旱作农田土壤风蚀防治的保护性耕作技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,沙尘暴的频繁发生引起了全社会对土壤风蚀的广泛关注。土壤风蚀不仅是干旱、半干旱地区风沙流、沙漠化与沙尘暴灾害的重要因素,而且能够造成地表土壤颗粒在时空上的重新分布和分选,对我国农业生产活动乃至社会经济的可持续发展产生了深刻、深远的影响。在我国北方旱作农业区,由于生态环境脆弱,耕作技术简单粗放,尤其是在冬春季节,农田无植被覆盖、地表裸露、土壤干燥,再加之不合时宜的传统翻耕,造成了严重的农田土壤风蚀。所以,研究如何改变旱作农业区传统耕作技术,建立既能提高作物产量又能防治土壤风蚀的保护性耕作技术就成为促进农业持续发展和建设良好生态环境的重要途径。
    结合国家“十五”科技攻关项目“沙区农田、草地土壤风蚀防治技术研究”的开展,本研究的主要目的在于通过实验研究,以第一手资料定量对比旱作农业区不同保护性耕作措施在保蓄水分、促进作物生长以及防治土壤风蚀等各个方面的优劣,从而综合设计出符合我国旱作农业区生产实际的防治土壤风蚀的农田保护性耕作新技术。
    本实验以内蒙古太仆寺旗小河套村为研究区,在作物(油菜)发育期间布置了免耕、深松、传统翻耕、翻耕覆盖、浅耕、垄15cm(1:12)、垄25cm(1:6)、垄15cm(1:6)和垄25cm(1:24)等9种耕作措施的实验观测;在农田休闲期共布置了翻耕覆盖、传统翻耕、深松、浅耕、垄作处理、小麦高茬(45cm)、小麦低茬(10cm)、油菜高茬(45cm)、油菜低茬(10cm)、胡麻低茬(10cm)等13种耕作措施的实验观测。采用野外实地观测、风洞实验和室内数据分析等方法对以上各种耕作措施下的土壤水分、作物、近地面风况以及土壤风蚀状况等进行了系统观测。
    本研究在不同耕作措施土壤水分、作物、近地面风况以及土壤风蚀状况等方面的基本结论为:
    (1)不同耕作措施下的土壤水分状况在9种耕作措施中,油菜发育期间0~70cm深度土壤水分随时间的波动趋势基本一致;垄作处理0~70cm土壤水分含量较高,免耕、浅耕相对较低,翻耕覆盖、深松耕作、传统翻耕相对居中。
    秋收后,秸秆还田翻耕、深松耕作、传统翻耕、免耕低茬(茬高10cm)和免耕高茬(茬高45cm)等5种措施土壤水分随深度的波动趋势也基本一致;比较而言,免耕高茬措施0~30cm土壤水分含量较高,深松耕作和传统翻耕相对居中,秸秆还田翻耕和免耕低茬相对较低。
    (2)不同耕作措施对作物的影响
    在9种耕作措施中,翻耕覆盖措施下油菜高度、盖度最大,免耕措施下油菜高度、盖度最小,翻耕覆盖措施下油菜高度、盖度均值分别较免耕措施下高度、盖度均值的增幅为63.17%和220.00%;观测期内,9种耕作措施下单株鲜物质重量、单株干物质重量和1m2干物质重量均呈现出增大趋势,翻耕覆盖措施下单株鲜物质重量、单株干物质重量和1m2干物质重量增幅最大,免耕增幅最小;9种耕作措施中,翻耕覆盖措施的单株鲜物质重量、单株干物质重量、1m2干物质重量和分器官干物质重量最大,免耕最小;9种耕作措施中,翻耕覆盖措施不仅千粒重、茎杆重最大,而且理论产量、实际产量也最高,实际产量的增产幅度约为免耕小麦产量的23.33%。
Soil erosion by wind is an important factor causing aeolian sand drift, desertification and dustand sand storms in arid, semi-arid regions. It has aroused public attention as a problem ofendangering agriculture and the development of social and economy. Because soil grain on soilsurface can be redistributed by wind in time and spatial, agricultural activities and economy mustbe influenced, especially in dry farmland area. In winter and spring season, farmland is uncoveredwith vegetation, and soil is very dry. Additionally, extensive conventional cultivation results inserious soil erosion because of fragile eco-environment. Therefore, it is important to changetraditional tillage and establish new tillage technology in order to promote sustainable agriculturaldevelopment and improve the environment.
    On the basis of research on wind erosion and conservation tillage at home and abroadresearch report on conservation tillage's quantification can be provided for dry farmland areacomparing different tillage technology.
    Xiaohetao village in Taipusi County, Inner Mongolia,was selected as the study area. Duringthe period of crop growth, nine tillage modes were disposed in the field, including no-till, subsoiltillage, conventional tillage, plowing with stalk mulch, surface tillage, ridge tillage 15cm (1:12)ridge tillage 25cm (1:6), ridge tillage 15cm (1:6), and ridge tillage 25cm (1:24). In the period offallow farmland, thirteen tillage modes were disposed including plowing with stalk mulch,conventional tillage, subsoil tillage, surface tillage, ridge tillage, high stubble of wheat (height ofstubble is 45 cm), low stubble of wheat (height of stubble is 10 cm), high stubble of rape (heightof stubble is 45 cm), low stubble of rape (height of stubble is 10 cm), and low stubble of benne(height of stubble is 10 cm). Through field observation, wind tunnel test and data analysis, soilmoisture, crop growth, near surface wind velocity and soil erosion by wind were systematicallydiscussed in this paper. Some conclusions are drawn as follows.
    (1) Soil moisture
    During the growth period of rape, soil moisture from 0 to 70 cm depth of ridge tillage is thehighest in the nine tillage modes, that of no-till and surface tillage are the lowest, and that ofplowing with stalk mulch, subsoil tillage and conventional tillage was moderate.
