激光跟踪仪控制系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
激光跟踪测量系统是在机器人计量学基础上发展起来的一种新型坐标测量方法。以激光干涉仪为基础的柔性坐标测量系统被认为是最有潜力的高精度、大范围、非接触、动态测量工具。
     本课题基于球坐标法测量原理,设计了单站式激光跟踪测量系统。论文主要围绕球坐标法激光跟踪测量系统的一个关键部分——激光跟踪控制系统——展开论述。主要工作内容如下:
     (1)伺服对象数学模型理论分析
     通过数学模型分析各种扰动的干扰机制,指导控制系统的设计。本文中系统分析了伺服对象的数学模型,并通过实验进行了数学模型精度和模型参数测量。
     (2)影响伺服跟踪系统控制效果的因素分析,并按干扰机制归类
     全面分析系统中存在的扰动因素,并通过被控对象数学模型分析了它们的干扰机制,并按对电流转矩(角加速度相关)的扰动、对速度跟踪的扰动、对位置跟踪的扰动三大类进行分类整理,便于后面的三环分工设计与因素划分。
     (3)电流环设计和实验调试,跟踪效果测试
     采用数字PID算法设计电流环,对电流环的频率带宽、响应时间、跟踪精度进行实验测试。
     (4)速度环设计和实验调试,跟踪效果测试
     运用模糊PI控制、模糊神经网络控制、自抗扰控制等先进控制策略,通过具体实验结果总结以上几种控制策略的优点和缺点,借鉴了其中的一些控制策略与思想,并引入速度环的设计之中。
     (5)位置环设计和实验调试,跟踪效果测试
     针对反馈控制最根本的“快速”与“超调”之间矛盾的问题,进行了深入研究和算法尝试,并通过实验验证了其有效性。
     (6)激光跟踪仪控制量的给定,复合控制技术研究
     对控制量的给定进行了分析和实验效果验证,并对复合控制技术相关理论进行研究。
     (7)目标速度的合成,预测滤波技术初探
     设计了低通滤波器、平滑滤波器对目标速度进行滤波,并用于复合控制。对预测滤波技术进行了初步研究。
Laser Tracking System(LTS),as a new three dimensional measuring machine,is firstly used in Robot Measurement and Calibration Technology. Flexible coordinate measuring system,based on laser interferometer which is acknowledged as the highest precision device in large area distance measurement,is promised to be the most potential high precision,large-area,contactless, dynamic measurement tool. In our research subject,a single-station LTS is designed on the basis of sphere coordinates measurement principle.The paper is mainly focused on control system design of the single-station LTS.The main content of research work is as follows:
     1) Theoretical Analysis of controlled object mathematical model
     Mathematical model is very necessary in high precision and fast response tracking system which can help to analyze the interference mechanism of various disturbance.The controlled object mathematical model is deduced and model parameters are obtained and model precision is evaluated through experiments.
     2) Analysis of disturbance factors and classification of them
     All the disturbance factors are found out and the effort mechanism of them are clarified.All these factors are classified in three groups through their work mechanism:disturbance to current torque(angular acceleration related),disturbance to angular speed,disturbance to distance tracking,which is much helpful for modularization design of three-loops(current loop,speed loop,position loop) and responsibility distribution for every link in the control system.
     3) Design of current loop and relative experiments
     Current loop which reflects the robustness and rigidness of current torque determines the tracking performance of angular acceleration.The design demand of current loop can be easily met using traditional digital PID algorithm on account of high sensitivity and fastness of current response.Parameters like frequency bandwidth,response time,tracking error are obtained through experiments and real-time display and statistical analysis of current loop parameters are designed which is very useful for time domain and frequency domain analysis of current loop.
     4) Design of speed loop and relative experiments
     Speed loop is a key link in the whole control system and so design of speed loop is the main part of the research work in this paper.Actually,many disturbance factors in system will cause interfere to speed tracking,including linear factors and nonlinear factors(such as friction torque).An important idea in speed design is that all factor causing interfere to speed tracking should be enclosed in speed loop so that speed loop can be equalized as First Order Inertia Link with very short inertia time constant if rigidness and fastness of the speed loop meet design demand.Some advanced control strategy consisting of Fuzzy PI Control,Fuzzy Neural Network Control,Auto Disturbance Rejection Control(ADRC) are adopted in speed loop design and then advantages and disadvantages of them are concluded through their experiment tracking effects.
