金属薄壁管液压成形应用基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
管材液压成形技术(Tube Hydroforming,THF)是一种生产复杂整体中空薄壁结构件的先进塑性成形技术,具有成形高精度、制造柔性化、节省能源、降低材料消耗、节约成本等特点,有着广泛的应用前景与发展潜力。本文采用理论分析和试验研究相结合的研究方法,针对薄壁管液压成形技术中的几个关键问题展开基础性研究。研究内容主要集中在6个方面:
     (1)为准确评价管材成形性能,针对管液压成形特点,研发了新的管材性能测试装置,用于获取评定管材液压成形性能所需的基本数据:胀形高度-胀形内压曲线(PH曲线)。与现有专用测试设备相比,该装置采用管端固定的自由胀形工作方式,测试简单、操作方便,能够准确地反映管液压成形中材料在双拉状态下成形性能。
     (2)为获得较为准确的管材成形性能参数,以自主研发的性能测试装置为基础,建立了新的管材成形性能解析模型。该模型基于塑性理论、平面应力假设和静力平衡方程,并在求解中引入了管件胀形轮廓函数-二次轮廓假设。通过对铝合金LF21M和不锈钢304L的测试和解析计算,并结合有限元模拟分析,表明该模型求解简单方便,有着较高的求解精度。
     (3)为高效准确地获得材料性能参数,提出了新的管材成形性能求解方案—自适应有限元逆向求解方法。通过分析材料参数对THB测试中PH曲线形状的影响,构建出材料参数修正准则。通过构建外围控制程序,实时监控模拟过程,以解析结果为初始值,依据修正准则对其进行调整,直至获得准确结果。试验和有限元模拟验证表明该方法相对于单纯的解析法和有限元逆算法,有着其明显的优势。
     (4)为优化THB试验,提高材料性能求解精度,构建了新的胀形压力解析模型,并以此为分析基础,全面分析了液压胀形过程中管件几何尺寸和材料性能对胀形结果的影响。结果显示:成形压力不仅仅受到材料本身性能的影响,还受到管件厚径比和胀形宽径比的影响。管件的胀形高度基本不受厚度、加工硬化系数以及厚向异性的影响。从相对胀形高度的角度,也不受管件直径大小变化的影响,只决定于管件的加工硬化指数和胀形宽径比。
     (5)为方便获得管液压成形过程中的材料与模具间的摩擦系数,针对成形中的特点,提出了新的摩擦系数测试方法和相应测试装置,并对管液压成形中常用的润滑剂的摩擦系数进行了测试。该方法基于Duncan原理,通过构建板料与摩擦圆辊之间的接触力学模型,获得摩擦系数。试验分析表明该装置具有结构简单,操作方便的显著特点,能够快捷准确地测试材料摩擦系数。
     (6)针对传统T型管件设备昂贵,工艺复杂的缺点,提出新的成形方式-基于管端轴向进给驱动的管液压成形法。该方法仅依靠管端轴向进给产生的内部成形介质体积减小就可轻易实现管件内压形成。与传统方法相比,该方法不需要成本昂贵的高压泵给系统,只需要耐高压的溢流阀控制系统即可实现。在此基础上,对使用该方法成形的管件质量进行理论分析,结果表明对于三通零件存在溢流压力安全成形区域,只有压力在其范围内,才能成形出合格零件。安全范围主要与材料性质有关,塑性性能较好的材料其溢流压力的取值范围较大。除此以外,零件的厚度分布和有效成形高度对溢流压力不敏感,其成形质量主要取决于管端的轴向进给程度。
Tube hydroforming (THF) is an advanced plastic forming technology widely used in making complicated-shaped hollow parts with thin walls. Tube hydroforming technology offers several advantages: high accuracy, flexible forming, low energy consumption, high matierial utilization ratio, low cost, etc. This dissertation focuses on the basic research of the key problems of thin wall tube hydroforming, using the combination of analytical and experimental approach. The study mainly concentrates in six aspects:
     (1) A new material property test device is designed and manufactured to obtain exact tube material property. The device is used in obtaining the basic data: bulging height versus internal pressure curve, namely PH curve, needed in evaluating tube material forming properties. Compared to the existing device, it bulges the tube freely by fixing the two endings of the tube,.so it .can not only work with high efficiency, but also accurately estimate the tube material property under biaxial tension.