    After harvesting of crop, comparing stalk returning farmland and plowing, subsoil tillage,conventional tillage, low stubble of wheat and high stubble of wheat, content of soil moisture ofhigh stubble of wheat is highest from 0 to 30 cm, those of subsoil tillage and conventional tillage
    are placed in the middle, and those of stalk returning farmland and plowing and low stubble ofwheat are lowest.(2) Crop growthOn the basis of field observation and data analysis, the height and coverage of rape ofplowing with stalk mulch is the largest of nine types tillage modes, those of no-till are the smallest.Furthermore, the weight of fresh matter and dry matter of individual plant and 1 square meterweight of dry matter of nine types tillage modes are all increasing with time, such are amplitude.Those of plowing with stalk mulch are the largest of all, and those of no-till are smallest.Moreover, yield of plowing with stalk mulch is also the highest, and that of no-tillage is thelowest.(3) Near surface wind velocityRoughness and friction velocity are increasing with the growth of rape in nine tillage modes.The mean roughness and friction velocity of plowing with stalk mulch is the largest, and those ofno-till are smallest.In fallow period, roughness and frictional velocity of ridge tillage 25cm (1:6) and highstubble of wheat (height of stubble is 45cm) are largest of thirteen tillage modes, its abilitypreventing soil erosion is the best;those of conventional tillage are the smallest, and its abilitypreventing soil erosion is the poorest.(4) Soil erosion by wind on farmlandAccording to the result of wind tunnel test, some conclusions are drawn for subsoil tillage,plowing, plowing and scrunching, stubble of wheat (height of stubble is 10cm), stubble ofbuckwheat (height of stubble is 10cm), stubble of benne (height of stubble is 10cm) andno-stubble. The difference of tillage modes resulted in different deflated matter in the 0-20 cmheight. The wind-eroded matter of plowing and scrunch is the largest, and that of the stubble ofbenne is the smallest. The order of wind-eroded matter for seven tillage modes is as follows:plowing and scrunching>no-stubble > stubble of buckwheat > subsoil tillage > plowing > stubbleof wheat > stubble benne. Furthermore, the difference of tillage modes also resulted in differentrelationships between rate of soil deflation (Rd) and wind velocity. Rd of plowing and scrunching isthe largest, and that of stubble of benne is the smallest. The order of Rd for seven tillage modes isas follows: plowing and scrunching > no-stubble > subsoil tillage > stubble of buckwheat >plowing > stubble of wheat > stubble benne. The result of wind tunnel test indicated that theeffects of preventing soil erosion by plowing and scrunching and no-stubble are the poorest, andthose of stubble of benne, stubble of wheat and plowing are the best, and those of subsoil tillageand stubble of buckwheat are placed in the middle.According to the research results, during the course of growth of crop, there are higher soilmoisture content, larger roughness of soil surface and better growth of crop for plowing with stalkmulch and conventional tillage. Furthermore, there is low cost for group one. Plowing with stalkmulch is better than conventional tillage in the growth of crop and preventing wind erosion. Afterharvest time, conventional tillage is the poorest of all the tillage modes for preventing winderosion. For group two, there is high soil moisture content, but the growth of crop and wind statusnear ground is placed in the middle. Ridge tillage not only needs a great deal of surface soil, butalso has high cost. Additionally, for group three, the cost is very low, but soil moisture contents arethe lowest for surface tillage, no-till and subsoil tillage. In period of fallow, high stubble is the bestfor promoting the content of soil moisture and preventing soil erosion by wind.
    In conclusion, in order to improve soil moisture content, prevent wind erosion and increaseyield of crop, plowing with stalk mulch should be selected in the growth period, and high stubbleshould be selected after the harvest time.In this paper some innovation are listed as follows: soil moisture, crop, near surface windvelocity and soil erosion by wind on farmland were systematically observed and summarized.Accordingly, a useful and feasible technology is put forward for conservation tillage in dryfarmland regions. This technology is benefit not only for increasing yield of crop, but also forpreventing wind erosion.
引文
1. Armbrust D V and Leon Lyles. Soil stabilizers to control wind erosion[J]. Soil conditioners, 1975, 77-82.
    2. Astatke Abiye, Jabbar Mohammad, Tanner Douglas. Participatory conservation tillage research: an experience with minimum tillage on an Ethiopian highland Vertisol[J]. Agriculture, Ecosystems and Environment, 2003, 95 (2-3): 401-415.
    3. Bagnold R A. A further journey through the Libyan Desert[J]. Geographical Journal, 1933, 82: 103-129.
    4. Bagnold R A. Measurement of very low velocities of water flow[J]. Nature, 1951, 167: 1025.
    5. Bagnold R A. Motion of waves in shallow water: interaction between waves and sand bottoms[J]. Proceeding of the Royal Society of London (Series A), 1946, 187: 1-18.
    6. Bagnold R A. Sand movement by waves: some small-scale experiments with sand of very low density[J]. Journal of the Institution of Civil Engineers, 1947, 27 (4): 447-469.
    7. Bagnold R A. Some problems of desert physics[J]. Bulletin de 1st in situ Fouad 1erdu desert, 1951, 1: 27-33.
    8. Bagnold R A. The measurement of sand storms[J]. Proceeding of the Royal Society of London (Series A), 1938, 167 (929): 282-291.
    9. Bagnold R A. The movement of a cohesionless granular bed by fluid flow over it[J]. British Journal of Applied Physics, 1951, 2: 29-34.
    10. Bagnold R A. The movement of desert sand[J]. Geographical Journal, 1935, 85: 342-369.
    11. Bagnold R A. The physics of blown sand and desert dunes[M]. London: Methuen, 1941.64-69.
    12. Bagnold R A. The size-grading of sand by wind[J]. Proceeding of the Royal Society of London (Series A), 1937, 163 (913): 250-264.