     5) Design of position loop and relative experiments
     The typical conflict between the overshot and rapidity in Feedback Control is deeply studied.In ADRC,Tracking Differentiator(TD) serves to solve that problem by arranging transition process of the command input while in Compound Control it is solved by leading signal feedforward.Mechanisms of the above two control strategies are researched and validities of them are evaluated by experiment.
     6) Compound control in LTS
     The relative theory of compound control is studied and put into use in LTS.
     7) Composition of target speed and Prediction filtering technology
     Composition of target speed is a key point in Compound control and Prediction filtering technology is an useful tool in target speed measurement. Theory studies and experiments are carried out in LTS.
引文
[1]张国雄,三坐标测量机,天津:天津大学出版社,1999
    [2] Heinrich Schwenke, Frank H?rtig, Klaus Wendt, et al. Future Challenges in Co-ordinate Metrology. IDW 2001, Knoxville, May 7-10, 2001
    [3]张国雄,坐标测量技术发展方向,红外与激光工程,2008,37:1~5
    [4]李广云,非正交系坐标测量系统原理及进展,测绘信息与工程,2003,28(1):4~10
    [5]李杏华,激光跟踪系统的设计:[博士论文],天津:天津大学,2003
    [6]刘万里,曲兴华,闫勇刚,激光跟踪测量系统的建模与仿真,石油化工高等学校学报,2007,20(3):50~53
    [7]欧阳健飞,刘万里,闫勇刚等,激光跟踪仪坐标测量精度的研究,红外与激光工程,2008,37:15~18
    [8]喻彩丽,郑友取,光学经纬仪大尺寸三坐标测量系统的分析研究,现代制造工程,2003,(8):61~63
    [9] J.R. Mayer, et al. Calibration and assessment of a laser based instrument for robot dynamic measurement. In IMEKO XI, 11th Triennial World Congress of the International Measurement Confederation, Houston, Texas, Paper no. 172, 1988
    [10] J.R. Mayer, et al. Quadrilateration and measurement site identification with dual scanning axis laser tracking interferometers. Measurement: Journal of the International Measurement Confederation. 1997, 20(3): 171~187
    [11]林永兵,张国雄,李真等,多路激光跟踪干涉三维坐标测量机系统冗余技术,计量学报,2003,24(1):1~5
    [12]史颖,李杏华,李醒飞等,激光跟踪干涉测量系统及其神经网络改进,应用光学,2004,24(4):221~224
    [13]林永兵,李杏华,张国雄,基于多边法的三维坐标测量系统自标定最优方案,计量学报,2003,24(3):166~173
    [14] K. Lau, R.J. Hocken, L. Haynens. Robot performance measurements using automatic laser tracking techniques. Robotics and Computer-Integrated Manufacturing, 1985, 2(3):227~236
    [15] K. Lau, R. Hocken, W. C. Haight. Automatic laser tracking interferometer system for robot metrology. Precision Engineering, 1986, 8 (1) :3~8
    [16] J.R. Mayer, G.A. Parker. A portable instrument for 3-D dynamic robot measurement using triangulation and laser tracking. IEEE Tran. on Robotics and Automation, 1994, 10(4): 504~516
    [17] J. R. Mayer. Polarization optics design for a laser tracking triangulation instrument based on dual-axis scanning and a retroreflective target. Optical Engineering, 1993, 32 (12): 3316~3326
    [18] Greenleaf. Self-Calibrating Surface Measuring Machine. ADV. Technology Telescopes, SPIE332, 1982: 237
