strict feedback form[J]. Automatica,2001,37(8):1149–1160.
    [75] Yao B, Tomizuka M. Smooth robust adaptive sliding mode control of robot ma-nipulators with guaranteed transient performance[J]. ASME Journal of Dynamicsystems, measurement and control,1996,118:764–775.
    [76] Yao B, Tomizuka M. Adaptive robust control SISO nonlinear systems in a semi-strict feedback form[J]. Automatica,1997,33:893–900.
    [77] Eimadany M, Bassam B, Fayed A. Preview control of slow-active suspension sys-tems[J]. Journal of Vibration and Control,2011,17(2):245–258.
    [78] Lin J, Lian R. Intelligent control of active suspension systems[J]. IEEE Transac-tions on Industrial Electronics,2011,58(2):618–628.
    [79] I. Eski S Y. Vibration control of vehicle active suspension system using a new ro-bust neural network control system[J]. Simulation Modelling Practice and Theory,2009,17:778–793.
    [80] Sename O, Anh-Lam D, Poussot-Vassal C. Some LPV approaches for semi-activesuspension control[C]//Proceedings of the American Control Conference. Montre-al,Canada: IEEE Press,2012:1567–1572.
    [81] Zhang J, Gao R, Zhao Z. Fuzzy logic controller based Genetic algorithm forsemi-active suspension[J]. Journal of Scientifc and Industrial Research,2012,71(8):521–527.
    [82] Pang C, Lewis F, Ge S, et al. Singular perturbation control for vibration rejectionin HDDs using the PZT active suspension as fast subsystem observer[J]. IEEETransactions on Industrial Electronics,2007,54(3):1375–1386.
    [83] Gao H, Lam J, Wang C. Multi-objiective control of vehicle active suspensionsystems via load-dependent controllers[J]. Journal of Sound and Vibration,2006,290:645–675.
    [84] Wang Z, Ho D, Liu Y, et al. Robust H∞control for a class of nonlinear discretetime-delay stochastic systems with missing measurements[J]. Automatica,2009,45(3):684–691.
    [85] Karimi H, Zapateiro M, Luo N. An LMI approach to H∞control of vehicle engine-body vibration systems with time-varying actuator delay[J]. Proceedings of theInstitution of Mechanical Engineers, Part I. Journal of Systems and Control Engi-neering,2008,222(8):883–899.
    [86] Wang Z, Liu Y, Liu X. H∞fltering for uncertain stochastic time delay systemswith sector-bounded nonlinearities[J]. Automatica,2008,44(5):1268–1277.
    [87] Karimi H, Gao H. New delay-dependent exponential H∞synchronization for un-certain neural networks with mixed time delays[J]. IEEE Transactions on SystemsMan, Cybernetics(Part-B),2010,40(1):173–185.
    [88] Meng J. Frequency shift keyed narrowband interference rejection: optimal expo-nential weighting factor for the RLS algorithm[J]. IEE Proceedings-Vision, Imageand Signal Processing,2005,152(3):268–274.
    [89] Calvagno G, Munson D C. A frequency-domain approach to interpolation from anonuniform grid[J]. Signal Processing,1996,52(1):1–21.
    [90] Iwasaki T, Meinsma G, Fu M. Generalized S-procedure and fnite frequency KYPlemma[J]. Mathematical Problems in Engineering,2000,6:305–320.
    [91] Iwasaki T, Hara S. Generalized KYP Lemma: unifed frequency domain inequal-ities with design applications[J]. IEEE Transactions on Automatic Control,2005,50(1):41–59.
    [92] Iwasaki T, Hara S, Yamauchi H. Dynamical system design from a control perspec-tive: fnite frequency positive-realness approach[J]. IEEE Transactions on Auto-matic Control,2003,50(1):1337–1354.
    [93]Hara S, Iwasaki T. Sum-of-squares decomposition via generalized KYP lemma [J]. IEEE Transactions on Automatic Control,2009,54(5):1025-1029.
    [94]Hoang H, Tuan H, Nguyen T. Frequency-selective KYP lemma, IIR filter, and filter bank design [J]. IEEE Transactions on Signal Processing,2009,57(3):956-965.