    13. Bagnold R A. The surface movement of blown sand in relation to meteorology[M]. Proceedings of the International Symposium on Desert Research C, Jerusalem: Research Council of Israel, 1952. 1-6.
    14. Bagnold R A. The transport of sand by wind[J]. Geographical Journal, 1937, 89: 409-438.
    15. Berkey C P., Morris F K. Geology of Mongolia[M]. New York: The American Museum of Natural History, 1927: 33-69.
    16. Bocharov A P. A description of devices used in the study of wind erosion of soil[M]. New Delhi: Oxbnian Press, Pvt, Ltd, 1984: 1-65.
    17. Catherine Bressolier, Thomas Y F. Studies on wind and plant interactions on French Atlantic coastal dunes[J]. Journal of Sedimentary Petrology, 1979, 47 (1): 331-338.
    18. Chepil W S, Milne R A. Comparative study of soil drifting in the field and in a wind tunnel[J]. Sci. Agr., 1939, 19: 249-257.
    19. Chepil W S, Woodruff N P. The physics of wind erosion and its control[M]. New York: Academic Press Inc, 1963: 211-302.
    20. Chepil W S. Dynamics of wind erosion: I. Nature of movement of soil by wind[J]. Soil Sci., 1945, 60: 305-320.
    21. Chepil W S. Dynamics of wind erosion: II. Initiation of soil movement[J]. Soil Sci., 1945, 60: 397-411.
    22. Chepil W S. Dynamics of wind erosion: III. The transport capacity of the wind[J]. Soil Sci., 1945, 60: 475-480.
    23. Chepil W S. Factors that influence clod structure and erodibility of soil by wind: I. Soil structure[J]. Soil Sci., 1952, 75: 473-483.
    24. Chepil W S. Factors that influence clod structure and erodibility of soil by wind: II. Water-stable structure[J]. Soil Sci., 1953, 76: 389-399.
    25. Chepil W S. Factors that influence clod structure and erodibility of soil by wind: III. Calcium carbonate and decomposed organic material[J]. Soil Sci., 1954, 77: 473-480.
    26. Chepil W S. Factors that influence clod structure and erodibility of soil by wind: IV. Sand, silt and clay[J]. Soil Sci., 1955, 80: 155-162.
    27. Chepil W S. Influence of moisture on erodibility of soil by wind[J]. Soil Sci. Soc. Amer. Proc. 1956, 20: 288-292.
    28. Chepil W S. Properties of soil which influence wind erosion: I. The governing principle of surface roughness[J]. Soil Sci., 1950, 69: 149-162.
    29. Chepil W S. Properties of soil which influence wind erosion: II. Dry aggregate structure as an index of erodibility[J]. Soil Sci., 1950, 69: 403-414.
    30. Chepil W S. Properties of soil which influence wind erosion: III. The effect of apparent density and erodibility[J]. Soil Sci., 1951, 71: 141-153.
    31. Chepil W S. Relation of wind erosion to water-stable and dry clod structure of soil[J]. Soil Sci., 1942, 55: 275-287.
    32. Chepil W S. Soil conditions that influence wind erosion[J]. USDA Tech. Bull., 1958, (1158): 1-38.
    33. Dabrowska-Zielinska K, Gruszczynska M, Kowalik W, Stankiewicz K. Application of multisensor data for evaluation of soil moisture[J]. Advances in Space Research, 2002, 29 (1): 45-50.
    34. Del Frate F, Ferrazzoli P, Schiavon G. Retrieving soil moisture and agricultural variables by microwave radiometry using neural networks[J]. Remote Sensing of Environment, 2003, 84 (2): 174-183.
    35. Ding D S, Bao H S, Ma Y Y. Process in the study of desertification in China[J]. Progress in Physical Geography, 1998, 22 (4): 521-527.
    36. Dong Z B., Wang X M., Liu L Y. Wind erosion in arid and semiarid China: an overview[J]. Journal of Soil and Water Conservation, 2000, 55 (4): 439-444.
    37. Earl R. Prediction of trafficability and workability from soil moisture deficit[J]. Soil & Tillage Research, 1997, 40 (3-4): 155-168.
    38. Foster G R. Advances in wind and water erosion prediction[J]. Journal of Soil and Water Conservation, 1991, 46 (2): 27-29.
    39. Fowler Richard, Rockstrom Johan. Conservation tillage for sustainable agriculture: An agrarian revolution gathers momentum in Africa[J]. Soil and Tillage Research, 2001, 61 (1-2): 93-108.
    40. Free E E. The movement of soil material by the wind[J]. U. S. D. A. Bur. Soils Bull. 68, 1911. 45-78.
    41. Fryberger S G. Dune forms and wind regime[C]. In: Mekee E D (ed.). A Study of Global Sand Seas. US Geol. Surv. Prof. Paper, 1979: 137-140.
    42. Fryrear D W. Modeling wind erosion[A]. Sivakumar, M V K, Zobisch, M A. and Koala, S. et al. Wind erosion in Africa and west Asia: Problems and control strategies[C]. International Center for Agricultural Research in Dry Area, 1998: 143-153.
    43. Fryrear D W, Saleh A, Bilbro J D, et al. Field tested wind erosion model[A]. Buerkert, B . Allision, B E . and von Oppen M. Proceeding of International Symposium “Wind Erosion in West Africa: The problem and its Control”[C]. Germany : Margraft Verlag, Weikersheim, 1994: 343-355.
    44. Gicheru Patrick, Gachene Charles, Mbuvi Joseph, Mare Edward. Effects of soil management practices and tillage systems on surface soil water conservation and crust formation on a sandy loam in semi-arid Kenya[J]. Soil & Tillage Research, 2004, 75 (2): 173-184.