     (2) Based on the self-made tube material forming property test device, a new analytical model suitable for THF is created. This analytical model is based on plastic theory, planar stress assumption, static equilibrium equations,.and introduices the assumption that tube bulging contour function is square. By testing and analytical calculating on aluminum alloy LF21M and stainless steel 304L, compared with the result of finite element simulation, it is showed that the model is simple and convenience, and it is accurate for normal materials used in THF like aluminum alloy, low-carbon steel and stainless steel.
     (3) A new solution of tube material properties is proposed to obtain tube material property efficiently and accurately---adaptive and reserved FEM simulation solution. A series of criterions are set up by analyzing the influence of material properties on PH curve in THB test. On this basis, using analytical results as original value, the process of FEM simulation is real-time monitored by a computer program. Then the material parameters are being adjusted according the modification principle until the good result is obtained. This method is validated through experiments and finite simulations,and it is showed that it is more advantaged compared with pure analytical method or pure reserved FEM simulation.
     (4) A new forming pressure model of tube hydro-bulging is established to optimaize the THB test. The influences of tube geometry and material properties on bulging results is analyzed. It is showed that the forming pressure not only is influenced by the material property, but also depends on the thickness to diameter ratio and bulging width. For relative bulging height, it is only depends on work hardening index and the ratio of bulging width and tube diameter but not on tube thickness, diameter, work hardening coefficient and thick anisotropy index.
     (5) In order to obtain accurate friction coefficient between blank and die, a new friction coefficient testing device is established and some common lubricants used in tube hydroforming are tested. The method is based on Duncan theroy. The fricition coefficient is obtained by setting up the contact force model between blank and friction column. The results show that the device is simple and convenient, and can obtain the accurate fricition coefficient quickly..
     (6) Aiming at the drawback of traditional T-shaped tube forming method: expensive facitlity and complicated technics, a new method--- feeding driven THF is proposed. The new method is dependent on decreasing of interior forming volume caused by axial feeding to create the forming pressure Compared to traditional method, this method is more in need of a high-pressure relief valve control system than expensive high-pressure hydraulic pump system. Based on the method, T-shaped tube quality is analyzed theoretically on the basis of this method. It is showed that, for T-shaped part, as a safe forming region of relief pressure is existed, proper parts can only be formed within the region. Safe region is mainly dependent on material properties. Materials with good plastic behavior have large safe region. Besides, thickness distribution and useful height mainly depend on axial feed but not internal pressure.
引文
[1] Grey J.E, Devereaux A.P, Parker W.N, Apparatus for making wrought metal T's, US Patent 2,203,868 1939.7
    [2] Mellor P.B, The ultimate tensile strength of thin -walled shells and circular diaPHgrams subjected to hydrostatic pressure, Int. J. Mech. Sci. 1960 1(1) 216-228.
    [3] Ogura T, Ueda T, Liquid bulge forming, Metalworking Prod. 1968 1(4) 73-81.
    [4] Dohmann F, Bieling P,. Theoretical basis and applications of high pressure forming, Bleche Rohre Profile 1991,38 (5) 379-385.
    [5] Harjinder S. Hydroforming simulation becoming cost effective, Forming & Fabricating, 2003, 10(9): 39-46.
    [6] M. Ahmetoglu, K. Sutter, X.J. Li, et al, Tube hydroforming: current research, applications and need for training, Journal of Materials Processing Technology, 2000(98):224-231
    [7] M. Ahmetoglu, T. Altan, Tube hydroforming: state-of-the-art and future trends, Journal of Materials Processing Technology, 2000 (98): 25-33
    [8] Joakim L. Numerical simulation of tube hydroforming adaptive loading paths, Sweden: LULEA University of Technology, 2004.
    [9]雷丽萍,方刚,曾攀.汽车后延臂的液压胀形工艺研究,锻压技术,2002,(6):26-30.
    [10]林俊峰,苑世剑,刘钢,内高压成形技术汽车工业中的应用,材料科学与工艺,2004,12(5):59-62.
