大排量连续回转电液伺服马达控制性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为飞行控制系统半实物仿真中的重要实验设备,飞行仿真转台的性能直接关系到飞行器仿真结果的逼真度。随着我国现代军事技术的发展和当前国际形势的日益严峻,对飞行仿真转台的技术水平要求不断地提高,单纯采用摆动式电液伺服马达驱动的仿真转台已经不能满足要求,在此背景下,本文对新型大排量连续回转电液伺服马达的性能及其控制系统进行了研究。
     本文通过阅读大量国内外文献,综述了了国内外仿真转台的发展概况,介绍了决定仿真转台整体技术水平的一些关键技术。针对仿真转台超低速、宽调速、高频响等性能指标的要求,本文对大排量连续回转电液伺服马达的结构模型进行分析,证明此马达实现了转速、流量和理论输出扭矩的无脉动。
     考虑到马达实际系统的特点,建立了系统的传统数学模型,在此基础上对马达的稳定性、开、闭环频率特性等进行分析。使用最小二乘法对系统进行离散模型辨识,建立了离散系统的ARX模型,并依据辨识模型分析了对马达性能造成影响的因素。
     通过对连续回转电液伺服马达的理论分析,在连续回转电液伺服马达实验台上对复合控制策略进行验证,并通过C++ builder进行程序的编写。进行对阶跃响应、斜坡响应、三角波信号和正弦信号的跟踪,验证马达的各项性能。实验结果表明,连续回转马达在复合控制策略下具有良好综合性能。
As an important experiment equipment for the simulation for the fight control system, the performance of flight simulation turntable play an important part for the fidelity of the aircraft simulation results. With the development of China's modern military technology and the austerity of the international situation, it asks for a higher level of the flight simulation turntable technology. and the simulation turntable that only with electro-hydraulic servo motor drive can't meet the requirement any more, so the performance of a new large displacement continuous rotary electro-hydraulic servo motor and its control system is studied in this paper.
     After a lot of the domestic and foreign literatures were reviewed, the development of simulation turntable was summarized and some key technology is introduced. According to the requirements of super-low speed, high frequency and wide speed performance indexes for the simulation turntable, the structure model of the large displacement continuous rotary electro-hydraulic servo motor was analysed. Results show that the revolution, flow and the theoretical output torque can be realized without pulsation which is necessary for the super-low speed performance for the motor.
     Considering to the characteristics of the motor system, the traditional mathematical model of system is established, and then the stability of the motor, open and closed loop frequency characteristics are analyzed. The least square method is used for identification of the discrete model. After the establishment of ARX mode for the discrete system, factors that impact the performance of motor are pointed out by using recognition model.
     Through the theory analysis of the continuous rotary electro-hydraulic servo motor, the verification experiment of composite control strategy is done in continuous rotary electro-hydraulic servo motor and the program is complied by C++ builder. In order to verify the performance of the motor, the tracks of step response signal, slope response signal, triangle wave signal and the sine signal are followed. The experimental results show that continuous rotary motor has a favorable comprehensive performance under composite control strategy.
引文
[1] Cao Jian, Xu Hong-guang. Friction characteristics of a new type of continuous rotary electro-hydraulic servomotor applied to simulator[J].Journal of Harbin Institute of Technology, 2008,15(1):86-89.
    [2]付兴武.三轴飞行姿态仿真转台高性能指标及其实现[J].中国惯导技术学报, 1998, (6): 2-5.
    [3]李双勋.防空导弹武器系统仿真:导弹飞行姿态仿真器和舵面负载力矩仿真器[M].宇航出版社, 1995: 502-557.
    [4]陈兴林.三轴飞行仿真转台控制系统设计与研究[D].哈尔滨工业大学博士学位论文, 1994: 1-8.
    [5]李跃磊,王武,葛瑜.飞行模拟转台伺服系统滑模控制仿真[J].机械设计与制造, 2011, (3): 206-208.
    [6]刘丽兰,刘宏昭,吴子英,王忠民.机械系统中摩擦模型的研究进展[J].力学进展, 2008, 38(2): 201-213.