    [19] L. B. Brown, J. B. Merry, D. N. Wells. Coordinate Measurement with a Tracking Laser Interferometer. Laser & Applications, Oct., 1986, 69~71
    [20] O. Nakamura, M. Goto, K. Toyoda, et al. Development of a coordinate measuring system with tracking laser interferometer. CIRP Annals, 1991,40 (1): 523~526
    [21] O. Nakamura, Mitsuo Goto. Four-beam laser interferometer for 3-dimensional microscopic coordinate measurement. Applied Optics. 1994, 33(1): 31~36
    [22] T. Toshiyuki, K. Yoshihiko, M. Goto, et al. Restriction on the arrangement of laser trackers in laser trilateration. Measurement Science & Technology, 1998, 9(8):1357~1359
    [23] T. Takatsuji, M. Goto, A. Kirita, et al. The relationship between the measurement error and the arrangement of laser trackers in laser trilateration. Measurement Science & Technology, 2000, 11(1): 477~483
    [24] API公司产品介绍——API第三代激光跟踪仪, 2005
    [25] Leica公司产品介绍——LTD800, 2004
    [26] FARO公司产品介绍——FARO Laser Tracker ION, 2009
    [27]徐凤,基于激光跟踪原理的飞机形面测量技术研究:[硕士论文],吉林:长春理工大学,2006
    [28]周莹,基于激光跟踪测量系统的研究及其在管片检测中的应用:[硕士论文],上海:同济大学,2007
    [29]李迎伟,李明,张靓等,激光跟踪测量技术在地铁检测中的应用,机械设计与制造,2007,7:98~100
    [30]李广云,激光跟踪测量系统的原理及在车身在线检测中的应用,上海计量测试,2002,29(4):14~18
    [31]付继有,多路激光跟踪干涉仪柔性坐标测量系统:[博士论文],天津:天津大学,1997
    [32]孙旭东,多路法激光跟踪干涉三维坐标测量系统:[博士论文],天津:天津大学,1999
    [33]刘永东,运动目标及姿态激光跟踪测量系统理论与系统研究:[博士论文],北京:清华大学,1999
    [34]邱宗明,朱凌建,黄玉美,外置式激光跟踪测距系统球形跟踪伺服机构的研究,机械科学与技术,2004,23(7):783~785
    [35]邱宗明,朱凌建,黄玉美,外置式激光跟踪测距系统球形跟踪伺服装置的误差分析,西安理工大学学报,2004,20(2):136~140
    [36]陈晓荣,球坐标激光跟踪三维位置检测方法研究:[博士论文],上海:上海交通大学,2004
    [37]赵树忠,提高激光跟踪三维坐标测量精度的研究:[博士论文],天津:天津大学,2007
    [38]陈曦,激光跟踪系统设计:[硕士论文],天津:天津大学,2007
    [39]周春艳,激光跟踪控制系统的设计:[硕士论文],天津:天津大学,2007
    [40]安久伏,激光跟踪系统的硬件电路设计:[硕士论文],天津:天津大学,2009
    [41]陈新华,球坐标法激光跟踪控制系统的研究:[硕士论文],天津:天津大学,2010
    [42]刘强,尔联洁,刘金琨,摩擦非线性环节的特性、建模与控制补偿综述,系统工程与电子技术,2002,24(11):45~52
    [43]张文静,赵先章,台宪青,基于粒子群算法的火炮伺服系统摩擦参数辨识,清华大学学报(自然科学版),2007,47(S2):1717~1720
    [44] Liu D P.Research on parameter identification of friction model for servo systems based on genetic algorithms [C ]//Proceedings of the Fourth International Conference on Machine Learning and Cybernetics . Guangzhou, 2005, 8:18~21.
    [45] CAO Ligu, Schwartz H M. Stick-slip friction compensation for PID position control [C ]//Proceedings of the American Control Conference, Chicago, 2000: 1078~1082
    [46]陈涛,陈娟,蒋风华,伺服系统两种低速非线性补偿方法的对比实验,光学精密工程,2003,11(1):94~97
    [47]陈玉霜,朱学峰,刘维之,单参数自适应PID控制的应用研究,控制工程,2007,14(5):467~469
    [48] Mahmoud M,Dutton K,Denman M.Design and simulation of a nonlinear fuzzy controller for a hydropower plant[J].Electric Power Systems Research,2005,73(2) :87~99
    [49] Paramasivam S,Arumugam R. Hybrid fuzzy controller for speed control of switched reluctance motor drives[J].Energy Conversion and Management,2005,46(9) :1365-1378
    [50]马磊,基于模糊PI控制的推进电机调速研究:[硕士论文],武汉:华中科技大学,2006