    [11]田仲可,薄壁结构件塑性成形技术研究,西北工业大学,2002,23-50
    [12] Chow C, Yang X J, Bursting for fixed tubular and restrained hydroforming, Journal of Materials Processing Technology, 2002,(30):107~114
    [13] Fuchizawa S, Marazaki M, Yuki H. Bulge test for determining stress-strain characteristics of thin tubes, Advanced Technology of Plasticity, 1993, (1): 488~493
    [14] Muammer Koc, Yingyot Aue-u-lan, Taylan Altan,On the characteristics of tubular materials for hydroforming—experimentation and analysis,International Journal of Machine Tools & Manufacture, 2001 (41) 761-772
    [15] Mahmoud Nemat-Alla, Reproducing hoop stress-strain behavior for tubular material using lateral compression test, International Journal of Mechanical Sciences, 2003 (45) 605-621
    [16] M. Strano, T. Altan, An inverse energy approach to determine the ?ow stress of tubular materials for hydroforming applications, Journal of Materials Processing Technology, 2004 (146) 92-96
    [17] Manabe K., Nishimura H.,. Influence of material p roperties in forming of tubes, Bander Bleche Rohre 9, 1983,189-194
    [18] Manabe K., Suzuki K, Mori S, Nishimura H, Bulge Forming of Thin Walled Tubes by Micro -Computer Controlled Hydraulic Press. Proceed. of the 1st Int. Conf. on Tech. of Plast. 1984,111-121
    [19] Fuchizawa, S.,. Influence of Strain Hardening Exponent on the Deformation of Thin -Walled Tube of Finite Length Subjected to Hydrostatic Internal Pressure, Advanced Technology of Plasticity, 1984, 297-302.
    [20] Fuchizawa, S., Deformation of Metal Tubes under Hydrostatic Bulge Forming with Closed Die, Advanced Technology of Plasticity, 1990, 1543-1548.
    [21] B. Carleer, G. van der Kevie, L. de Winter, B. van Veldhuizen, et al, Analysis of the effect of material properties on the hydroforming process of tubes, Journal of Materials Processing Technology, 2000 (104) 158-166
    [22] Tirosh J, Neuberger A, Shirizly A. Tube Expansion with Unlimited Strain,Adv Technol Plasticity, Fifth Annual ICTP, 1999(2): 527-530.
    [23] Yingyot A U L, Ngaile G, Altan T. Optimizing tube hydroforming using process simulation and experimental verification. Journal of Materials Processing Technology, 2004 (146)137-143.
    [24] Farahani AV. A new energy critical plane parameter for fatigue life assessment of various metallic materials subjected to in-PHase and out-of-PHase multiaxial fatigue loading conditions. Int. J. Fatigue, 2000 (22) 295-305
    [25] Prier M., Tribology of Internal-High-Pressure-Forming, Hydroforming of Tubes, Extrusions and Sheet Metals, 1999.(1): 379-390
    [26] T. Kuwabara, K. Yoshida, K. Narihara, Anisotropic plastic deformation of extruded aluminum alloy tube under axial forces and internal pressure,International Journal of Plasticity,2005 (21) 101-117
    [27] Mikael Jansson, Larsgunnar Nilsson, Kjell Simonsson, On constitutive modeling of aluminum alloys for tube hydroforming applications, International Journal of Plasticity, 2004(64) 234-256
    [28] Jeong Kim, Sang-Woo Kim, Woo-Jin Song, Analytical approach to bursting in tube hydroforming using diffuse plastic instability, International Journal of Mechanical Sciences 2004 (46) 1535-1547
    [29] Liu J. Tube hydroforming process development with the aid of computer simulation [J]. Society of Automotive Engineers, 2001(1): 1134-1137.
    [30] Jeong Kim, Sang-Woo Kim, Woo-Jin Song, Analytical approach to bursting in tube hydroforming using diffuse plastic instability, International Journal of Mechanical Sciences, 2004(46)1535-1547
    [31] A. Kulkarni, P. Biswas, R. Narasimhan, et al, An experimental and numerical studyof necking initiation in aluminium alloytubes during hydroforming, International Journal of Mechanical Sciences, 2004 (46)1727-1746
    [32] Li-Ping Lei, Jeong Kim, Beom-Soo Kang,Bursting failure prediction in tube hydroforming processes by using rigid-plastic FEM combined with ductile fracture criterion, International Journal of Mechanical Sciences, 2002 (44) 1411-1428
    [33] Jeong Kim, Sung-Jong Kang, Beom-Soo Kang, A prediction of bursting failure in tube hydroforming processes based on ductile fracture criterion, Int J Adv Manuf Technol, 2003(22),357-362
    [34] Lejeune A, Boudeau N, Gelin J C, Influence of material and process parameters on bursting during hydroforming process, Journal of Materials Processing Technology, 2003(143-144):11-17.