    [7]曹健,李尚义,赵克定.新型连续回转电液伺服马达摩擦特性及性能研究[J].哈尔滨工业大学学报, 2003,35(2): 142-146.
    [8]赵克定.超低速、高频响、高精度电液伺服马达的设计特点和试验研究[J].机床与液压, 1990, (3): 50-56.
    [9]曹健.仿真转台用连续回转电液伺服马达及其性能的研究[D].哈尔滨工业大学博士学位论文, 2002: 9, 48-56, 73-90.
    [10]王晓晶,姜继海,李尚义.连续回转电液伺服马达泄漏特性的研究[J].机床与液压, 2008, 36(10): 54-55.
    [11]杜璧秀,张淑梅,高慧斌,张玉良.高精度转台速度稳定性研究[J].光电工程, 2011, 38(3): 14-18.
    [12]宋彦,高慧斌,田彦涛,张淑梅.伺服系统受摩擦扰动产生极限环的原因及稳定性分析[J].吉林大学学报(工学版), 2011, 41(1): 214-220.
    [13]陈运广.液压三轴仿真转台低速性能分析及其控制的研究[D].哈尔滨工业大学硕士学位论文, 2008: 14-35.
    [14]崔晓.仿真转台用中空式电液伺服马达摩擦及泄漏特性的研究[D].哈尔滨工业大学博士学位论文, 2010: 46-87.
    [15]马育华. QFT在连续回转电液伺服马达控制系统中的应用[D].哈尔滨工业大学硕士学位论文, 2009: 4-10.
    [16]曹健.仿真转台用连续回转电液伺服马达及其性能的研究[D].哈尔滨工业大学博士学位论文, 2002: 71-90.
    [17]马菲.重复控制在DVD机伺服系统中的研究与应用[D].上海交通大学硕士论文, 2008: 55-78.
    [18]曾鸣,张东纯,苏宝库.伺服转台高精度控制系统带宽设计的探讨[J].中国惯性技术学报, 2001, 9(2): 55-59.
    [19]常同立.仿真转台连续回转伺服马达低速性能研究及铝壳马达研制[D].哈尔滨工业大学硕士学位论文, 2004: 46-49.
    [20]王国军,陈松桥.自动控制理论发展综述[J].微型机与应用, 2000: 4-7.
    [21] Pei Zhongcai, Wang Anmin, Wu Shenglin Liu Qinghe. Research on Super-low Speed Mechanism Analysis and Experiment of Electro-hydraulic Servo Motor[J]. Proceedings of the 2nd International Symposium on Fluid Power Transmission and Control, Shanghai, 1995: 379-382.
    [22] Wu Shenglin, Zhao Keding, Li Shangyi, Liu Qinghe. The Design Characteristic and Experiment study on Electrohydraulic Servo Motor with Super-Low-Speed High Accuracy[J]. Proceedings of the 1st International Symposium on Fluid Power Transmission and Control, Beijing, 1991: 148-151.
    [23] R.T .Schneider. A Look at Low-Speed High-Torque Hydraulic[J]. Hydraulics& Pneumatics. 1987,40(4): 67-70.
    [24]付永领,裴忠才.电液伺服马达超低速性能的实验研究[J].机械工程, 2001, (2): 43-44.
    [25] Peng Xi-Wei, Geng Qing-Bo, Wang Xiao-Ping. Experimental study on low-velocity friction torque characteristics of hydraulic motor[J]. Beijing Ligong Daxue Xuebao. 2006, 26(11): 999-1003.
    [26]闫红力,徐兵,杨华勇.基于DSP的液压自由活塞发动机控制器的设计[J].机床与液压, 2006, (4): 115-120.
    [27] A Staff Report. Rotary Hogs of Fluid Power. A Look at Low-Speed High-Torque Hydraulic[J]. Hydraulics&Pneumatics, 1993,46(1): 142-146.
    [28]张勤华.连续回转电液伺服马达的结构设计和性能研究[D].哈尔滨工业大学硕士学位论文, 2006: 6-8.
