用户名: 密码: 验证码:
基于虚土桩法的桩土纵向耦合振动理论及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
桩与土体的动力相互作用是一个复杂的接触问题,也是桩基础防震、减震设计以及各种基桩动态测试方法的理论基础。纵观桩基振动理论研究的发展历程可以看出,关于桩-桩侧土动力相互作用模型的研究已经相当广泛而深入。相比之下,由于对桩-桩端土建立严格耦合模型的难度较大,现有成果关于该课题的研究显得非常薄弱。鉴于此,基于虚土桩法,本文采用解析的方法较系统地研究了均质地基、成层地基、径向非均质地基中弹性桩、粘弹性桩及大直径管桩的桩土纵向耦合振动问题。主要工作和创新成果如下:
     1.考虑土体的竖向波动效应及其粘弹性性质,基于虚土桩法建立了均质地基中桩-桩侧土、桩-桩端土严格耦合的动力相互作用模型。采用分离变量法,得到了土体纵向振动位移解析解,进一步根据桩土接触面上的位移、应力连续条件,采用积分变换求解了桩身动力控制方程,得到了桩顶频域响应解析解。在此基础上,利用Fourier逆变换和卷积定理,求得了半正弦脉冲激励作用下桩顶速度时域响应的半解析解。基于所得解,详细讨论了不同桩身设计参数时桩端土厚度对桩顶动力响应的影响。结果表明,桩端土对桩身动力响应的影响存在一个临界影响厚度,在临界影响厚度范围内,桩端土厚度的变化将会对桩身动力响应产生很大影响。
     2.研究了成层地基中受任意纵向激振荷载作用下的粘弹性桩与土的耦合振动问题,提出了土层层间相互作用简化模型。利用均质地基中给出的求解方法,通过阻抗函数的递推求解得到虚土桩顶部纵向振动复刚度,将其作为实际桩端的支承刚度代入到粘弹性桩的边界条件中,进而得到了桩顶动力响应的理论解,并通过与单层严格解的对比论证了土层层间相互作用简化模型的精确性和适用性。基于所得解,详细讨论了成层桩端土性质、桩端沉渣对桩顶动力响应的影响。
     3.为考虑施工效应引起的桩侧土体和桩端土体的径向非均质特性,提出了考虑土体竖向波动效应及粘弹性性质时的土体复刚度传递模型。结合边界条件,对桩侧任意圈层的土体平衡方程由外而内逐圈层求解,求得土体与桩接触面上的剪切复刚度,采用成层地基中给出的求解方法,进而求解得到桩顶动力响应的理论解。基于所得解,详细讨论了桩侧土施工扰动效应、桩端土挤密效应对桩顶动力响应的影响,并系统分析了任意段变阻抗桩的纵向振动特性。
     4.基于横观各向同性材料的本构方程以及单相弹性土介质的运动方程,给出了考虑土体竖向位移及其粘弹性性质的土体动力控制方程,采用成层地基中给出的求解方法,通过严格求解得到桩顶动力响应的理论解。基于所得解的参数分析表明,不管是桩端土还是桩侧土,竖直面上的剪切模量对桩顶动力响应的影响程度要比水平面上的剪切模量的影响大的多。因此,当考虑土体竖向波动效应时,竖直面上的剪切模量对桩土系统振动特性起着主导作用。
     5.分别以内壁侧摩阻力及附加质量的方式考虑土塞对管桩的动力作用,建立了考虑土塞效应时大直径管桩纵向振动的定解问题,通过严格求解分别得到了管桩桩顶频域响应的解析解及半正弦脉冲激励作用下桩顶速度时域响应的半解析解。基于所得解的参数分析表明,不管是大直径混凝土管桩还是钢管桩,管桩壁厚越小,管桩的有效测试长度越短;在桩顶速度时域响应曲线上,土塞顶部界面位置处会出现类似扩颈桩段的反向反射信号;由于土塞的存在,填充土塞桩段的综合波速会小于管桩材料的一维弹性纵波波速,且土塞高度越高,填充土塞桩段的综合波速越小。基于理论分析的结果和模型试验的验证结果,本文定义了一个工程上很有用的概念,即管桩的视在波速。并指出,在工程测试时,应该选用管桩的视在波速作为测试波速。
     本文提出的虚土桩法是对桩-桩端土相互作用模型的一个有益补充,基于本文工作所得出的一些新结论、新现象可以用于桩基础防震、抗震设计、动力基础减振设计及基桩动态测试分析中。
The pile-soil dynamic interaction is a complicated contact problem. The pile vibration theory can provide a valuable guide for both earthquake-resistance design and various dynamic testing methods of pile. Over the past decades, many dynamic interaction models have been presented to investigate the behavior of surrounding soil-pile dynamic interaction. It can be noted that extensive and in-depth research work has been done in the field of surrounding soil-pile dynamic interaction. By contrast, less attention is attracted by the topic on underlying soil-pile dynamic interaction. Therefore, by means of fictitious soil pile method, this paper systematically investigates the dynamic response of elastic and viscoelastic pile and large diameter pipe pile, which are embedded in homogeneous foundation, layered foundation and radial inhomogeneous foundation. The principal contents and original work are as follows:
     1.Considering vertical wave effect and viscoelastic property of soil, the dynamic interaction model of pile-surrounding soil, pile-underlying soil is established by using fictitious soil pile method when the pile is embedded in homogeneous foundation. The dynamic equilibrium equations of soil undergoing arbitrary vertical exciting force are solved by virtue of the separation of variables technique. Then, according to the boundary conditions at the interface of soil and pile, the theoretical solutions for the dynamic response of pile in the frequency domain are derived by using integral transform technique to solve the dynamic governing equation of pile. By means of inverse Fourier transform technique and convolution theorem, the semi-analytical solution for the velocity response of a pile undergoing half-cycle sine pulse at the pile head is obtained in the time domain. Based on these solutions, a parametric study is conducted to study emphatically the effects of parameters of underlying soil on dynamic response at the pile head. It is shown that the finite underlying soil layer adjacent to the pile toe has a significant influence on the pile dynamic response and there is a critical influence depth for underlying soil.