    [95]Hencey B, Alleyne A. A KYP lemma for LMI regions [J]. IEEE Transactions on Automatic Control,2007,52(10):1926-1930.
    [96]Dua C, Xie L, Guo G, et al. A generalized KYP lemma based approach for distur-bance rejection in data storage systems[J]. Automatica,2007,43(12):2112-2118.
    [97]Zhang X, Yang G. Control synthesis via state feedback with finite frequency specifications for time-delay systems[J]. International Journal of Control,2009,82(3):508-516.
    [98]Wang H, Yang G. A finite frequency approach to filter design for uncertain discrete-time systems[J]. International Journal of Adaptive Control and Signal Processing,2008,22:533-555.
    [99]Li X, Gao H. Robust finite frequency H∞filtering for uncertain2-D Roesser sys-tems[J]. Automatica,2012,48(6):1163-1170.
    [100]Li X, Gao H. Generalized Kalman-Yakubovich-Popov Lemma for2-D FM LSS Model[J]. IEEE Transactions on Automatic Control,2012,57(12):3090-3103.
    [101]俞立.鲁棒控制—线性矩阵不等式处理方法[M].第一版.北京:清华大学出版社,2002:1-278.
    [102]Apkarian P, Tuan H D, Bernussou J. Continuous-Time analysis, eigenstructure as-signment, and H2synthesis with enhanced Linear Matrix Inequalities (LMI) char-acterizations [J]. IEEE Transactions on Automatic Control,2001,42(12):1941-1946.
    [103]Wu J, Chen X, Gao H. H∞filtering with stochastic sampling[J]. Signal Proces-siong,2010,90(4):1131-1145.
    [104]Gao H, Wu J, Shi P. Robust sampled-data H∞control with stochastic sampling[J]. Automatica,2009,45(7):1729-1736.
    [105]Qiu J, Feng G, Yang J. New results on robust energy-to-peak filtering for discrete-time switched polytopic linear systems with time-varying delay [J]. IET Control Theory and Applications,2008,2(9):795-806.
    [106]段广仁.线性系统理论[M].第二版.哈尔滨:哈尔滨工业大学出版社,1997.
    [107]Sun W, Gao H. Vibration control for active seat suspension systems via dynam-ic output feedback with limited frequency characteristic[J]. Mechatronics,2011,21:250-260.
    [108]Gahinet P, Nemirovski A, Laub A, et al. LMI control toolbox For use with MAT-LAB[M]. Version1. Natick, MA:The MathWorks, Inc,1995:8-1-8-33.
    [109]Zhao Y, Gao H. Fuzzy-model-based control of an overhead crane with input delay and actuator aturation[J]. IEEE Transactions on Fuzzy Systems,2012,20(l):181-186.
    [110]Qin J, Gao H. A sufficient condition for convergence of sampled-data consensus for double-integrator dynamics with nonuniform and time-varying Communication Delays[J]. IEEE Transactions on Automatic Control,2012,57(9):2417-2422.
    [111]Zhou B, Gao H, Lin Z, et al. Stabilization of linear systems with distributed input delay and input saturation[J]. Automatica,2012,48(5):712-724.
    [112]Li H, Liu H, Gao H, et al. Reliable fuzzy control for active suspension system-s with actuator delay and fault[J]. IEEE Transactions on Fuzzy Systems,2012,20(25):342-357.
    [113]Gao H, Li X.H∞filtering for discrete-time state-delayed systems with finite frequency specifications [J]. IEEE Transactions on Automatic Control,2011,56(12):2935-2941.
    [114]Gao H, Sun W, Shi P. Robust sampled-data H∞control for vehicle active sus-pension systems [J]. IEEE Transactions on Control Systems Technology,2010,18(1):238-245.
    [115]Sun W, Gao H, Kaynak O. Finite frequency H∞control for vehicle active sus-pension systems[J]. IEEE Transactions on Control Systems Technology,2011,19(2):416-422.
    [116]郭尚来.随机控制[M].第一版.北京:清华大学出版社,2002.
    [117]王广雄,何朕.控制系统设计[M].第一版.北京:清华大学出版社,2008.