    [35]肖景容,姜奎华,冲压工艺学,机械工业出版社,北京, 2002, 150-179.
    [36] F. Dohmann, Ch. Hartl, Hydroforming - a method to manufacture light-weight parts, Journal of Materials Processing Technology, 1996 (60): 669-676
    [37] L.Gao, S.Motsch, M.Strano, Classification and analysis of tube hydroforming processes with respect to adaptive FEM simulations, Journal of Materials Processing Technology, 2002 (129): 261-267
    [38] K. Tibari, Adaptive simulation in tube hydroforming, ERC/NSM, Report No. THF / ERC/ NSM-00-R-10, 2000.
    [39] M.Strano, Jirathearanat, Adaptive simulation concept for tube hydroforming, International Conference on Innovation in Tube Hydroforming Technology; Detroit, MI, USA, 2000,June 13-14.
    [40] M. Strano, et al., Adaptive FEM simulation for tube hydroforming: a geometry-based approach for wrinkle detection, Proceedings of the 51st Annals of CIRP, 2001,145-151
    [41] E. Doege, R. Koèsters, C. Ropers, Determination of optimized controlparameters for internal high pressure forming processes with FEM, Proceedings of the International Conference on Sheet Metal, 1998, Vol. 2.
    [42] Matteo Strano, Suwat Jirathearanat, Shiuan-Guang Shr,et al, Virtual process development in tube hydroforming, Journal of Materials Processing Technology 2004 (146) 130-136
    [43] Jae-Bong Yang,, Byung-Hee Jeon, Soo-IkOh, Design sensitivity analysis and optimization of the hydroforming process, Journal of Materials Processing Technology, 2001(113): 666-672
    [44] M. Imaninejad, G. Subhash, A. Loukus, Loading path optimization of tube hydroforming process, International Journal of Machine Tools & Manufacture, 2005 (45):1504-1514
    [45] P. Ray, B.J. Mac Donald, Determination of the optimal load path for tube hydroforming processes using a fuzzy load control algorithm and finite element analysis, Finite Elements in Analysis and Design, 2004 (41):173-192
    [46] F.C. Lin, C.T. Kwan, Application of abductive network and FEM to predict an acceptable product on T-shape tube hydroforming process, Computers and Structures, 2004 (82) 1189-1200
    [47] T. Hama, T. Ohkubo, K. Kurisu,e tal,Formability of tube hydroforming under various loading paths,Journal of Materials Processing Technology, 2006 (21):325-334
    [48] Blair L. Punch holes in die while hydrofoming . Forming & Fabricating, 1999, 6(5):38-43.
    [49] Michael Keigler, Herbert Bauer, David Harrison, Enhancing the formability of aluminium components via temperature controlled hydroforming, Journal of Materials Processing Technology, 2005, (167) 363-370
    [50] Frank Vollertsen, Accuracy in process chains using hydroforming, Journalof Materials Processing Technology 2000 (103): 424-433
    [51] Lang L H, Yuan S J, Wang, Z.R. A study on numerical simulation of hydroforming of aluminum alloy tube, Journal of Materials Processing Technology, 2004 (146): 377-388.
    [52] Nishant Jain, Jyhwen Wang, Richard Alexander, Finite element analysis of dual hydroforming processes, Journal of Materials Processing Technology, 2004 (145): 59-65
    [53] Nishant Jain, Jyhwen Wang, Plastic instability in dual-pressure tube hydroforming process, International Journal of Mechanical Sciences, 2005 (47): 1827-1837
    [54] The ABCs of Hydroforming, Vary-FORM,USA,2001,
    [55] Y M Hwang, T Altan, Process fusion: tube hydorforming and crushing in a square die, J Engineering Manufacture, 2004(218), 169-174
    [56] H.U. Luecke, Ch.Hartl, T. Abbey, Hydroforming, Journal of Materials Processing Technology, 2001 (115) 87-91
    [57] Klaus Siegert, Markus Haussermann, Bruno Losch, et al, Recent developments in hydroforming technology, Journal of Materials Processing Technology, 2000(98): 251-258
    [58] Treude M, Engel B, Piece Cost Redution of Hydroformed Parts in Series Production. Hydroforming of Tubes, Extrusions and Sheet Metals, 2001(2).39-43
    [59] Chang, D. I. Nees, R. Morit, M,. Application of Hydroforming Technology for Exhaust Manifolds. SAE, Transactions, 1996, 105(5):713-718.