     2.To investigate the dynamic response of a viscoelastic pile embedded in layered foundation and subjected to arbitrary vertical exciting force, a simplified and practical mathematical model is developed for simulating dynamic interaction of the adjacent soil layers. By means of the same solving methods presented in homogeneous foundation and through the recursion of the impedance function, the complex stiffness at the fictitious soil pile head is derived and used as boundary condition at the pile toe to obtain the theoretical solutions of pile dynamic response. Furthermore, the accuracy and feasibility of the simplified model is verified by comparing with the homogeneous foundation rigorous solution. Based on these solutions, the influence of the properties of layered underlying soil and pile end sediment on pile dynamic response is thoroughly analyzed.
     3. The complex stiffness transform model is developed to simulate the radially inhomogeneous property of surrounding soil and underlying soil of pile which caused by pile construction effect. Then, combining the boundary conditions between radially adjacent soil zones, the dynamic equilibrium equations of all soil zones are solved one by one from undisturbed region to disturbance region and the complex stiffness of the interface of pile and its surrounding soil is derived. By means of the same solving methods presented in layered foundation, the theoretical solutions of pile dynamic response are obtained both in frequency domain and time domain. Based on these solutions, the influence of construction effect of pile surrounding soil and compaction effect of pile end soil on pile dynamic response are analyzed in detail. The dynamic response of a pile with arbitrary variable impedance are systematically investigated.
     4. Based on the stress-strain relationships of transversely isotropic medium and dynamic equations of single phase elastic soil, the dynamic governing equations of the layered transversely isotropic soils are obtained in cylindrical coordinates considering their vertical wave effect and viscoelastic property. By virtue of the same solving methods developed in layered foundation, the theoretical solutions of pile dynamic response are derived both in frequency domain and time domain. The parametric studies show that the influence of vertical shear modulus on the vertical dynamic response of pile is more significant than the influence of horizontal shear modulus. So, it can be noted that the vertical shear modulus plays a dominant role in the vibration characteristics of the pile-soil system when the vertical wave effect of layered soils is taken into consideration.
     5. By using plane strain model and additional mass method to simulate the dynamic interaction of soil plug and pipe pile, the definite problem of large diameter pipe pile embedded in layered foundation is established by considering the soil plugging effect. The analytical solutions of dynamic response at the pipe pile head are derived in the frequency domain and its corresponding semi-analytical solution for the velocity response of a pile undergoing half-cycle sine pulse at the pipe pile head is obtained in the time domain. The parametric studies show that the effective test length of pipe pile decreases as the thickness of pipe pile decreases for both large diameter concrete pipe pile and large diameter steel pipe pile. It also can be noted that there is reverse reflection signal at the position of soil plug top in the velocity response curves of pipe pile in the time domain. Due to the presence of soil plug, the integrated velocity of the pile section filling soil plug is less than the elastic longitudinal wave velocity of pipe pile, and the higher the height of soil plug is, the smaller the integrated velocity of the pile section filling soil plug is. Moreover, the conception of Apparent Wave Velocity of Pipe Pile (AWVPP) is defined in this paper, which is of great importance in foundation pile integrity testing. And, it is stated that the AWVPP should be choosed as the testing velocity in the engineering test.
     The fictitious soil pile method is an useful supplement to the research of dynamic interaction of pile and its underlying soil. The new results and new phenomenons presented in this paper can be used in earthquake-resistance design of pile foundation, anti-vibration design of dynamic foundation and dynamic testing of pile.
引文
[1]ngelides D C, Roesset J M. Nonlinear lateral dynamic stiffness of piles[J]. Journal of the Geotechnical Engineering Division, ASCE, 1980, 107(11): 1015-1032.
    [2]Assaf Klar, Sam Frydman. Three-dimensional analysis of lateral pile response using two-dimensional explicit numerical scheme[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2002, 128(9): 775-784.
    [3]Banerjee P K, Davies T C. The behavior of axially and laterally loaded single piles embedded in nonhomogeneous soils[J]. Geotechnique, 1978, 28(3): 309-326.
    [4]Baranov V A. On the calculation of excited vibrations of an embedded foundation[J]. Voprosy Dynamiki i Prochnocti, Polytechnic Institute of Riga, 1967, 195-209.
    [5]Blaney G W. Dynamic stiffness of piles[C]. Proceeding of 2nd International Conference on Numerical Method in Geomechanics, 1976: 1001-1012.
