用户名: 密码: 验证码:
高速铁路纵连板式无砟轨道台后锚固结构研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
台后锚固结构是纵连板式无砟轨道的重要组成部分。目前国内外没有对台后锚固结构的作用机理和受力规律进行系统的理论分析,更缺乏试验研究支持。国内京津城际铁路等采用倒T型主端刺锚固结构,施工工序多,工艺复杂,锚固结构区采用水泥级配碎石,成本较高,长期性能需进一步观测研究。本文以京沪高速铁路为研究对象,从理论和试验两方面进行系统研究,提出了适用于AB组填料路基、施工方便并满足相关要求的锚固结构。
     论文根据纵连板式无砟轨道结构和台后锚固结构组成,分析了台后锚固结构受力机理,建立了台后锚固结构、轨道结构及路基本体相互作用的一体化计算模型,对相关输入参数进行了理论或者试验验证。其中应用Mohr-Coulom (M-C)准则描述岩土材料的强度特性建立了路基承受水平荷载的模型,路基水平土体弹性模量和摩擦板与底座板摩擦系数模型均通过现场实验取值,使所建模型更能反映实际情况。
     应用所建模型,通过对公路CRCP锚固结构分析,结合我国CRTS Ⅱ型板式无砟轨道台后锚固结构的设置经验,计算分析了锚固结构的受力规律,进行了不同类型的主端刺结构分析,提出了锚固地梁的结构形式,计算对比了单、双锚固地梁的受力和位移约束效果,提出了Π型主端刺锚固结构设计方案。
     对锚固结构设计参数影响规律分析结果表明:摩擦系数对结构的纵向位移影响不大,但对整个锚固结构力的分配有较大的影响;主端刺与底座板之间不同的锚固方式对端刺整体结构的影响较大;Π型主端刺间连接板尺寸越大,对端刺整体结构受力和约束变形越有利,连接板尺寸存在最优取值;端刺间距对结构受力和纵向位移的影响不大;摩擦板尺寸对结构受力和纵向位移的影响较大,同样存在最优取值。最后根据设计参数影响规律分析结果,进行了主端刺结构组合分析,设计了最优结构形式。
     设计了现场试验方案,通过n型主端刺结构现场顶推试验,得出不同荷载作用下,端刺结构的位移、应力及土体压力的变化规律:端刺及摩擦板在荷载作用下,纵向位移变化较大,横向和垂向位移变化较小;端刺纵向位移随荷载增加不断增大,主端刺的纵向位移变化较明显,小端刺纵向位移变化稍小,端刺变形为弹性变形;纵向力大部分由主端刺承担;试验结果还表明端刺侧土体变形较小,处于弹性范围。
     对端刺结构的失稳状态分析表明,目前采用的倒T型端刺结构,当底座板刚度折减大于30%或者路基采用普通A、B组填料时,不满足使用要求。现场对倒T型端刺的顶推试验也表明:倒T型主端刺纵向变形基本由其结构倾斜和弯曲变形组成;水平板与竖板尤其竖板与底板固结面积较小,在固结点形成集中力,单位面积分布力较大,可能导致混凝土产生裂纹、裂缝,影响端刺正常使用,建议对固结点加强设计;水泥级配碎石填料易发生开裂现象,产生塑性破坏,导致出现残余变形,难以恢复,并进一步分析提出了预防开裂的设计与施工控制措施。
Anchoring structure behind abutment is an important part of the longitudinal connected slab ballastless Track. No theoretical model at home and abroad to the mechanism and stress law of anchorage structure, the more the lack of test studies support. Down T main end thorn anchorage structure was used in the beijing-tianjin inter-city railway at domestic.Construction process and technology is very complex, at the same time,anchorage structure zone use cement grading-macadam and cost is higher, long-term performance need further observation and research. The anchorage structure was put forward which suitable for AB group packing roadbed, construction-convenient and satisfing the relevant requirements. In this paper, theoretical analysis and experimental research was put on by the research object of the beijing-shanghai high-speed railway.
     According to the composition of longitudinal connected slab ballastless Track structure and anchoring structure behind abutment, this paper analyzes the stress mechanism of the anchor structure,sets up the integration calculation model around interaction among the anchor structure, track structure and subgrade ontology, and tests the related parameter on the theory or experiment. In this paper, the application of Mohr-Coulom(M-C)criterion can describe the intensity of geotechnical material character, and establish the subgrade-model under horizontal load. Subgrade soil modulus of elasticity commonly under horizontal and the coefficient of friction model between friction plate and base plate adopted the field test results to make the model better reflect the actual situation.