    45. Gregory J M., Borrelli J., Fedler C B. TEAM: Texas erosion analysis model[A]. Proceeding of 1998 Wind Erosion Conference[C]. Texas: Texas Tech. University, Lubbock, 1998: 88-103.
    46. Hagen L J. A wind erosion prediction system to meet the users need[J]. Journal of Soil and Water Conservation, 1991, 46 (2): 107-111.
    47. Hammond Ronald B. Long-term conservation tillage studies: impact of no-till on seedcorn maggot (Diptera: Anthomyiidae) [J]. Crop Protection, 1997, 16 (3): 221-225.
    48. Hedin S A. Central Asia and Tibet: towards the holy city of Lassatwo volumes[A]. Cook, Warren and Goudie. Desert Geomorphlogy[C]. London: UCL Press, 1993: 53-89.
    49. Hummel J W, Sudduth K.A, Hollinger S E. Soil moisture and organic matter prediction of surface and subsurface soils using an NIR soil sensor[J]. Computers and Electronics in Agriculture. 2001, 32 (2): 149-165.
    50. Jackson T J, Schmugge T J. Surface soil moisture measurement with microwave radiometry[J]. Acta Astronautica, 1995, 35 (7): 477-482.
    51. Kottler Bennett D, White Jason C, Kelsey Jason W. Influence of soil moisture on the sequestration of organic compounds in soil[J]. Chemosphere, 2001, 42 (8): 893-898.
    52. Leon Lyles and Woodruff N P. How moisture and tillage affect soil cloddiness for wind erosion control[J]. Agricultural engineering, 1962, 43 (3): 150-153, 159.
    53. Liu L Y, Wang J H, Li X Y, et al.. Determination of erodible particles on cultivated soils by wind tunnel simulation[J]. Chinese Science Bulletin, 1998, 43 (19): 1647-1650.
    54. Lobb David A, Gary Kachanoski R, Miller Murray H. Tillage translocation and tillage erosion in the complex upland landscapes of southwestern Ontario, Canada[J]. Soil & Tillage Research, 1999, 51 (3-4): 189-209.
    55. Lobb David A, Gary Kachanoski R. Modelling tillage erosion in the topographically complex landscapes of southwestern Ontario, Canada[J]. Soil & Tillage Research, 1999, 51 (3-4): 261-277.
    56. Magagi R D, Kerr Y H. Estimating surface soil moisture and soil roughness over semiarid areas from the use of the copolarization ratio[J]. Remote Sensing of Environment, 2001, 75 (3): 432-445.
    57. Mahmood Rezaul, Hubbard Kenneth G. Simulating sensitivity of soil moisture and evapotranspiration under heterogeneous soils and land uses[J]. Journal of Hydrology, 2003, 280 (1-4): 72-90.
    58. Schreiner H D, Gourley C S. Description of moisture content in soil profiling[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 1996, 33 (2): 69A.
    59. Shao Y P, Raupach M R, Leys J F. A model for predicting Aeolian sand drift and dust entrainment on scales from paddock to region[J]. Australian Journal of Soil Research, 1996, 34: 309-402.
    60. Skidmore E L. Wind erosion climate erosivity[J]. Climate Change, 1986, 9 (1-2): 195-208.
    61. Skidmore E L, Fisher P S. and Woodruff N P. Wind erosion equation: Computer solution and application[J]. Soil Sci. Soc. Amer. Proc, 1970, 34: 931-935.
    62. Stephen A W, William G N. The protective role of sparse vegetation in wind erosion[J]. Progress in Physical Geography, 1993, 17 (1): 50-68.
    63. Thapa B B, Cassel D K, Garrity D P. Ridge tillage and contour natural grass barrier strips reduce tillage erosion[J]. Soil & Tillage Research, 1999, 51 (3-4): 341-356.
    64. Uri N D, Atwood J D, Sanabria J. The environmental benefits and costs of conservation tillage[J]. The Science of the Total Environment, 1998, 216 (1-2): 13-32.
    65. Uri N D, Konyar K. Conservation tillage and the use of energy and other inputs in US agriculture[J]. Fuel and Energy Abstracts, 1996, 37 (5): 393.
    66. Uri N D. The role of public policy in the use of conservation tillage in the USA[J]. The Science of the Total Environment, 1998, 216 (1-2): 89-102.
    67. Uri Noel D, Atwood, Jay D, Sanabria Joaquim. An evaluation of the environmental costs and benefits of conservation tillage [J]. Environmental Impact Assessment Review, 1998, 18 (6): 521-550.
    68. Uri Noel D. Energy and the use of conservation tillage in US agriculture[J]. Energy Policy, 1999, 27 (5): 299-306.
    69. Van den ven T A M, Fryrear D W, Spaan W S. Vegetation characteristics and soil loss by wind[J]. Journal of Soil and Water Conservation, 1989, 44 (4): 347-349.
    70. Van Mill Michael. Conservation tillage tool[J], Journal of Cleaner Production. 1997, 5 (3): 233
    71. Wagner Wolfgang, Lemoine Guido, Rott Helmut. A Method for Estimating Soil Moisture from ERS Scatterometer and Soil Data[J]. Remote Sensing of Environment, 1999, 70 (2): 191-207.
    72. Wasson R J, Nanninga P M. Estimating wind transport of sand on vegetated surfaces[J]. Earth Surface Processes and Landforms, 1986, 11: 505-514.
    73. Woodruff N P, Siddoway F H. A wind erosion equation[J]. Soil Sci. Soc. Amer. Proc, 1965, 39: 602-608.
    74. Zingg AW. Wind tunnel studies of the movement of sedimentary material[C]. 5th Hydraulic Conference, Proceedings, Iowa Institute of Hydraulic, 1953:111-135.