    [6]Cai Y Q, Chen Q Xu C J, Wu D Z. Torsional response of pile embedded in a poroelastic medium[J]. Soil Dynamics and Earthquake Engineering, 2006, 26(12): 1143-1148.
    [7]Chau K T, Yang X. Nonlinear interaction of soil-pile in horizontal vibration[J]. Journal of the Engineering Mechanics Division, ASCE, 2005, 131(8): 847-858.
    [8]Chen G, Cai YQ, Liu F Y, Sun H L. Dynamic response of a pile in a transversely isotropic saturated soil to transient torsional loading[J]. Computers and Geotechnics, 2008, 35(2): 165-172.
    [9]Chen L Z, Wang G C. Torsional vibrations of elastic foundation on saturated media[J]. Soil Dynamics and Earthquake Engineering, 2002, 22(3): 223-227.
    [10]Das Y C, Sargand S M. Forced vibrations of laterally load piles [J]. International Journal of Solid Structure, 1999, 36(33): 4975-4989.
    [11]EI Naggar M H, Novak M. Non-linear model for dynamic axial pile response[J]. Journal of the Geotechnical Engineering Division, ASCE, 1994(a), 120(2): 308-329.
    [12]EI Naggar M H, Novak M. Nonlinear axial interaction in pile dynamics[J]. Journal of the Geotechnical Engineering Division, ASCE, 1994(b), 120(4): 678-696.
    [13]EI Naggar M H, Novak M. Nonlinear lateral interaction in pile dynamics[J]. Soil Dynamic and Earthquake Engineering, 1995(a), 14(2): 141-157.
    [14]EI Naggar M H, Novak M. Effect of foundation nonlinearity on modal properties of offshore towers[J]. Journal of the Geotechnical Engineering Division, ASCE, 1995(b), 121(9): 660-668.
    [15]EI Naggar M H, Novak M. Nonlinear analysis for dynamic lateral pile response[J].Soil Dynamics and Earthquake Engineering, 1996, 15: 233-244.
    [16]EI Naggar M H. Vertical and torsional soil reactions for radially inhomogeneous soil layer[J]. Structural Engineering and Mechanics, 2000, 10(4): 299-312.
    [17]Gazetas G, Makris N. Dynamic pile-soil-pile interaction. Ⅰ: Analysis of axial vibration[J]. Earthquake Engineering and Structure Dynamics, 1991(a), 20(2): 115-132.
    [18]Gazetas Q Fan K, Kaynia A M, Kausel E. Dynamic interaction factors for floating pile groups [J]. Journal of Geotechnical Engineering, ASCE, 1991(b), 117(10): 1531-1548.
    [19]Guo W D, Chow Y K, Randolph M F. Torsional piles in two-layered nonhomogeneous soil[J]. International Journal of Geomechanics, ASCE, 2007,7(6): 410-422.
    [20]Han Y C, Vaziri H. Dynamic response of pile group under lateral loading[J]. Soil Dynamics and Earthquake Engineering, 1992, 11(2): 87-99.
    [21]Han Y C, Sabin G C W. Impedance for radially inhomogeneous viscoelastic soil media[J]. Journal of Engineering Mechanics Division, ASCE, 1995, 121(9): 939-947.
    [22]Han Y C. Dynamic vertical response of piles in nonlinear soil[J]. Journal of Geotechnical and Geoenvironmental Engineering Division, ASCE, 1997, 123(8): 710-716.
    [23]Kattis S E, Polyzos D, Beskos D E. Vibration isolation by a row of piles using a 3-D Frequency domain BEM[J]. International Journal of Numerical Methods in Engineering, 1999, 46(5): 713-28.
    [24]Kaynia A M, Kausel E. Dynamics of piles and pile groups in layered soil media[J]. Soil Dynamics and Earthquake Engineering, 1991, 10(8): 386-401.
    [25]Kuhlemyer R L. Vertical vibration of piles[J]. Journal of the Geotechnical Engineering Division, ASCE, 1979(a), 105(2): 273-287.
    [26]Kuhlemyer R L. Static and dynamic laterally loaded floating piles[J]. Journal of the Geotechnical Engineering Division, ASCE, 1979(b), 105(2): 289-304.
    [27]Lei Z K, Cheung Y K, Tham L G. Vertical response of single piles: transient analysis by time-domain BEM[J]. Soil Dynamics and Earthquake Engineering, 1993, 12(1): 37-49.
    [28]Liang R Y, Husein A I. Simplified dynamic method for pile-driving control[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 1993, 119(4): 694-713.
    [29]Liao S T, Roesset J M. Dynamic response of intact piles to impulse loads[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1997, 21(4): 255-275.
    [30]Liu W, Novak M. Dynamic response of single piles embedded in transversely isotropic layered media[J]. Earthquake Engineering and Structural Dynamics, 1994, 23(6): 1239-1257.
    [31]Lu J F, Jeng D S, Nie W. Dynamic response of a pile embedded in a porous medium subjected to plane SH waves[J]. Computers and Geotechnics, 2006, 33(8): 404-418.
    [32]Lysmer J, Richart F E. Dynamic response of footing to vertical load[J]. Journal of the Soil Mechanics and Foundations Division, ASCE, 1966, 2(1): 65-91.