     Using the established model, based analysis of CRCP anchorage structure on highway, and combining with setting-experience of anchoring structure behind abutment of CRTS II slab ballastless Track,the stress rule of the anchorage structure and the different types of main end thorn structure were calculated and analysed,As the result, the pepers put forward the anchorage ground beam structure form, as the same time, compared with single, double and three anchorage ground beam stress andt constraint effect and put forward the II type main end thorn anchorage structure design plan.
     The results obtained by analysing influenced law of designed parameters of the anchor structure show that effect of the friction coefficient to the longitudinal displacement of the structure is not big, but for the whole anchor structure force distribution have bigger influence;Different anchoring way between main end thorn and base plate affectes the whole structure of the thorn; The connections plate size between II type main end thorns is larger,structure stress and restrained deformation more favorable, at the same time,connecting plate size exists optimal datas; The impact of end-thorn'spacing to the structure stress and longitudinal displacement is not big; The influence of friction-plate size to the structure stress and longitudinal displacement is bigger,and friction-plate size exists optimal datas. At the last, according to analysed results of the designed parameters and influenced law, the papers analysed the primary end thorn structure combination and designed the optimal structure form.
     The field test scheme was designed. Through the Ⅱ type main end thorn structure field pushing test, changed rule of the end thorn structure of the displacement,stress and soil pressure under different loads was obtained:In the loads, the longitudinal displacement change of end thorn and friction plate is bigger and horizontal and vertical displacement change is smaller; End thorn longitudinal displacement is continuously increasing with the load increase, and the main end thorn longitudinal displacement change is more apparent and small end thorn a little small, and deformation is elastic; Longitudinal force is most bear by the end thorn;Test results also show that soil deformation around the end thorn is small, in it's elastic range.
     The analyses of instability condition of the end thorn structure show that it is not satisfy the use requirement to the inverted T end thorn structure used at present, when the base plate stiffness reduces more than30%or subgrade using common A or B group of packing. The down T end thorn pushing test also shows:Longitudinal deformation of the down T main end thorn basic is made up its structure tilt and bending deformation; The lesser concretion-area of horizontal plate and vertical plate forming concentrated force and distribution force in the unit area is bigger, what can lead to concrete crack and affects the end thorn normal use. So the suggestion to strengthening design the concretion-point was drown; Cement graded gravel is vulnerable to cracking phenomenon and takes place the plastic damage, what leads to appear residual deformation, difficult to recover. And the design and construction's controllable measures are further analysed and put forward to prevent cracking.
引文
[1]赵国堂.高速铁路无砟轨道结构[M].北京:中国铁道出版社,2006.
    [2]Esveld C. Modern railway track[M].MRT-Prdoduction,2001.
    [3]Bachmann H. State-of-the-art:Ballastless Track Systems[J]. Railway Technical Review, 2006(special):27-31.
    [4]苏晓声.无砟轨道的发展历程[J].铁道知识,2006(3):12-15.
    [5]郭福安,客运专线无砟轨道结构[J].铁道标准设计,2006(4):7-10.
    [6]Bringfried Belter, Rudolf Ditzen. Experience Gained with Laying Slab Track on the Newly-Built Cologne-Rhine/Main High-Speed Line[J]. Railway Technical Review, 2002(4):24-33.
    [7]R.Bastin. Development of German non-Ballasted Track Forms[J].Proceedings of the Institution of Civil Engineers:Transport,2006,159(1):25-39.
    [8]Esveld C. Recent Developments in Slab Track[J]. European Railway Review,2003 (2), 81-85.
    [9]K Ando, M. Sunaga, H. Aoki, O. Haga. Development of Slab Tracks for Hokufiku Shinkansen Line[J].Quarterly Report of RTRI,2001,42(1):35-4,1.
    [10]Ando K. Devolepment and Practical Use of Concrete Roadbed for Slab Track on Earthwork[C].Preceedings,Eighth Conference on Transport Research,Antwerp,The Netherland,July,1998.
    [11]Ando K,Sunaga M,Aoki H,Haga O.Devolepment of Slab Tracks for Hokuriku Shinkansen Line[J].The Quarterly Report of Railway Technical Research Institute,42(1),2001.