    75. Zobeck T M. Soil Properties Affecting Wind Erosion[J]. Journal of Soil and Water Conservation, 1991, 46 (2): 112-118.
    76. 安格尔 P W. 水土保持耕作制 (世界粮农组织土壤公报 54) [M]. 北京: 中国农业科技出版社, 1989.
    77. 奥布鲁切夫 B A. 乐 铸、刘东升等译. 中亚细亚的风化和吹扬作用[M]. 北京: 科学出版社, 1958: 1-36.
    78. 陈广庭. 北京平原土壤机械组成和抗风蚀能力的分析[J]. 干旱区资源与环境, 1991, 5 (1): 103-113.
    79. 陈君达, 李洪文. 旱地玉米保护性耕作机具与作业工艺的组合研究[J]. 农业工程学报, 1998, 14 (3): 129-134.
    80. 陈渭南, 董光荣, 董治宝. 中国北方土壤风蚀问题研究的进展与趋势[J]. 地球科学进展, 1994, 9 (5): 6-12.
    81. 程维新, 胡朝炳, 张学权. 农田蒸发与作物耗水量研究[M]. 北京: 气象出版社, 1994: 11-41.
    82. 崔灵周, 丁文峰, 李占斌. 紫色丘陵区农用地土壤水分动态变化规律研究[J]. 土壤与环境, 2000, 9 (3): 207-209.
    83. 崔引安译. 免耕法译丛[M]. 北京: 农业出版社, 1980. 1-76.
    84. 董光荣, 高尚玉, 金炯. 青海共和盆地土地沙漠化与防治途径[M]. 北京: 科学出版社, 1993.
    85. 董光荣, 李长治, 金 炯等. 关于土壤风蚀风洞实验的某些结果[J]. 科学通报, 1987, 32 (4): 277-301.
    86. 董光荣, 吴波, 慈龙俊等. 我国荒漠化现状、成因与防治措施[J].中国沙漠, 1999, 19 (4): 318-332.
    87. 董玉祥, 康国定. 中国干旱半干旱地区风蚀气候侵蚀力的计算与分析[J]. 水土保持学报, 1994, 8 (3)1-7.
    88. 董治宝, 陈广庭. 蒙古后山地区土壤风蚀问题初论[J]. 土壤侵蚀与水土保持学报, 1997, 3 (2): 84-90.
    89. 董治宝, 陈渭南, 李振山等. 风沙土开垦中的风蚀研究[J]. 土壤学报, 1997, 34 (1): 74-80.
    90. 董治宝, 陈渭南, 李振山等. 风沙土水分抗风蚀性研究[J]. 水土保持通报, 1996, 16 (2): 17-23.
    91. 董治宝, 陈渭南, 李振山等. 植被对土壤风蚀影响作用的实验研究[J]. 土壤侵蚀与水土保持学报, 1996, 2 (2): 1-8.
    92. 董治宝, 高尚玉, Fryrear D W. 直立植物—砾石覆盖组合措施的防风蚀作用[J]. 水土保持学报, 2000, 14 (1): 7-11、17.
    93. 董治宝, 高尚玉, 董光荣. 土壤风蚀预报研究述评[J]. 中国沙漠, 1999, 19 (4): 312-317.
    94. 董治宝, 李振山. 风成沙粒度特征对其风蚀可蚀性的影响[J]. 土壤侵蚀与水土保持学报, 1998, 4 (4): 1-12.
    95. 董治宝, 屈建军, 刘小兵等. 戈壁表面阻力系数的实验研究[J]. 中国科学, 2001, 31 (11): 953-958.
    96. 董治宝. 建立小流域风蚀量统计模型初探[J]. 水土保持通报, 1998, 18 (5): 55-62.
    97. 杜兵, 邓健. 冬小麦保护性耕作法与传统耕作法的田间对比试验[J]. 中国农业大学学报, 2000, 5 (2): 55-58.
    98. 杜兵, 李问盈等. 保护性耕作表土作业的田间试验研究[J]. 中国农业大学学报, 2000, 5 (4): 65-67.
    99. 杜兵, 张进. 小麦地保护性耕作措施和压实对水分保护的影响[J]. 中国农业大学学报, 1997, 2 (6): 43-48.
    100. 方日尧. 同延安. 赵二龙. 梁东丽. 渭北旱原不同保护性耕作方式水肥增产效应研究[J]. 干旱地区农业研究, 2003, 21 (1): 54-57.
    101. 冯起, 徐中民. 中国旱地的特点和旱地农业研究进展[J]. 世界科技研究与发展, 1999, (2): 54-59.
    102. 高德诚. 我国北方旱区农业开发对策[J]. 干旱地区农业研究, 1985, (3): 56-59.
    103. 高焕文, 李洪文, 陈君达. 可持续机械化旱作农业研究[J]. 干旱地区农业研究, 1999, 17 (6): 57-62.
    104. 高焕文, 李问盈, 李洪文. 中国特色保护性耕作技术[J]. 农业工程学报, 2003, 19 (3): 1-4.
    105. 高云超, 蔡作新, 朱文珊等. 秸秆覆盖免耕对土壤氮素转化细菌区系的影响[J]. 生态科学, 2003, 22 (2): 150-152.
    106. 高云超, 朱文珊. 秸秆覆盖免耕对土壤细菌群落区系的影响[J]. 生态科学, 2000, 19 (3): 27-32.
    107. 高云超, 朱文珊等. 秸秆覆盖免耕土壤细菌和真菌生物量与活性的研究[J]. 生态学杂志, 2001, 20 (2): 30-36.
    108. 高云超, 朱文珊等. 秸秆覆盖免耕土壤真菌群落结构与生态特征研究[J]. 生态学报, 2001, 21 (10): 1704-1710.