    [51]马俊功,王世富,王占林,电液速度伺服系统的模糊PI控制,控制工程,2006,13(6):530~532
    [52] Tong S C,Li H X,Wang W.Observer-based adaptive fuzzy control for SISO nonlinear systems[J].Fuzzy Sets and Systems,2004,148(3):355~376
    [53]赵俊,陈建军,混沌粒子群优化的模糊神经PID控制器设计,西安电子科技大学学报(自然科学版),2008,35(1):54~59
    [54]欧国徽,刘春波,潘丰,基于改进模糊神经网络的PID参数自整定算法,江南大学学报(自然科学版),2011,10(2):145~149
    [55] RongJong Wai,ZhiWei Yang,ChihYi Shih.Adaptive fuzzy-neural-network velocity sensorless control for robot manipulator position tracking[J].IET Control Theory & Applications,2010,4(6):1079~1093
    [56] Xu Chunmei.Complex control based on fuzzy-neural for mechanical servo systems[J].Control Engineering,2010,17(2):146~148
    [57] Guo Zhirong,Xie Shunyi,Gao Wei.Study on a recurrent functional link-based fuzzy neural network controller with improved particle swarm optimization[C]//Proceedings of 9th International Conference on Electronic Measurement and Instruments,2009.ICEMI 2009:31095~31100
    [58]冯兆冰,一类非线性系统模糊神经网络控制方法研究:[硕士论文],大庆:大庆石油学院,2005
    [59]孙凯,自抗扰控制策略在永磁同步电动机伺服系统中的应用研究与实现:[博士论文],天津:天津大学,2007
    [60]韩京清,一种新型控制器-NLPID,控制与决策,1994,9(6):401~407
    [61]黄一,张文革,自抗扰控制器的发展,控制理论与应用,2002,19(4):485~492
    [62]韩京清,线性系统的结构与反馈系统计算,控制理论与应用学术年会论文集,1981,43~55
    [63]韩京清,反馈系统中的线性与非线性,控制与决策,1998,3(2):27~32
    [64]韩京清,系统辨识的一种方法-状态反馈法,控制与决策,1990,5(1):13~17
    [65]韩京清,非线性系统的状态观测器,控制与决策,1990,5(3):57~60
    [66]韩京清,非线性控制系统中状态反馈的实现,控制与决策,1991,6(3):161~167
    [67]韩京清,控制理论-模型论还是控制论,系统科学与数学,1989,9(4):328~335
    [68]王伟,韩京清,估计非线性系统参数的一种方法,控制与决策,1993,8(3):161~165
    [69]韩京清,非线性PID控制器,自动化学报,1994,20(4):487~490
    [70] Qiu XiaoBo,Dou LiHua,Shan DongSheng,Zhou WeiKe.Design of active disturbance rejection controller for electro-optical tracking servo system[J].Guangxue Jingmi Gongcheng/Optics and Precision Engineering,2010,18(1):220~226
    [71] Tao Zhou,Shu Weiqun,Lei Wang,Yang Zhou.Active disturbance rejection control of servo systems with friction[C]//Proceedings of the 2009 IITA InternationalConference on Control.Automation and Systems Engineering, CASE 2009:558~561
    [72] Huang Yi,Xue Wenchao,Yang Xiaoxia.Active disturbance rejection control: Methodology, theoretical analysis and applications[C]//Proceedings of the 29th Chinese Control Conference,2010:6083~6090
    [73]黄永梅,马佳光,付承毓,目标速度预测在光电跟踪控制系统中的应用,红外与激光工程,2004,33(5):477~481
    [74]王红宣,高慧斌,张树梅,光电经纬仪的高精度电视自动跟踪,电光与控制,2006,13(4):107~109
    [75]王毅,魏忠和,补偿伺服系统速度误差和加速度误差的方法,光学机械,1978,3(1):13~20
    [76]王毅,高伟志,王贵文等,光电精密跟踪的双重复合轴伺服系统,光学精密工程,1996,4(4):58~61
    [77]彭绪金,马佳光,光电精密跟踪中的复合轴控制系统的实验和研究,光电工程,1994,21(5):1~9
    [78]李文军,赵金宇,陈涛,速度滞后补偿参数对光电伺服系统的影响分析,测试技术学报,2005,19(1):70~74
    [79]赵金宇,李文军,王德兴等,预测滤波技术在光电经纬仪中的应用仿真,测试技术学报,2004,18(4):359~363
    [80]安凯,马佳光,傅承毓,运动目标位置的合成,系统工程与电子技术,2002,24(9):16~18
    [81]马佳光,复合控制及等效复合控制原理及其应用,光学工程,1988,No.5:1~16
    [82]马佳光,预测目标角速度的最小平方滤波器,光学工程,1988,No.5:46~54

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700