    [12]Howe C. Concrete Rail Track beds-The Japanese Eeperience in Lessons from Japan-Cement and Concrete Paving[R].BCA,1999.Ref C/32.
    [13]Helmut Weber,Andres Zachlehner.Bogl型无砟轨道—首次以大结构长度铺设[J].铁路工程师,2004,10(1)
    [14]Leykauf Gunther.Prefabricated Slabs and Frames for Non-ballasted Track.ZEV-Zeitschrift fuer Eisenbahnwesen und Verkehrstechnik[J].Journal for Railway and Transport.,123(6),1999.
    [15]TB10621-2009.高速铁路设计规范[S].北京:中国铁道出版社,2010.
    [16]郭福安.客运专线无砟轨道结构[J].铁道标准设计,2006(4):7-10.
    [17]客运专线无砟轨道技术再创新攻关组.国内外无砟轨道系统研究分析总报告[R],2007.
    [18]任静.板式轨道研究与设计初探[J].铁道标准设计,1996(6):25-28.
    [19]Dai Nakagawa, Masatoshi Hatoko. Reevaluation of Japanese high-speed rail construction:Recent situation of the north corridor Shinkansen and its way to completion[J].Transport Policy,2007,14(2):150-164.
    [20]k Gerlich. Ballastless track on Bridges[J].RTR,1995(2).
    [21]贺欣.高速铁路CRTSⅡ型板式无砟轨道端刺及临时端刺的力学特性分析[D].北京:北京交通大学,2010.
    [22]Beton Kalendar, Eisenmann, Leykauf,2000.
    [23]何华武.无砟轨道技术[M].北京:中国铁道出版社,2005.
    [24]王忠文,徐鹤寿.德国纽伦堡—英格尔施塔特纽新建线的无砟轨道[J].中国铁路,2006(6):1-4.
    [25]卢祖文.客运专线铁路轨道[M].北京:中国铁道出版社,2005
    [26]阎红亮.京津城际铁路无砟轨道设计综述[J].《铁道建筑》,2008,增刊413:10-15.[35]陈鹏.高速铁路无砟轨道结构力学特性的研究[D].北京:北京交通大学,2008.
    [27]铁道部工程管理中心.京津城际轨道交通工程CRTSⅡ型板式无砟轨道技术总结报告[R],2008.8.
    [28]DB Netz AG. Requirements Catalog for the Construction of the Permanent Way—4th Revised Edition [S].2002.
    [29]王其昌等.高速铁路土木工程[M].成都:四川交通大学出版社,1999.11.
    [30]邓存宥.大跨桥上纵连板式无砟轨道结构分析及参数研究[D].成都:西南交通大学,2007.
    [31]博格公司.京津城际轨道交通工程技术转让资料[R].
    [32]姜子清,江成.桥上CRTSⅡ型板式无砟轨道台后锚固结构的研究分析[J].铁道建筑,2010(3):77-79.
    [33]曹利.简支梁桥上博格板式无砟轨道纵向力分析[D].成都:西南交通大学,2007.
    [34]徐锡江.大跨桥上纵连板式轨道纵向力计算研究[D].成都:西南交通大学,2007.
    [35]陈鹏.高速铁路无砟轨道结构力学特性的研究[D].北京:北京交通大学,2008.
    [36]佐藤吉彦.徐涌(译).新轨道力学[M].北京:中国铁道出版社,2001.
    [37]Ladislav F.Thermal interaction of long welded rails with railway bridges [J].Rail International,1985,16(3):5-24.
    [38]Czyczula W,Solkowski J,Towpik K.Interaction between CWR track and bridges in longitudinal direction[J].Archives of Civil Engineering,1997,43(1):51-69.
    [39]徐庆元,陈秀方.小阻力扣件桥上无缝线路附加力[J].交通运输工程学报,2003,3(1):25-30.
    [40]徐庆元,张旭九.高速铁路博格纵连板桥上无砟轨道纵向力学特性[J].中南大学学报:自然科学版,2009(40):526-532.
    [41]Qu cun,Gao Liang,Cai Xiaopei,et al. Analysis on the influence factors of mechanical characteristics of longitudinal connected ballastless CWR on bridge in high-speed railway[C]//The first International Conference on RailwayEngineering:High-speed Railway,Heavy Haul Railway and Urban Rail Transit.Beijing:China Railway Publishing House,2010:205-209.