    [33]Maeso O, Aznarez J J, Garcia F. Dynamic impedances of piles and groups of piles in Saturated soils[J]. Computers and Structures, 2005, 83(10/11): 769-782.
    [34]Maheshwari B K, Truman K Z, Gould P L, El Naggar M H. Three-dimensional nonlinear seismic analysis of single piles using finite element model: effects of plasticity of soil [J]. International Journal of Geomechanics, ASCE, 2005, 5(1): 35-44.
    [35]Matlock H, Foo S H C. Axial analysis of piles using a hysteretic degrading soil model[C]. Proc. Int. Symp. Numer. Methods Offshore Piling, Institute of Civil Engineers, London, England, 1979.
    [36]Meyerholf G G Bearing capacity and settlement of pile foundations[J]. Journal of the Geotechnical Engineering Division, ASCE, 1976, 102(3): 195-228.
    [37]Militano G, Rajapakse R K N D. Dynamic response of a pile in a multi-layered soil to transient torsional and axial loading[J]. Geotechnique, 1999, 49(1): 91-109.
    [38]Muki R, Steinberg E. On the diffusion of an axial load from an infinite cylindrical bar embedded in an elastic medium[J]. International Journal of Solids and Structures, 1969, 5(6): 587-606.
    [39]Muki R, Sternberg E. Elastostatic load transfer to a half space from a partially embedded axially loaded rod[J]. International Journal of Solids and Structures, 1970, 6(1): 69-90.
    [40]Nogami T, Novak M. Soil-pile interaction in vertical vibration[J]. Earthquake Engineering and Structural Dynamics, 1976,4: 277-293.
    [41]Nogami T, Novak M. Resistance of soil to a horizontally vibrating pile[J]. International Journal of Earthquake Engineering and Structural Dynamics, 1977(a), 3(3): 247-261.
    [42]Novak M, Nogami T. Soil-pile interaction in horizontal vibration[J]. International Journal of Earthquake Engineering and Structural Dynamics, 1977(b), 5(3): 153-168.
    [43]Nogami T. Dynamic group effect axial responses of grouped pile[J]. Journal of the Geotechnical Engineering, ASCE, 1983, 109(2): 228-243.
    [44]Nogami T, Konagai K. Time domain axial response of dynamically loaded single piles[J]. Journal of Engineering Mechanics Division, ASCE, 1986, 112(11): 1241-1252.
    [45]Nogami T, Konagai K. Dynamic response of vertically loaded nonlinear pile foundations [J]. Journal of Geotechnical Engineering Division, ASCE, 1987, 113(2): 147-160.
    [46]Nogami T, Konagai K. Time domain flexural response of dynamically loaded single piles [J]. Journal Engineering Mechanics Division, ASCE, 1988, 114(9): 1512-1525.
    [47]Nagami T, Konagai K, Otani J. Nonlinear time domain numerical model for pile group under transient dynamic forces [C]. Proceeding of 2nd International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamic, St. Louis, 1991, 3: 881-888.
    [48]Nagami T, Otani J, Konagai K, Chen H L. Nonlinear soil-pile interaction model for dynamic lateral motion[J]. Journal of the Geotechnical Engineering Division, ASCE, 1992, 118(1): 89-106.
    [49]Novak M, Beredugo Y O. Vertical vibration of embedded footings[J]. Journal of the Soil Mechanics and Foundations Division, ASCE, 1972, 98(SM12): 1291-1310.
    [50]Novak M, Sachs K. Torsional and coupled vibrations of embedded footings[J]. International Journal of Earthquake Engineering and Structural Dynamics, 1973,2(1): 11-33.
    [51]Novak M. Dynamic stiffness and damping of piles[J]. Canadian Geotechnical Journal, 1974, 11(4): 574-598.
    [52]Novak M. Vertical vibration of floating piles[J]. Journal of the Engineering Mechanics Division, ASCE, 1977, 103(EM1): 153-168.
    [53]Novak M, Howell F. Torsional vibration of pile foundations[J]. Journal of the Geotechnical Engineering Division, ASCE, 1977, 104(GT4): 271-285.
    [54]Novak M, Nogami T. Soil-pile interaction in horizontal vibration[J]. International Journal of Earthquake Engineering and Structural Dynamics, 1977, 5(3): 153-168.
    [55]Novak M, Aboul-Ella F. Impedance functions of piles in layered media[J]. Journal of the Engineering Mechanics Division, ASCE, 1978, 104(EM6): 643-661.
    [56]Novak M, Aboul-Ella F. Dynamic soil reaction for plane strain case[J]. Journal of the Engineering Mechanical Division, ASCE, 1978, 104(EM4): 953-959.
    [57]Novak M, Sheta M. Approximate approach to contact problems of piles[C]. Proceedings of the Geotechnical Engineering Division, American Society of Civil Engineering National Convention, Florida, 1980:53-79.
    [58]Padron L A, Aznarez J J, Maeso O. Dynamic analysis of piled foundations in stratified soils by a BEM-FEM model[J]. Soil Dynamic and Earthquake Engineering, 2008, 28(5): 333-346.
    [59]Rajapakse R K N D, Gross D. Traction and contact problems for an anisotropic medium with a cylindrical borehole[J]. International Journal of Solids and Structures, 1996, 33(15): 2193-2211.