    [118]Sun W, Zhao Y, Li J, et al. Active suspension control with frequency band con-straints and actuator input delay [J]. IEEE Transactions on Industrial Electronics,2012,59(1):530-537.
    [119]Gao H, Zhao Y, Sun W. Input-delayed control of uncertain seat suspension systems with human-body model[J]. IEEE Transactions on Control Systems Technology,2010,18(3):591-601.
    [120] Zhao Y, Sun W, Gao H. Robust control synthesis for seat suspension systemswith actuator saturation and time-varying input delay[J]. Journal of Sound andVibration,2010,329(21):4335–4353.
    [121] Iwasaki T, Hara S. Feedback control synthesis of multiple frequency domain speci-fcations via generalized KYP lemma[J]. International Journal of Robust and Non-linear Control,2007,17:415–434.
    [122] Scherer C, Gahinet P, Chilali M. Multiobjective output-feedback control via LMIoptimization[J]. IEEE Transactions on Automatic Control,1997,42(7):896–911.
    [123] Geromel J, Colaneri P, Bolzern P. Dynamic output feedback control of switchedlinear systems[J]. IEEE Transactions on Automatic Control,2008,53(3):720–733.
    [124] Chen P, Cheng D, Jiang Z. A constructive approach to local stabilization of non-linear systems by dynamic output feedback[J]. IEEE Transactions on AutomaticControl,2006,51(7):1166–1171.
    [125] Cao Y, Lin Z, Chen B. An output Feedback H∞Controller Design for LinearSystems Subject to Sensor Nonlinearities[J]. IEEE Transactions on Circuits andSystems-I,2003,50(7):914–921.
    [126] Sastry S, Isidori A. Adaptive control of linearizable systems[J]. IEEE Transactionson Automatic Control,1989,34:1123–1131.
    [127] Slotine J, Li W. Adaptive manipulator control: a case study[J]. IEEE Transactionson Automatic Control,1988,33(11):995–1003.
    [128] Yao B, Tomizuka M. Adaptive control of robot manipulators in constrained mo-tion[J]. ASME Journal of Dynamic systems, measurement and control,1995,117(3):320–328.
    [129] Goodwin G, Mayne D. A parameter estimation perspective of continuous timemodel reference adaptive control[J]. Automatica,1987,23(1):57–70.
    [130] Freeman R, Krstic M, Kokotovic P. Robustness of adaptive nonlinear control tobounded uncertainties[J]. Automatica,1998,34(10):1227–1230.
    [131] Li G, Khajepour A. Robust control of a hydraulically driven flexible arm usingbackstepping technique[J]. Journal of Sound and Vibration,2005,280:759–775.
    [132] Kaddissi C, Kenne J, Saad M. Indirect adaptive control of an electrohydraulicservo system based on nonlinear backstepping[J]. IEEE/ASME Transactions onMechatronics,2011,16(6):1171–1177.
    [133] Tan Y, Chang J, Tan H. Adaptive backstepping control and friction compensationfor AC servo with inertia and load uncertainties[J]. IEEE Transactions on IndustrialElectronics,2003,50(5):944–952.
    [134] Mulder E, Kothare M, Morari M. Multivariable anti-windup controller synthesisusing linear matrix inequalities[J]. Automatica,2001,37:1407–1416.
    [135] Zaccarian L, Li Y, Weyer E, et al. Anti-windup for marginally stable plants and itsapplication to open water channel control systems[J]. Control Engineering Prac-tice,2007,15:261–272.
    [136] Grimm G, Teel A, Zaccarian L. Linear LMI-based external anti-windup augmen-tation for stable linear systems[J]. Automatica,2004,40:1987–1996.
    [137] Park K, Lim H, Basar T, et al. Anti-windup compensator for active queue manage-ment in TCP networks[J]. Control Engineering Practice,2003,11:1172–1142.
    [138] Hencey B, Alleyne A. An anti-windup technique for LMI regions[J]. Automatica,2009,45:2344–2349.
    [139] Tarbouriech S, Turner M. Anti-windup design: an overview of some recent ad-vances and open problems[J]. IET Control Theory and Applications,2009,3(1):1–19.