    [42]HU Huafeng,Gao Liang,Qu cun.Analysis on the influence of pier rigidity and bearing arrangement on the mechanical characteristics of longitudinal connected ballastless CWR on long-span bridge in high-speed railway[C]//The first International Conference on RailwayEngineering:High-speed Railway,Heavy Haul Railway and Urban Rail Transit.Beijing:China Railway Publishing House,2010:201-204.
    [43]乔神路,高亮,曲村,辛涛。桥上纵连板式无砟轨道无缝道岔力学特性[J].西南交通大学学报[J].2010,45(5):669-675
    [44]陈小平,王平.客运专线桥上纵连板式无砟轨道制动附加力影响因素分析[J].铁道建筑,2008(9):87-90.
    [45]邓学钧,陈荣生.刚性路面设计[M].北京:人民交通出板社,1990
    [46]JTG D402002.公路水泥混凝土路面设计规范[S].北京:人民交通出版社,2004.
    [47]苏清贵,张起森.连续配筋混凝土路面的端部位移[J].中外公路,22(3):19-21,2002.
    [48]张洪亮.连续配筋混凝土路面端部锚固结构研究[D].西安:西安公路交通大学,2000
    [49]张彬.连续配筋混凝土路面端部锚固地梁研究[D].吉林:吉林大学,2006[60]张国红.高速铁路无砟轨道倒T型端刺施工技术[J].《铁道建筑技术》,2010.1.
    [50]钟春玲.连续配筋混凝土路面板底摩阻及端部锚固分析[D].吉林:吉林大学,2009.
    [51]刘寒冰.连续配筋混凝土路面端部锚固地梁研究[D].吉林:吉林大学,2006.
    [52]周志刚,张起森.连续式配筋混凝土路面研究综述[J].长沙交通学院学报,16(7):23-27,2000.
    [53]马彦芹,赵玉肖.连续配筋混凝土路面端部矩形地锚梁设计[J].交通标准化,2007(2/3):73-73,2007.
    [54]黄晓明,唐益民等.连续配筋混凝土路面端部锚固原理研究[J].东南大学学报,26(4):106-110,1996.
    [55]曹东伟,胡长顺.连续配筋混凝土路面端部锚固力计算方法[J].西安建筑科技大学学报,32(3):300-303,2000
    [56]Washington D C. The AA SHTO Guide for the Design of Pavement Structure. American Association of State High Way and Transportation Officials,1986.
    [57]谢军,查旭东.连续配筋混凝土路面设计指南[J].国外公路,20(5):4-7,2000
    [58]陈雪华.高速铁路无砟轨道过渡段路基的动力特性研究[D].长沙:中南大学,2006
    [59]屈晓辉,崔俊杰等.客运专线铁路路基设计技术[M].北京:人民交通出版社,2008.
    [60]张北瑞,熊尚谱.粉煤灰—水泥稳定碎石基层力学特性的试验研究[J].石家庄铁道学院学报,1999,12(2):70-73
    [61]赵国堂.高速铁路路基过渡段水泥碎石施工质量控制[J].铁道建筑,2009(7):128-130.
    [62]京沪高速铁路股份公司.京沪高速铁路施工组织设计(第2版)[Z].北京:2009.3.
    [63]靖仕元.京沪高速铁路CRTSⅡ型板轨道端刺设置方案研究[J].铁道标准设计,2009(9):9-13.
    [64]伍卫凡,刘玉祥.沪昆客运专线长(沙)玉(屏)段CRTS Ⅱ型板式无砟轨道端刺设计方案的研究[J].铁道标准设计,2010(5):10-13.
    [65]王建伟.路面半刚性基层横向裂缝的研究[J].平顶山工学院学报,2003,12(1):16-19
    [66]陈申,毛延升.半刚性基层沥青路面裂缝分析[J].平顶山工学院学报.2004,13(1):62-64.
    [67]李如敏.半刚性基层沥青路面裂缝成因分析及处治对策[J].现代交通技术,2007,4(4):10-12.
    [68]沙爱民.半刚性基层的材料特性[J].中国公路学报,2008,21(1):1-5.
    [69]徐江萍,金雷,陈国甫.贫混凝土基层材料干燥收缩特性[J].长安大学学报(自然科学版),2003,23(2):25-27.