    [60]Rajapakse R K N D, Chen Y, Senjuntichai T. Electroelastic field of a piezoelectric annular finite cylinder[J]. International Journal of Solids and Structures, 2005,42(11/12): 3487-3508.
    [61]Randolph M F. Modelling of the soil plug response during pile driving[C]. Proc. 9th SE Asian Geotechnical Conf., Bangkok, 1987, 2:1-6, 14.
    [62]Randolph M F, Deeks A J. Dynamic and static soil models for axial pile response[J]. Proceeding of fourth international symposium on the application of stress wave theory to piles, Balkema, Rotterdam, 1992: 3-14.
    [63]Rojas E, Valle C, Romo M P. Soil-pile interface model for axial loaded single piles[J]. Soils and Foundations, 1999, 39(4): 35-45.
    [64]Sen R, Davies T G, Banerjee P K. Dynamic analysis of piles and pile groups embedded in homogeneous soils[J]. Earthquake Engineering and Structural Dynamics, 1985, 13(1): 53-65.
    [65]Senjuntichai T, Rajapakse R K N D. Transient response of a circular cavity in a poroelastic medium[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1993, 17(6): 357-383.
    [66]Senjuntichai T, Rajapakse R K N D. Dynamic Green's functions of homogeneous poroelastic half-space[J]. Journal of Engineering Mechanics, ASCE, 1994, 120(11): 2381-2404.
    [67]Senjuntichai T, Mani S, Rajapakse R K N D. Vertical vibration of an embedded rigid foundation in a poroelastic soil[J]. Soil Dynamics and Earthquake Engineering, 2006, 26(6/7): 626-636.
    [68]Shahmohamadi M, Khojasteh A, Rahimian M. Seismic response of an embedded pile in a transversely isotropic half-space under incident P-wave excitations[J]. Soil Dynamics and Earthquake Engineering, 2011, 31(3): 361-371.
    [69]Tahghighi H, Konagai K. Numerical analysis of nonlinear soil-pile group interaction under lateral loads[J]. Soil Dynamics and Earthquake Engineering, 2007, 27: 463-474.
    [70]Vaziri H, Han Y C. Impedance functions of piles in inhomogeneous media[J]. Journal of the Geotechnical Engineering Division, ASCE, 1993, 119(9): 1414-1430.
    [71]Veletsos A S, Dotsos K W. Impedances of soil layer with disturbed boundary zone[J]. Journal of Geotechnical Engineering Division, ASCE, 1986, 112(3): 363-368.
    [72]Veletsos A S, Dotsos K W. Vertical and torsional vibration of foundations in inhomogeneous media[J]. Journal of Geotechnical Engineering Division, ASCE, 1988, 114(9): 1002-1021.
    [73]Velez A, Gazetas G, Krishnan R. Lateral dynamic response of constrained-head piles[J]. Journal of the Geotechnical Engineering Division, ASCE, 1983, 109(8): 1063-1081.
    [74]Wang G C, Ge W, Pan X D, Wang Z. Torsional vibrations of single piles embedded in saturated medium[J]. Computers and Geotechnics, 2008, 35(1): 11-21.
    [75]Wang J H, Zhou X L, Lu J F. Dynamic response of pile groups embedded in a poroelastic medium[J]. Soil Dynamics and Earthquake Engineering, 2003, 23(3): 235-242.
    [76]Wang K H, Zhang Z Q, Chin J L, Xie K H. Dynamic torsional response of an end bearing pile in saturated poroelastic medium[J]. Computers and Geotechnics, 2008, 35(3): 450-458.
    [77]Wang K H, Zhang Z Q, Chin J L, Xie K H. Dynamic torsional response of an end bearing pile in transversely isotropic saturated soil[J]. Journal of Sound and Vibration, 2009, 327(3): 440-453.
    [78]Wang K H, Wu W B, Zhang Z Q, Chin J L. Vertical dynamic response of an inhomogeneous viscoelastic pile[J]. Computers and Geotechnics, 2010, 37(4): 536-544.
    [79]Wang T, Wang K H, Xie K H. An analytical solution to longitudinal vibration of a pile of arbitrary segments with variable modulus[J]. Acta Mechanica Solid Sinica, 2001, 14(1): 67-73.
    [80]Yang D Y, Wang K H, Zhang Z Q, Chin J L. Vertical dynamic response of pile in a radially heterogeneous soil layer[J]. International Journal for Numerical and Analytical method in Geomechanics, 2009, 33(8): 1039-1054.
    [81]Yang D Y, Wang K H. Study on vertical vibration of pile in radial inhomogeneous soil[C]. Structural condition assessment, monitoring and improvement, 2007: 241-249.
    [82]Yesilce Y, Catal H H. Free vibration of piles embedded in soil having different modulus of subgrade reaction[J]. Applied Mathematical Modelling, 2008, 32(5): 889-900.
    [83]Zeng X, Rajapakse R K N D. Dynamic axial load transfer from elastic bar to poroelastic medium[J]. Journal of Engineering Mechanics, ASCE, 1999, 125(9): 1048-1055.
    [84]Zhou X L, Wang J H. Analysis of pile groups in a poroelastic medium subjected to horizontal vibration[J]. Computers and Geotechnics, 2009(a), 36(3): 406-418.
    [85]Zhou X L, Wang J H, Jiang L F, Xu B. Transient dynamic response of pile to vertical load in saturated soil[J]. Mechanics Research Communications, 2009(b), 36(5): 618-624.