    109. 龚学臣, 杨立廷, 牛瑞明. 冀西北风沙半干旱农田土壤水分动态分析[J]. 土壤侵蚀与水土保持学报, 1998, 4 (2): 88-91.
    110. 郭建辉, 梅成建, 翟通毅等. 美国农业保护性耕作考察报告[J]. 山西农机, 1998, (4, 5): 38.
    111. 国家气象局. 农业气象观测规范[M]. 北京: 气象出版社, 1993: 1-212.
    112. 哈斯. 河北坝上高原土壤风蚀物垂直分布初步研究[J]. 中国沙漠, 1997, 17 (1): 9-13.
    113. 哈斯, 陈渭南. 耕作方式对土壤风蚀的影响[J]. 土壤侵蚀与水土保持学报, 1996, 2 (1): 10-16
    114. 哈斯. 坝上高原土壤不可蚀性颗粒与耕作方式对风蚀的影响[J]. 中国沙漠, 1994, 14 (4): 92-97.
    115. 贺大良, 邹本功, 李长治等. 地表风蚀过程风洞实验的初步研究[J]. 中国沙漠, 1986, 6 (1): 25-31.
    116. 黄福祥, 牛海山, 王明星等. 毛乌素沙地植被覆盖率与风蚀输沙率定量关系[J]. 地理学报, 2001, 56 (6): 700-710.
    117. 贾延明, 尚长青, 张振国. 保护性耕作适应性试验及关键技术研究[J]. 农业工程学, 2002, 18 (1): 78-82.
    118. 蒋金琳, 龚丽农. 免耕播种机单体工作性能试验研究[J]. 农业工程学报, 2000, 16 (5): 64-66.
    119. 晋凡生, 张宝林. 旱塬地玉米农田免耕覆盖的土壤环境效应[J]. 水土保持研究, 2000, 7 (4): 60-64.
    120. 晋凡生, 张宝林. 免耕覆盖玉米秸秆对旱塬地土壤环境的影响[J]. 生态农业研究, 2000, 8 (3): 47-50.
    121. 李德成, B.Velde 等. 免耕制度下耕作土壤结构演化的数字图像分析[J]. 土壤学报, 2002, 39 (2): 214-220.
    122. 李峰瑞. 干旱农业牛态系统研究[M]. 西安: 陕西科学技术出版社, 1998: 133-134.
    123. 李洪文, 陈君达. 保护性耕作条件下深松技术研究[J]. 农业机械学报, 2000, 31 (6): 42-45.
    124. 李洪文, 陈君达. 旱地农业三种耕作措施的对比研究[J]. 干旱地区农业研究, 1997, 15 (1): 7-11.
    125. 李洪文, 高焕文. 旱地玉米保护性耕作经济效益分析[J]. 干旱地区农业研究, 2000, 18 (3): 44-49.
    126. 李洪文, 李汝莘. 固定道保护性耕作的试验研究[J]. 农业工程学报, 2000, 16 (4): 73-77.
    127. 李洪文, 赵卫东等. 旱地玉米机械化保护性耕作技术及机具研究[J]. 中国农业大学学报, 2000, 5 (4): 68-72
    128. 李齐霞, 栗建枝, 李中青等. 北方旱作农业可持续发展应采取的措施[J]. 甘肃农业科技, 2004, (1): 16-18.
    129. 李汝莘, 林成厚, 高焕文等. 小四轮拖拉机土壤压实的研究[J]. 农业机械学报, 2002, 33 (1): 126-129.
    130. 李小雁, 李福兴, 刘连友. 土壤风蚀中有关土壤性质因子的研究历史与动向[J]. 中国沙漠, 1998, 18 (1): 91-95.
    131. 李新举, 张志国. 免耕的土壤适应性[J]. 土壤通报, 2001, 32 (1): 41-43.
    132. 李新举, 赵美兰. 免耕对土壤养分的影响[J]. 土壤通报, 2000, 31 (6): 267-269.
    133. 李振山, 陈广庭. 粗糙度研究的现状及展望[J]. 中国沙漠, 1997, 17 (1): 99-102.
    134. 廖庆喜, 高焕文, 舒彩霞. 免耕播种机锯切防堵装置设计及其切割机理的研究[J]. 农业工程学报, 2003, 19 (5): 64-70.
    135. 廖庆喜, 王世学, 高焕文. 免耕播种机新型锯齿防堵装置防堵机理的研究[J]. 中国农业大学学报, 2003, 8 (4): 14-19.
    136. 廖允成, 韩思明, 温晓霞. 黄土台原旱地小麦机械化保护性耕作栽培体系的水分及产量效应[J]. 农业工程学报, 2002, 18 (4): 68-71.
    137. 凌裕泉, 吴 正. 风沙实验的动态摄影实验[J]. 地理学报, 1980, 35 (2): 174-181.
    138. 刘连友, 刘玉璋, 李小雁等. 砾石覆盖对土壤吹蚀的抑制效应[J]. 中国沙漠, 1999, 19 (1): 60-63.
    139. 刘连友. 风蚀地貌动力过程的实验研究[M]. 兰州: 兰州大学, 1999. 1-86.
    140. 刘世平, 庄恒扬, 陆建飞等. 免耕法对土壤结构影响的研究[J]. 土壤学报, 1998, 35 (1): 33-37
    141. 刘苏峡, 刘昌明. 90 年代水文学研究的进展和趋势[J]. 水科学进展, 1997, 8 (4): 365-369.
    142. 刘贤万. 实验风沙物理与风沙工程学[J]. 北京: 科学出版社, 1995. 5-98.
    143. 刘小平, 董治宝. 砾石床面的空气动力学粗糙度[J]. 中国沙漠, 2003, 23 (1): 38-46.
    144. 刘小平, 董治宝. 湿沙的风蚀起动风速实验研究[J]. 水土保持通报, 2002, 22 (2): 1-4.