    [70]杨忠,蒋宗全,谢凯军.高速铁路桥(涵)过渡段碾压混凝土施工工艺研究[J].铁道建筑,2009(7):117-119.
    [71]王鑫,麦云飞.有限元分析中单元类型的选择[J].研究与分析,2009(6)43-46,
    [72]沈珠江.理论土力学[M].北京:中国水利水电出版社,1999.
    [73]陈星,胡必豪,袁剑,邓华锋.摩尔匹配D-P准则在开挖工程中的应用研究[J].露天采矿技术,2010(1):11-17.
    [74]邓楚键,何国杰,郑颖人.基于M-C准则的D-P系列准则在岩土工程中的应用研究[J].岩土工程报,2006,28(6):736-739.
    [75]苏继宏.岩土材料破坏准则研究及其应用[J].工程力学,2003,20(3):72-77.
    [76]张鲁渝,时卫民,郑颖人.平面应变条件下土坡稳定有限元分析[J].岩土工程学报,24(4):487-490,2002.
    [77]赵体波,牛斌,胡所亭,荣峤.CRTS Ⅱ型板式无砟轨道滑动层性能试验研究[J].施工技术,40(340):45-48,2011.
    [78]铁道科学研究院.隔离层摩擦和磨耗性能试验研究[R],2008.
    [79]王铁梦.工程结构裂缝控制(M),中国建筑工业出版社,1997.
    [80]殷宗泽.土力学与地基(M),中国水利电力出版社,1999.
    [81]钱家欢,殷宗泽.土工原理与计算(M),中国水利水电出版社,1996.
    [82]方利,李成辉.刚度折减对制动力的影响分析[J].路基工程,2006(3):166-168.
    [83]滕东宇.桥上纵连板式无砟轨道底座板耐久性研究[D].北京:北京交通大学,2009
    [84]王庆波等,桥上纵连板式无砟轨道相关技术问题研究[J].铁道工程学报,2010(5):9-13.
    [85]葛海娟.郑武段客运专线CRTS Ⅱ型板式无砟轨道摩擦板和端刺方案研究[J].铁道工程学报.2010.27(2).41-53.
    [86]铁建设函(2005)754号.客运专线铁路设计指南[S].北京:中国铁道出版社,2005
    [87]铁建设(2007)47号.新建时速300~350公里客运专线铁路设计暂行规定[S].北京: 中国铁道出版社,2007
    [88]铁建设(2007)85号.客运专线无砟轨道铁路工程施工质量验收暂行标准[S].北京:中国铁道出版社,2007
    [89]铁建设(2005)160号.客运专线铁路路基工程施工质量验收暂行标准[S].北京:中国铁道出版社,2005
    [90]TB10102-2004.铁路工程土工试验规程[S].北京:中国铁道出版社,2004
    [91]铁建设[2005]188号.变形模量Ev2检测规程(试行)[S].北京:中国铁道出版社,2005
    [92]姚振纲,刘祖华.建筑结构试验[M].上海:同济大学出版社,2004
    [93]姚谦峰.土木工程结构试验[M].北京:中国建筑工业出版社,2008
    [94]易伟建,张望喜,姚振纲.建筑结构试验[M].中国建筑工业出版社,2005
    [95]马永欣,郑山锁.结构试验[M].科学出版社,2001
    [96]袁锦根,余志武.混凝土结构设计基本原理[M].北京:中国铁道出版社,1997
    [97]TB10002.3-2005.铁路桥涵钢筋混凝土和预应力混凝土结构设计规范[S].北京:中国铁道出版社,2005
    [98]黄晓明,朱湘.沥青路面设计[M].人民交通出版社,2002年9月
    [99]单辉祖.材料力学教程[M].北京:高等教育出版社,2004.
    [100]JTGF80-1-2004.公路工程质量检验评定标准[s].北京:人民交通出版社,2004
    [101]陈燊.广义结构力学及其工程应用[M].北京:中国铁道出版社,2003
    [102]孙兆辉,许志鸿,王铁斌.基于干缩变形特性的水泥稳定碎石级配组成[J].同济大学学报(自然科学版),2006,34(9):1185-1190
    [103]铁科院高速铁路系统试验国家工程试验室.京沪高速铁路铁路动态检测报告[R],2011.
    [104]铁建设[2010]214号,《高速铁路工程动态验收指导意见》[S].北京:中国铁道出版社,2007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700