    [86]蔡邦国,陈德银.嵌岩桩桩底沉渣在桩基检测信号中的反应[J].土工基础,2005,19(5):89-90.
    [87]陈凡,罗文章.预应力管桩低应变反射波法检测时的尺寸效应研究[J].岩土工程学报,2004,26(3):353-356.
    [88]陈嘉熹.虚土桩法可行性初步研究与分析[D].杭州:浙江大学,2008.
    [89]陈镕,万春风,薛松涛,王远功,李肇胤.横观各向同性层状场地中的单桩横向动力阻抗函数[J].力学季刊,2003(a),24(2):205-210.
    [90]陈镕,万春风,薛松涛,唐和生.横观各向同性层状场地中双桩横向动力阻抗[J].同济大学学报,2003(b),31(2):127—131.
    [91]丁皓江.横观各向同性弹性力学[M].杭州:浙江大学出版社,1997.
    [92]丁选明,刘汉龙.轴对称均匀黏弹性地基中现浇薄壁管桩竖向动力响应简化解析方法[J].岩土力学,2008,29(12):3353—3359.
    [93]丁选明,刘汉龙.低应变下变阻抗薄壁管桩动力响应频域解析解[J].岩土力学,2009,30(6):1793—1798.
    [94]郭自强.固体中的波[M].北京:地震出版社,1982.
    [95]胡昌斌,王奎华,谢康和.考虑桩土耦合作用时弹性支承桩纵向振动特性分析及应用[J].工程力学,2003(a),20(2):146-154.
    [96]胡昌斌,王奎华,谢康和.基于平面应变假定基桩振动理论适用性研究[J].岩土工程学报,2003(b),25(5):595—601.
    [97]胡昌斌.考虑土竖向波动效应的桩土纵向耦合振动理论[D].杭州:浙江大学,2003(c).
    [98]胡昌斌,王奎华,谢康和.桩与粘性阻尼土耦合纵向振动时桩顶时域响应研究.振动工程学报,2004,17(1):72-77.
    [99]胡昌斌,黄晓明.成层粘弹性土中桩土耦合纵向振动时域响应研究[J].地震工程与工程振动,2006,26(4):205—211.
    [100]黄大治,陈龙珠.钢筋混凝土管桩反射波法的三维有限元分析[J].岩土力学,2005,26(5):803—808.
    [101]贾德庆.探讨钢管桩桩端土的闭塞效应[J].水运工程,2000,319(8):73—74.
    [102]孔德森,栾茂田,杨庆.桩土相互作用分析中的动力Winkler模型研究评述[J].世界地震工程,2005,21(1):12—17.
    [103]蒯行成,沈蒲生,陈军.一种用于桩基础动力相互作用的桩单元复刚度矩阵[J].土木工程学报,1998,31(5):48—55.
    [104]蒯行成,沈蒲生.层状介质中群桩的竖向和摇摆动力阻抗的简化计算方法[J].土木工程学 报,1999,32(5):62-70.
    [105]雷林源.桩基动力学[M].北京:冶金工业出版社,2000.
    [106]李炳求,郑镇燮.部分埋入弹性地基的变截面桩的自由振动[J].岩土工程学报,1999,21(5):609-613.
    [107]李琪,李嵩,费康.PHC管桩土塞效应分析[J].水利与建筑工程学报,2009,7(2):4547.
    [108]李强,王奎华,谢康和.饱和土中端承桩纵向振动特性研究[J].力学学报,2004(a),36(4):435-442.
    [109]李强,王奎华,谢康和.饱和土桩纵向振动引起土层复阻抗分析研究[J].岩土工程学报,2004(b),26(5):679-683.
    [110]李强,王奎华,谢康和.饱和土中大直径嵌岩桩纵向振动特性研究[J].振动工程学报,2005,18(4):500-505.
    [111]李耀庄,王贻荪,邹银生.粘弹性地基中桩的动力反应分析[J].湖南大学学报,2000,27(1):92-96.
    [112]廖振鹏.工程波动理论导论[M].北京:科学出版社,2002.
    [113]刘东甲.不均匀土中多缺陷桩的轴向动力响应[J].岩土工程学报,2000,22(4):391—395.
    [114]刘东甲.纵向振动桩侧壁切应力频率域解及其应用[J].岩土工程学报,2001,23(5):544-546.
    [115]刘东甲.指数型变截面桩中的纵波[J].岩土工程学报,2008,30(7):1066—1071.
    [116]刘汉龙,费康,马晓辉.振动沉模大直径现浇薄壁管桩技术及其应用(Ⅰ):开发研制与设计[J].岩土力学,2003,24(2):164-168.
    [117]刘汉龙,丁选明.现浇薄壁管桩在低应变瞬态集中荷载作用下的动力响应解析解[J].岩土工程学报,2007,29(11):1611-1617.
    [118]刘金砺.桩基础设计与计算[M].北京:中国建筑工业出版社,北京,1990.
    [119]刘林超,苏子平.分数阶黏弹性土层中分数阶三维轴对称桩的竖向振动[J].应用力学学报,2011,28(5):486492.
    [120]刘林超,闫启方.饱和土中管桩的纵向振动特性[J].水利学报,2011,42(3):366-378.