    [140] Teel A, Zaccarian L, Marcinkowski J. An anti-windup strategy for active vibrationisolation systems[J]. Control Engineering Practice,2006,14:17–27.
    [141] Sajjadi-Kia S, Jabbari F. Modifed Anti-Windup Compensators for Stable Plants[J].IEEE Transactions on Automatic Control,2009,54(8):1934–1939.
    [142] Grimm G, C. R, E. S. Antiwindup for stable linear systems with input satura-tion: an LMI-based synthesis[J]. IEEE Transactions on Automatic Control,2003,48(9):1509–1525.
    [143] Yang H, Cocquempot V, Jiang B. Robust fault tolerant tracking control with appli-cation to hybrid nonlinear systems[J]. IET Control Theory and Applications,2009,3(2):211–224.
    [144] Gayaka S, Yao B. Output feedback based adaptive robust fault-tolerant controlfor a class of uncertain nonlinear systems[J]. Journal of Systems Engineering andElectronics,2011,22(1):38–51.
    [145] Yu X, Jin J. Hybrid fault-tolerant flight control system design against partialactuator failures[J]. IEEE Transactions on Control Systems Technology,2012,20(4):871–886.
    [146] Wang R, Wang J. Fault-tolerant control with active fault diagnosis for four-wheelindependently driven electric ground vehicles[J]. IEEE Transactions on VehicularTechnology,2011,60(9):4276–4287.
    [147] Kim H, Lee H. Fault-tolerant control algorithm for a four-corner closed-loopair suspension system[J]. IEEE Transactions on Industrial Electronics,2011,58(10):4866–4879.
    [148] Cieslak J, Henry D, Zolghadri A. Fault tolerant flight control: from theory to pi-loted flight simulator experiments[J]. IET Control Theory Appl.,2010,4(8):1451–1464.
    [149] Jiang B, Gao Z, Shi P, et al. Adaptive fault-tolerant tracking control of near-Spacevehicle using takagi–sugeno fuzzy models[J]. IEEE Transactions on Fuzzy Sys-tems,2010,18(5):1000–1007.
    [150] Ye D, Yang G. Adaptive fault-tolerant tracking control against actuator faults withapplication to flight control[J]. IEEE Transactions on Control Systems Technology,2006,14(6):1000–1007.
    [151] Gao Z, Ding S. Actuator fault robust estimation and fault-tolerant control for aclass of nonlinear descriptor systems[J]. Automatica,2007,43:912–920.
    [152] Karpenko M, Sepehri N. Fault-tolerant control of a servohydraulic positioning sys-tem with crossport leakage[J]. IEEE Transactions on Control Systems Technology,2005,13(1):155–161.
    [153] Meng L, Jiang B. Backstepping-based active fault-tolerant control for a class ofuncertain SISO nonlinear systems[J]. Journal of Systems Engineering and Elec-tronics,2009,20(6):1263–1270.
    [154] Boskovic J, Mehra R. A decentralized fault-tolerant control System for accommo-dation of failures in higher-Order flight control actuators[J]. IEEE Transactions onControl Systems Technology,2010,18(5):1103–1115.
    [155] Hu C, Yao B, Wang Q. Coordinated adaptive robust contouring controller designfor an industrial biaxial precision gantry[J]. IEEE Transactions on Mechatronics,2010,15(5):728–735.
    [156] Koch G, Fritsch O, Lohmann B. Potential of low bandwidth active suspensioncontrol with continuously variable samper[J]. Control Engineering Practice,2010,18:1251–1262.
    [157]Ma M, Chen H. Disturbance attenuation control of active suspension with non-linear actuator dynamics[J]. IET Control Theory and Applications,2011,5(1):112-122.
    [158]Sun W, Gao H, Yao B. Adaptive robust vibration control of full-car active suspen-sions with electrohydraulic actuators[J]. IEEE Transactions on Control Systems Technology, Digital Object Identifier:10.1109/TCST.2012.2237174.
    [159]孙维超.汽车悬架系统的有限频域控制与采样控制[D].哈尔滨:哈尔滨工业大学,2009:1-76.
    [160]李传江,马广富.最优控制[M].第一版.哈尔滨:科学出版社,2011:10-20.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700