    [29] R. Fales, A. Kelkar. Robust Control Design for a Wheel Loader Using Mixed Sensitivity H-infinity and Feedback Linearization Based Methods[J]. Proceedings of the 2005 American Control Conference, Portland, Institute of Electrical and Electronics Engineers Inc., 2005: 4381~4386.
    [30] Sekhavat P, Wu Q, Sepehri N. Lyapunov-based friction compensation for accurate positioning of a hydraulic actuator. American Control Conference[J]. 2004,1(30): 418-423.
    [31] N.Niksafit, Q.Wu, N.Sepehri. Stable Control of an Electro-Hydraulic Actuator during contact tasks: Theory and Experiments[J]. Proceeding of the American Control Conference, Chicago, Illinois, 2000: 4114-4118.
    [32] Li Shangyi, Zhaogang, Zhao Keding. Study on Electro-Hydraulic Position Servo System with High Accuracy[J]. New Achievement in Fluid Power Engineering(`93 ICFP), Hangzhou, Beijing, International Academic Publishers, 1993: 34-39.
    [33] J.L.Johson. Identifying Errors in Motion-Control Servo-loops[J]. Hydraulics & Pneumatics. 1997,50(5): 14-15.
    [34]李万钰,裴忠才,刘庆和.电液伺服马达超低速性能的研究[J].机床与液压, 1998, (6): 38-39.
    [35] Henrik Olsson, Karl Johan. Friction generated limit cycles[J]. IEEE Trans. on Control Systems Technology, 2001,9(4): 629-636.
    [36] Zhang Youwang, Gui Weihua. Compensation for secondary uncertainty in electro-hydraulic servo system by gain adaptive sliding mode variable structure control[J]. Journal of Central South University of Technology (English Edition), 2008,15(2): 256-263.
    [37]王增会,陈增强,孙青林,袁著社.定量反馈理论发展综述[J].控制理论与应用, 2006, 23(3):403-409.
    [38] J.L.Shearer. Digital Simulation of a Coulomb-Damped Hydraulic Servo System[J]. ASME Trans of Journal of Synamic System Measurement and control. 1983,105(4):215-221.
    [39]张勤华.连续回转电液伺服马达的结构设计和性能研究[D].哈尔滨工业大学硕士学位论文, 2006: 6-8.
    [40]王晓晶.仿真转台用连续回转电液伺服马达关键技术研究[D].哈尔滨工业大学博士学位论文, 2009: 18-37.
    [41]李言俊,张科.系统辨识理论及应用[M],国防工业出版社, 2003: 36-39.
    [42]吴旭光.系统建模和参数估计·理论与算法[M].机械工业出版社, 2000: 10-32.
    [43]侯媛彬,汪梅等.系统辨识及其Matlab仿真[M].科学出版社, 2004: 53-57.
    [44] Sekhavat P, Wu Q, Sepehri N. Lyapunov-based friction compensation for accurate positioning of a hydraulic actuator[J]. American Control Conference. 2004,1(30): 418-423.
    [45]王亮,王永利.基于DSP的电液伺服机构控制.液压与气动[J]. 2007(3): 41-43.
    [46]翟传润.飞行模拟器电液位置伺服系统及其智能控制方法的研究[D].哈尔滨工业大学博士学位论文, 1999: 53-65.
    [47]付兴武.三轴仿真转台电液位置伺服系统及其控制策略的研究[D].哈尔滨工业大学博士学位论文, 1998: 4749.
    [48]胡晓光.非线性系统变结构控制理论及其在三轴台控制中的应用[D].哈尔滨工业大学博士学位论文, 1992: 33-51.
    [49]王增会,陈增强,孙青林,袁著社.定量反馈理论发展综述[J].控制理论与应用, 2006,23(3): 403-409.
    [50] R. D. Hampton, D. M. S. Whorton. An Indirect Mixed-sensitivity Approach to Microgravity Vibration Isolation: the Exploitation of Kinematic Coupling in Frequency-weighting Design-filter Selections[J]. Proceedings of the 2000 American Control Conference, Chicago, Institute of Electrical and Electronics Engineers Inc., 2000: 2077~2081.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700