    145. 刘彦随, Jay Gao. 陕北长城沿线地区土地退化态势分析[J]. 地理学报, 2002, 57 (4): 443-450.
    146. 刘彦随, 吴传钧. 农业持续发展研究进展及其理论[J]. 经济地理, 2000, 20 (1): 63-67.
    147. 刘玉璋, 董光荣, 李长治. 影响土壤风蚀主要因素的风洞实验研究[J]. 中国沙漠, 1992, 12 (4): 41-49.
    148. 卢辉. 稻草覆盖还田免耕抛秧技术的调查[J]. 土壤肥料, 2003 (4): 40-41.
    149. 吕军杰, 姚宇卿, 王育红等. 不同耕作方式对坡耕地土壤水分的影响[J]. 中国农业气象, 2002, 23 (3): 39-41.
    150. 罗永藩. 我国少耕与免耕技术推广应用情况与发展前景[J]. 耕作与栽培, 1991, (2): 1-7.
    151. 马大敏, 孙海国. 干旱,半干旱一年两熟地区机械化保护性耕作技术及配套机具研究[J]. 华北农学报, 1998, 13 (3): 58-61.
    152. 马世威. 风沙流结构的研究[J]. 中国沙漠, 1988, 8 (2): 8-22.
    153. 马玉堂. 呼伦贝尔草原土壤风蚀研究[J]. 中国草原, 1981, 2 (3): 67-74.
    154. 内蒙古自治区地方志编委会. 太仆寺旗志[M]. 内蒙古: 内蒙古文化出版社, 2000. 43-234.
    155. 倪晋仁, 李振山. 风洞中挟沙气流水平集沙实验研究[J]. 泥沙研究, 2001, (4): 19-23.
    156. 彭珂珊. 国内外农业可持续发展研究进展评述[J]. 北方经济 (内蒙), 2001, (12): 39-42.
    157. 齐矗华, 甘枝茂. 黄土高原侵蚀地貌与水土流失关系研究[M]. 西安: 陕西教育出版社, 1991: 12-89.
    158. 史培军. 中国土壤风蚀研究的现状与展望[R]. 第十二届国际水土保持大会邀请学术报告, 2002.1-15.
    159. 斯文赫定. 王安洪、崔延虎译. 罗布泊探秘[M]. 乌鲁木齐: 新疆人民出版社, 1997. 1-32.
    160. 宋卫堂, 刘亚佳. 夏玉米免耕覆盖移栽的试验研究[J]. 农业工程学报, 2000, 16 (3): 57-59.
    161. 苏永中, 赵哈林. 农田沙漠化过程中土壤有机碳和氮的衰减及其机理研究[J]. 中国农业科学, 2003, 36 (8): 928-934.
    162. 孙海国, Larn.,FJ. 保护性耕作和植物残体对土壤养分状况的影响[J]. 生态农业研究, 1997, 5 (1): 47-51.
    163. 孙启铭, 金祺祥等. 红壤土区麦茬地免耕种玉米的效应研究[J]. 土壤肥料, 2002 (5): 15-17
    164. 汤永禄, 黄钢. 免耕露播稻草覆盖栽培小麦的生物学效应分析[J]. 西南农业学报, 2003, 16 (2): 37-41.
    165. 王 涛, 赵哈林, 肖洪浪. 中国沙漠化研究的进展[J]. 中国沙漠, 1999, 19 (4): 299-311.
    166. 王世学, 高焕文, 李洪文. 冷寒风沙区保护性耕作种植试验[J]. 农业工程学报, 2003, 19 (3): 120-123.
    167. 王维敏. 中国北方旱地农业技术[M]. 北京: 中国农业出版社, 1994: 1-22.
    168. 王维新, 坎杂等. 2BCM—6 型茬在免耕播种机的研制[J]. 农业工程学报, 2001, 17 (3): 174-176.
    169. 王渭玲, 徐福利, 李学俊等. 渭北旱塬不同覆盖措施的土壤水分分布特征[J]. 西北农业学报, 2001, 10 (3): 56-58.
    170. 王晓燕, 高焕文, 李洪文. 旱地保护性耕作地表径流和土壤水分平衡模型[J]. 干旱地区农业研究, 2003, 21 (3): 97-103.
    171. 王晓燕, 高焕文, 杜 兵等. 用人工模拟降雨研究保护性耕作下的地表径流与水分入渗[J]. 水土保持通报, 2000, 20 (3): 23-25、62.
    172. 王晓燕, 高焕文, 杜兵等. 保护性耕作的不同因素对降雨入渗的影响[J] 中国农业大学学报, 2001, 6 (6): 42-47.
    173. 王晓燕, 高焕文, 李洪文等. 保护性耕作对农田径流与土壤水蚀影响的实验研究[J]. 农业工程学报, 2000, 16 (3): 66-69.
    174. 王秀, 赵四申. 夏玉米免耕播种不同机械施肥方式的生态及经济效益分析[J]. 河北农业大学学报, 2000, 23 (1): 85-87.
    175. 王兆华, 李立科等. 西部旱作农业的有效新技术——留茬少耕或免耕秸秆全程覆盖[J]. 生态学杂志, 2001, 20 (3): 71-73.
    176. 王志强, 刘宝元, 海春兴等. 晋西北黄土丘陵区不同植被类型土壤水分分析[J]. 干旱区资源与环境, 2002, 16 (4): 53-58.
    177. 王作华, 郑会君. 保护性耕作农田地温及土壤含水率测试分析[J]. 农村牧区机械化, 2003, (4): 7.
    178. 吴 正. 风沙地貌学[M]. 北京: 科学出版社, 198: 25-90.
    179. 夏训诚. 罗布泊科学考察与研究[M]. 北京: 科学出版社, 1987: 7-45.