    [121]刘林超,苏子平,闫启方.考虑桩-土相互作用的管桩水平动力阻抗研究[J].河南大学学报(自然科学版),2011,41(1):98—102.
    [122]刘煜洲,刘东甲,王英杰.嵌岩桩与含沉渣桩低应变动力检测曲线理论计算方法与特征研究[J].物探化探计算技术,2003,25(2):97—104.
    [123]刘忠,沈蒲生,陈铖,李亚丹.单桩横向非线性运动地震响应简化分析[J].应用力学学报,2006,23(4):673—676.
    [124]栾茂田,孔德森.单桩竖向动力阻抗计算方法及其影响因素分析[J].振动工程学报,2004,17(4):500-505.
    [125]栾茂田,孔德森.层状土中单桩竖向简谐动力响应简化解析方法[J].岩土力学,2005,26(3):375—380.
    [126]阙仁波.考虑土体三维波动效应时桩的纵向振动特性与应用研究[D].杭州:浙江大学, 2004.
    [127]阙仁波,王奎华,考虑土体径向位移时桩土耦合振动特性及其应用[J].振动工程学报,2005(b),24(3):212-218.
    [128]阙仁波,王奎华,考虑土体径三维波动效应时弹性支承桩的振动力理论及其应用[J].计算力学学报,2005(c),22(6):658—664.
    [129]阙仁波,王奎华.考虑土体三维波动效应时黏性阻尼土中桩的纵向振动特性及其应用研究[J].岩石力学与工程学报,2007,26(2):381—390.
    [130]尚守平,余俊,王海东,任慧.饱和土中桩水平振动分析[J].岩土工程学报,2007,29(11):1696—1702.
    [131]尚守平,任慧,曾裕林,余俊.非线性土中单桩竖向动力特性分析[J].工程力学,2008,25(11):111-115.
    [132]尚守平,任慧,曾裕林,余俊.桩与土非线性耦合扭转振动特性分析[J].中国公路学报,2009,22(5):41-47.
    [133]史佩栋.桩基工程手册[M].北京:人民交通出版社,2008.
    [134]田建平,张丙强.桩土系数对基桩纵向振动影响的分析[J].岩土工程界,2008,11(8):64-65,67.
    [135]王海东,费模杰,尚守平,卢华喜.考虑径向非匀质性的层状地基中摩擦桩动力阻抗研究[J].湖南大学学报(自然科学版),2006,33(4):6-11.
    [136]王海东,尚守平.瑞利波作用下径向非匀质地基中的单桩竖向响应研究[J].振动工程学报,2006,19(2):258-264.
    [137]王海东,尚守平,刘可,周志锦.考虑径向非均质性的层状地基中单桩动力阻抗研究[J].建筑结构学报,2008,29(5):128-134.
    [138]汪宏,李志明,王林,刘保国.大直径钢管桩承载力的非线性分析[J].岩土力学,2005,26(S):213-217.
    [139]王宏志,陈云敏,陈仁朋.多层土中桩振动半解析解[J].振动工程学报,2000,13(4):660-665.
    [140]王杰贤.动力地基与基础[M].北京:科学出版社,2001.
    [141]王奎华,谢康和,曾国熙.有限长桩受迫振动问题解析解及应用[J].岩土工程学报,1997,19(6):27-35.
    [142]王奎华,谢康和,曾国熙.变截面阻抗桩受迫振动问题解析解及应用[J].土木工程学报,1998,31(6):56-67.
    [143]王奎华.考虑桩体粘性的变阻抗桩受迫振动问题的解析解[J].振动工程学报,1999,12(4):513-520.
    [144]王奎华.变截面阻抗桩纵向振动问题积分变换解[J].力学学报,2001,33(4):479-491.
    [145]王奎华.多元件粘弹性土模型条件下桩的纵向振动特性与时域响应[J].声学学报,2002,27(5):455464.
    [146]王奎华,应宏伟.广义Voigt土模型条件下桩的纵向振动响应与应用[J].固体力学学报,2003,24(3):293-303.
    [147]王奎华,阙仁波,夏建中.考虑土体真三维波动效应时桩的振动理论及对近似理论的校核[J].岩石力学与工程学报,2005(a),24(8):1362—1370.
    [148]王奎华,杨冬英.基于复刚度传递多圈层平面应变模型的桩动力响应研究[J].岩石力学与工程学报,2008,27(4):825—831.
    [149]王奎华,杨冬英.两种径向多圈层土体平面应变模型的对比[J].浙江大学学报(工学版),2009,43(10):1902-1908.
    [150]王礼立.应力波基础[M].北京:国防工业出版社,北京,1985.
    [151]王腾,王奎华,谢康和.任意段变截面桩纵向振动的半解析解及应用[J].岩土工程学报,2000,22(6):654-658.
    [152]王腾,王奎华,谢康和.变截面桩速度导纳解析解[J].岩石力学与工程学报,2002(a),21(4):573-576.
    [153]王腾,王奎华,谢康和.成层土中桩的纵向振动理论研究及应用[J].土木工程学报,2002(b),35(1):83—87.
    [154]王腾.成层土中桩纵向振动理论研究及其在PIT中的应用[博士学位论文][D].杭州:浙江大学,2001.