    [60] Siegert K., 1998. Recent Developments in Hydroforming Technology, Proceedings of the Conference on Sheet Metal Forming Technology, Columbus, Ohio, 1998,342-364
    [61]梁炳文,陈孝戴,王志恒,板金成形性能,机械工业出版社,1999,62-91
    [62] Gelin J C,Ghouati O, Labergere C. From optimal design to control of process in sheet forming and tube hydroforming. Proceedings of ECCOMAS. Barcelona Spain, 2000, 213~221.
    [63] Sokolowski T, Gerke K, Ahmetoglu M,et al.Evaluation of tube formability and material characteristics: hydraulic bulge testing of tubes, Journal of Materials Processing Technology, 2000, 98: 34~40.
    [64] Kuwabara T, Moriguchi K. An approach to evaluate the formability of a tube by simple free bulge testing method. The proceedings of the 2004 Japanese spring conference for the technology of plasticity,. Tokyo,Japan,2004, 287~288.
    [65] L. FIlice, L. Fratini, F. Micari, A simple experiment to characterize material formability in tube hydroforming, Annals oftheCIRP, 2001, 50(1): 181~184
    [66]郭成,杨连发.内补液增压式THF性能测试装置开发及试验研究,机械工程学报,2005,41(9):180~184.
    [67] Yang Lianfa, Guo Cheng. A simple experimental tooling with internal pressure source used for evaluation of material formability in tube hydroforming. Journal of Materials Processing Technology, 2006, 180(1-3): 310~317.
    [68] Yang LF, Guo C. Novel approach for analysis of deformation of thin-walled tube in free hydro-bulging process. Transactions of Nonferrous Metals Society of China, 2005, 15(3): 299~304.
    [69] GB/T 15825.2—1995,《金属薄板成形性能与试验方法—通用试验规程》
    [70]孙志超,杨合,蔡旺等.一种确定管材塑性本构关系的反算法.重型机械, 2000, (3) : 43~46.
    [71]正交试验设计法,上海科学技术出版社,1981
    [72] Prier M.,. Tribological requirements of Hydroforming and its realization inPractice. Hydroforming of Tubes, Extrusions and Sheet Metals, 2001 (2):421-437.
    [73] F. Vollertsen, M. Plancak, On possibilities for the determination of the coefecient of friction in hydroforming of tubes, Journal of Materials Processing Technology, 2002,(125-126): 412-420
    [74] M. Plancak, F. Vollertsen, J. Woitschig, Analysis, finite element simulation and experimental investigation of friction in tube hydroforming, Journal of Materials Processing Technology, 2005(170) 220-228
    [75] Ngaile G., Altan T.Lubrication in Tube Hydroforming, Lubrication Mechanisms and Evaluation of Lubricant Performance, NAMRC, 2001, 192-211
    [76] Gracious Ngaile, Stefan Jaeger, Taylan Altan, Lubrication in tube hydroforming (THF) Part I. Lubrication mechanisms and development of model tests to evaluate lubricants and die coatings in the transition and expansion zones , Journal of Materials Processing Technology, 2004(146):108-115
    [77] Gracious Ngaile, Stefan Jaeger,Lubrication in tube hydroforming (THF), Part II. Performance evaluation of lubricants using LDH test and pear-shaped tube expansion test, Journal of Materials Processing Technology 2004 (146) 116-123
    [78] X J Wang , Wagoner R H, Review of friction testing in sheet metal forming,ERC / NSM -S-91-16, 1991, 1~22
    [79] WANG X J, Duncan J L, Devenpeck M L. Punch Friction Tests for Sheet Metal Forming, Journal of Applied M etalworking, 1983,(13):3-11
    [80] Wright R N, Schurman T, Die friction variations in simulated sheet metal forming. Proceedings of 16th IDDRG congress, Borlange, Sweden, 1990, 113~12
    [81]徐树成,板成形中摩擦系数测定的研究进展,塑性工程学报,2000,7(2):40-43
    [82]徐树成,王先进,板成形中摩擦因数测定方法,钢铁, 2001,36(2):37-40
    [83] X J Wang,W.Wang, F.Saunders, A New Simulative Test to Assess Fricitional Effects in Sheet Stretching, 1 7th IDDRG Proceeding, 1992, 132-138
    [84]孙英,康英林,王先进,新型薄板成形摩擦试验装置的开发与应用研究,轧钢,1996(8):170-172
    [85] WANG W, Wangoner R H, W ANG X J, Measurement of Friction Under Sh eet Forming Conditions, Metallurgical and Materials Transactions, 1996, 27(12):3971-3981.