    180. 肖继梅. 绿肥聚垄免耕对土壤耕层养分及玉米生育期性状的影响[J]. 土壤肥料, 2000 (6): 39-41.
    181. 信乃诠, 王立祥.中国北方旱区农业[M]. 江苏: 江苏科学技术出版社, 1998.1-22.
    182. 徐 斌, 刘新民, 赵学勇. 内蒙古奈曼旗中部农田土壤风蚀及其防治[J]. 水土保持通报, 1993, 7 (2): 75-78
    183. 徐凤来, 刘云英. 丘坡地 3 熟 4 作少免耕经济生态效益分析[J]. 耕作与栽培, 2000 (6): 18-20.
    184. 徐阳春, 储国良. 水旱轮作下长期免耕和施用有机肥对土壤某些肥力性状的影响[J]. 应用生态学报, 2000, 11 (4): 549-552.
    185. 雅库布夫Τ?Φ?. 土壤风蚀及其防治[J]. 北京: 中国农业出版社, 1955. 15-26.
    186. 严平. 137Cs 法测定青藏高原土壤风蚀的初步研究[J]. 科学通报, 2000, 45 (2): 199-204.
    187. 杨成义, 李洪文. 原茬免耕深松起垄机的改装及应用效果[J]. 现代化农业, 2000 (12): 29-30.
    188. 杨兴国, 柯晓新, 张旭东等. 甘肃河东雨养农业区土壤水分变化规律的研究[J]. 应用气象学报, 2000, 11 (2): 205-212.
    189. 殷士学, 宋明芝, 封 克. 免耕法对土壤微生物和生物活性的影响[J]. 土壤学报, 1992, 29 (4): 370-376
    190. 臧英, 高焕文等. 保护性耕作对农田土壤风蚀影响的试验研究[J]. 农业工程学报, 2003, 19 (2): 56-60.
    191. 张德二. 我国历史时期以来降尘的天气气候学初步分析[J]. 中国科学, 1984, 24 (3): 278-288.
    192. 张海林, 秦耀东, 朱文珊. 覆盖免耕土壤棵间蒸发的研究[J]. 土壤通报, 2003, 34 (4): 259-261.
    193. 张海林, 秦耀东. 覆盖免耕夏玉米耗水特性的研究[J]. 农业工程学报, 2002, 18 (2): 36-40.
    194. 张磊, 肖剑英等. 长期免耕水稻田土壤的生物特征研究[J]. 水土保持学报, 2002,16 (2): 111-114.
    195. 张仁陟, 李晓刚, 胡华等. 甘肃黄土地区农田土壤水分变异规律研究[J]. 土壤侵蚀与水土保持学报, 1998, 4 (4): 53-59.
    196. 张胜邦, 董旭, 刘玉璋等. 柴达木盆地东南部土壤风蚀研究[J]. 中国沙漠, 1999, 19 (3): 293-295.
    197. 张水江, 王耀发. 旱地冬小麦保护性耕作中的种肥分施[J]. 中国农业大学学报, 1997, 2 (6): 53-56.
    198. 张义丰, 刘录祥等. 中国北方旱地农业研究进展与思考[J]. 地理研究, 2002, 21 (3): 305-312.
    199. 张源沛, 张益民, 周会成. 半干旱地区春小麦不同种植方式下土壤水分变化规律研究[J]. 水土保持学 报, 2002, 16 (5): 115-116.
    200. 张志国, 徐 琪. 长期秸杆覆盖免耕对土壤某些理化性质及玉米产量的影响[J]. 土壤学报, 1998, 35 (3): 384-391.
    201. 张志田, 高绪科, 蔡典雄等. 旱地麦田保护性耕作对土壤水分状况影响研究[J]. 土壤通报, 1995, 26 (5): 200-203.
    202. 赵存玉. 鲁西北风沙化土地农田风蚀机制、防治措施[J]. 中国沙漠, 1992, 12 (3): 46-50.
    203. 赵羽, 金争平, 史培军等. 内蒙古土壤侵蚀[M]. 北京: 科学出版社, 1988: 28-57.
    204. 中国荒漠化 (土地退化)防治研究课题组. 中国荒漠化 (土地退化)防治研究[M]. 北京: 中国环境科学出版社, 1998: 1-5.
    205. 周洁红. 生物进化理论与农业可持续发展实践[J]. 农业现代化研究, 1999, 20 (1): 17-20.
    206. 周兴祥, 高焕文等. 华北平原一年两熟保护性耕作体系试验研究[J]. 农业工程学报, 2001,17 (6): 81-84.
    207. 朱震达, 陈广庭. 中国土地沙质荒漠化[M]. 北京: 科学出版社, 1992: 102-104.
    208. 朱震达, 陈治平, 吴正等. 塔克拉玛干风沙地貌研究[M]. 北京: 科学出版社, 1981: 96-106.
    209. 朱震达, 刘 恕, 邸醒民. 中国的沙漠化及其治理[M]. 北京: 科学出版社, 1989: 1-69.
    210. 朱震达, 刘 恕. 中国北方地区的沙漠化过程及其治理区划[M]. 北京: 中国林业出版社, 1981: 1-83.
    211. 朱震达, 吴正, 刘 恕等. 中国沙漠概论[M]. 北京: 科学出版社, 1978: 1-87.
    212. 朱自玺. 农田土壤水分变化规律.作物水分胁迫与干旱研究[M]. 郑州: 河南科学技术出版社, 1991: 135-154.
    213. 赵焕臣, 许树柏, 和金生. 层次分析法[M]. 北京: 科学出版社, 1986: 1-116.
    214. 邹学勇、朱久江, 董光荣等. 风沙流结构中起跃沙粒垂直初速度分布函数[J]. 科学通报, 1992, 37 (23): 2175-2177.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700