    [155]王小岗.层状横观各向同性饱和地基中桩基的纵向耦合振动[J].土木工程学报,2011(a),44(6):87-97.
    [156]王小岗.横观各向同性饱和层状土中垂直受荷群桩的动力阻抗[J].岩土工程学报,2011(b),33(11):1759—1766.
    [157]旺昕,刘誉,徐辉.沉渣对低应变曲线影响的仿真分析[J].土工基础,2009,23(3):74-76.
    [158]吴继敏,董志高,董平.钻孔灌注桩桩底沉渣对桩承载性状影响[J].解放军理工大学学报(自然科学版),2008,9(5):546-551.
    [159]吴鹏,任伟新.竖向激励场下考虑桩土滑移的单桩动力性态[J].土木工程学报,2009,42(6):93-96.
    [160]吴世明等.土介质中的波[M].北京:科学出版社,1997.
    [161]吴世明等.土动力学[M].北京:中国建筑工业出版社,2000.
    [162]吴文兵,王奎华,武登辉,马伯宁.考虑横向惯性效应时楔形桩纵向振动阻抗研究[J].岩石力学与工程学报,2011,30(S2):3618-3625.
    [163]吴文兵,王奎华,张智卿,陈嘉熹.半空间地基中虚土桩模型的精度分析及应用[J].应用基础与工程科学学报,2012,20(1):121-129.
    [164]吴志明,黄茂松,吕丽芳.桩-桩水平振动动力相互作用研究[J].岩土力学,2007,28(9):1848—1855.
    [165]谢定义.土动力学[M].西安:西安交通大学出版社,1988.
    [166]谢永健,朱合华,王怀忠,陶履彬.打入承压水层土的管桩土塞的稳定分析[J].建筑结构, 2005,35(12):14—16.
    [167]谢永健,王怀忠,朱合华.软黏土中PHC管桩打入过程中土塞效应研究[J].岩土力学,2009,30(6):1671—1675.
    [168]徐向阳,卢普伟.大直径钢管桩土体闭塞效应分析[J].中国水运2011,11(11):248-249.
    [169]徐攸在.桩的动测新技术[M].北京:中国建筑工业出版社,2002.
    [170]燕彬,黄义.群桩刚性承台竖向动阻抗的简化计算[J].岩土工程学报,2004,26(5):465-468.
    [171]严人觉,王贻荪,韩清宇.动力基础弹性半空间理论概述[M].北京:中国建筑工业出版社,1981.
    [172]严镇军.数学物理方程[M].合肥:中国科学技术大学出版社,1996.
    [173]杨冬英.复杂非均质土中桩土竖向振动理论研究[D].杭州:浙江大学,2009.
    [174]杨冬英,王奎华.任意圈层径向非均质土中桩的纵向振动特性研究[J].力学学报,2009(a),41(2):243-252.
    [175]杨冬英,王奎华.径向非均质土中平面应变模型的精度及适用性研究[J].土木工程学报,2009(b),42(7):98-105.
    [176]杨冬英,王奎华.非均质土中基于虚土桩法的桩基纵向振动[J].浙江大学学报(工学版)2010,44(10):2021—2028.
    [177]杨骁,王琛.饱和粘弹性土层中悬浮桩的纵向振动[J].应用力学学报,2009,26(3):490-494.
    [178]杨骁,潘元.饱和粘弹性土层中端承桩纵向振动的轴对称解析解[J].应用数学与力学,2010,31(2):180—190.
    [179]余俊,尚守平,任慧,王海东.饱和土中桩竖向振动响应分析[J].工程力学,2008,25(10):187—193.
    [180]张智卿,王奎华,谢康和.非饱和土层中桩的扭转振动响应分析[J].岩土工程学报,2006(a),28(6):729-734.
    [181]张智卿,王奎华,谢康和,李强.考虑地下水位影响时桩的纵向振动特性研究[J].岩石力学与工程学报,2006(b),5(S2):4215--4225.
    [182]张智卿,王奎华,谢康和.饱和土层中桩的扭转振动响应分析[J].浙江大学学报(工学版),2006(c),40(7):1211—1218.
    [183]张智卿,王奎华,靳建明.轴对称横观各向同性土体中桩的扭转振动响应研究[J].振动工程学报,2011,24(1):60-66.
    [184]周健,王冠英.开口管桩土塞效应研究进展及展望[J].建筑结构,2008,38(4):25—29,7.
    [185]周铁桥,王奎华,谢康和,郑宇杉.轴对称径向非均质土中桩的纵向振动特性研究[J].岩土工程学报,2005,27(6):720-725.
    [186]周绪红,蒋建国,周银生.粘弹性介质中考虑轴力作用时桩的动力分析[J].土木工程学报,2005,38(2):87-91,96.
    [187]赵振东,傅铁铭.桩头侧向集中荷载作用下桩-土系统的非线性动力性能分析[J].世界地震工程与工程振动,1997,17(3):47—59.
    [188]张忠苗.桩基工程[M].北京:中国建筑出版社,北京,2007.
    [189]中华人民共和国住房部和城乡建设部.JGJ 94-2008建筑桩基技术规范[s].北京:中国建筑工业出版社,2008.
    [190]张忠苗,刘俊伟,俞峰,谢志专.静压预应力混凝土管桩土塞效应试验研究[J].岩土力学,2011,32(8):2274-2280.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700