    [86] WANG X J,W ANG W, SaIIIders F, et a1,A New Simulative test to Assess Frictional Effects in Sheet Streching·Proceeding s of 17th Biennial IDDRG Congress on Advanced Sheet M etal Forming Technology, Shenyang, Chma, 1992,6, 376~ 383.
    [87] L. P.Lei, Jeong Kim, B.Soo Kang, Analysis and design of hydroforming process for automobile rear axle housing by FEM, International Journal of Machine Tools & Manufacture, 2000 (40): 1691-1708
    [88] Jeong Kim, Sung-Jong Kang, Beom-Soo Kang, Computational approach to analysis and design of hydroforming process for an automobile lower arm, Computers and Structures, 2002 (80): 1295-1304
    [89] Jeong Kim, Li-Ping Lei, Beom-Soo Kang, Preform design in hydroforming of automobile lower arm by FEM, Journal of Materials Processing Technology, 2003 (138): 58-62
    [90] Takayuki HAMA, Motoo ASAKAWA, Hiroshi FUKIHARU, Simulation of Hammering Hydroforming by Static Explicit FEM, ISIJ International, 2004 44(1):123-128
    [91] Mun-Yong Lee, Sung-Man Sohn, Chang-Young Kang, et al, Study on thehydroforming process for automobile radiator support members, Journal of Materials Processing Technology, 2002 (130-131): 115-120
    [92] Kristoffer Trana, Finite element simulation of the tube hydroforming process bending, preforming and hydroforming, Journal of Materials Processing Technology, 2002 (127): 401-408
    [93] Muammer Koc, Ted Allen, Suwat Jiratheranat, The use of FEA and design of experiments to establish design guidelines for simple hydroformed parts, International Journal of Machine Tools & Manufacture,2000 (40): 2249-2266
    [94] T. Allen, L. Yu, Low cost response surface methods. OSU-IWSE Working paper, 1999, 564-578
    [95] T. Allen, L. Yu, Low cost response surface methods applied to the design of plastic snap tabs, Quality Engineering,1999(12): 583-591.
    [96] L. Yu, Expected Modeling Errors and Low Cost Response Surface Methods. PH.D. Dissertation, The Ohio State University, Columbus, OH, USA, 2000.
    [97] Li-Ping Lei, Dae-Hwan Kim, Sung-Jong Kang, et al, Analysis and design of hydroforming processes by the rigid-plastic finite element method, Journal of Materials Processing Technologym, 2001(114): 201-206
    [98] A. Aydemir, J.H.P. de Vree, W.A.M. Brekelmans, An adaptive simulation approach designed for tube hydroforming processes, Journal of Materials Processing Technology, 2005 (159): 303-310
    [99] Fann K J, Hsiao P Y. Optimization of loading conditions for tube hydroforming, Journal of Materials Processing Technology, 2003,(140): 520-524
    [100] J.C. Gelin, C. Labergere, Application of optimal design and control strategies to the forming of thin walled metallic components, Journal of Materials Processing Technology, 2002 (125-126): 565-572
    [101] Suwat Jirathearanat, ChristoPH Hart, Taylan Altan, Hydroforming of Y-shapes product and process design using FEA simulation and experiments, Journal of Materials Processing Technology, 2004(146): 124-129
    [102] P. Ray, B.J. Mac Donald, Experimental study and finite element analysis of simple X- and T-branch tube hydroforming processes, International Journal of Mechanical Sciences, 2005 (47) 1498-1518
    [103] C.T. Kwan, C.Y. Lin, Y.S. Luo, Die shape design for T-shape tube hydroforming, Int J Adv Manuf Technol, 2004(23): 169-175
    [104] J. Tirosh, A. Neuberger, A. Shirizly, Tube Expansion with‘Unlimited’Strain, Advanced Technology of Plasticity, Fifth Annual ICTP, 1999, 527–530.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700