桥梁风工程若干气象问题的研究及工程化试验
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对现代大桥发展实际及国内桥梁设计风参数确定及施工气象安全保障的需求,在分析国内外相关现状及存在问题的基础上,开展桥梁设计风参数计算方法和施工气象安全保障技术的研究,并依托苏通大桥和青岛海湾大桥建设项目,进行工程化试验。主要成果和结论:
     基于统计学、天气气候学和流体力学物理量分布连续性原理,构建了适合我国实际的设计风速计算方案,并通过工程化试验,为依托工程提供设计风速地同时,解决了桥位风速资料缺乏无法计算重现期风速及直接采用规范值不能反映桥位特征的问题。
     结合气象统计学原理及桥梁建设实际,引入广义极值分布模型,给出一定保证率下实际风速不会超越的极值风速算法,将工程□外包线”的主观确定客观化,解决了现行规范使用单一极值分布模型造成的可能不适应及验证风速分布归属某一分布的困难,降低了风参数确定主观化和拘泥于现行规范带来的工程风险。
     开展了较长时间的水面、水岸与气象站同步观测试验和风攻角等湍流特性的观测研究,揭示出一些不同于以往风工程理论的观测事实,这些工作对桥梁抗风设计风参数的确定起到积极作用,也为相关标准、规范制修订提供了基础数据。
     运用WRF中尺度模式进行了宽阔水面大风的数值模拟和敏感性试验,评估了模式对水面极值风速的模拟能力及模式参数化方案对模拟效果影响的敏感性。
     开发GPRS与Internet相结合的远程数据传输技术,建立江面大风等预报模式,编制集信息采集、传输、应用于一体的系统软件,构建了工程区气象安全保障系统,并通过工程化试验,证明了其可行性和有效性。
     通过理论研究、实地观测试验、数值模拟和研究成果工程化试验,证明了:①直接采用气象站资料或规范的计算结果表征桥位风参数会造成较大的误差;②研究提出的设计风参数计算方法能够一定程度上克服现行方法的不足;③特殊地理条件下,桥位风攻角、湍流功率谱等湍流特性值及水面与水岸、气象站风速差异与规范推荐值存在不同程度差异,实地观测试验有助于修正标准、规范值;④水陆分布是造成桥位与气象站风速差异的主因,WRF模式对桥位风速具有一定模拟能力,但目前尚不具备工程化的能力;⑤建构桥位气象安全保障系统可有效提高工程区预报正确率,满足施工对气象安全信息的需要。
For the purpose of development of modern large bridges and the demand for establishing bridge design wind parameters and the requirements for meteorological safety controlling in bridge construction, methods to calculate wind parameters in bridge designing and techniques to ensure meteorological safety were studied and were tested in the projects of Sutong Highway Bridge and Qingdao-bay Bridge, based on analysis of the current development and problems worldwide. The main conclusions drawn from this study are as follows:
     Suitable approaches to calculate wind speed in bridge designing were developed and tested in bridge constructions based on statistics, synoptic meteorology and climatology, and the principle of continuity of mass distribution in hydrodynamics. While providing the bridge designers with wind parameters, this study also solved the problems that wind velocities can not be calculated at bridge locations because of lack of wind velocity data, and that the values obtained from handbooks cannot reflect the characteristics at bridge locations.
     Considering both the theories of meteorological statistics and the realities in bridge construction, a generalized model of the distribution of extreme values was introduced. The model provides a method to calculate extreme wind speeds under the condition that the real wind velocity will not be exceeded. The subjective determination of the (?)nvelope line? in construction was objectivized. The problems about the probable maladjustment resulted from present criterions using single-extreme distribution model and difficulties to verify the attribution of the distributions of wind speed to a certain distribution function were solved. The engineering risk resulted from subjective determination and sticking on present handbook of wind parameters was reduced.
     A long time synchronous meteorological observations over water surface, at the riverbank and at the weather stations were conducted, as well as the observations of turbulence characteristics such as wind attack angles. These observations reveal some new observational evidence that are different from the previous theories. These works have a positive effect on determination of wind parameters in bridge designing, and also provide the basic data for correcting the standards and rules.
     The meso-scale model WRF was used to simulate wind field over broad plain water surface and to test the model(?)ability to reproduce the extreme values of wind speed and the sensitivity of simulation results to parameterizations of various physical processes.
     A long-distance data transmission technique which combines GPRS and Internet is developed; models for predicting wind over river surface is established; software which combines information collection, transmission and application is developed; a meteorological safety protection system for construction zones is established. All these are proved feasible and effective by operating engineering experiments.
     Through theoretical studies, observational experiments, numerical simulations and engineering experiments the following conclusions are drawn:
     (1) Large bias may be resulted if the meteorological data obtained from weather stations or calculated from handbooks are used directly to represent wind parameters at bridge locations.
     (2) The methods for calculating wind parameters proposed in this study are able to overcome some of the drawbacks existed in the popular methods.
     (3) Differences may exist between turbulence identities such as wind attack angles and turbulence power spectrum at bridge location and criteria. The differences between wind velocity over water surface and that at riverbank or weather stations are also discriminate from the criterion values. Therefore, the observation experiments are useful to improve the criterion values.
     (4) The distributing of water and land is the main reason which leads to the differences between the wind velocity over water surface and that at weather stations. The WRF model has a certain degree of ability to simulate the wind velocity at bridge location, but can not be directly used for engineering projects yet.
     (5) Establishing the system ensuring meteorological security in construction regions can improve the veracity of weather predicting in construction regions and meet the needs of meteorological security information during constructions.
引文
[1]项海帆,葛耀君,朱乐乐,等.现代桥梁抗风理论与实践[M].北京:人民交通出版社.2005:1-5,448-450.
    [2]曾宪武,王永珩.桥梁建设的回顾与展望[J].中国公路学会桥梁和结构工程学会2001年桥梁学术讨论会论文集,北京:人民交通出版社,2001:1-20.
    [3]周先念,周世忠.21世纪特大跨径桥梁的展望[J].2000年桥梁学术讨论会论文集,北京:人民交通出版社,2000:13-18.
    [4]项海帆,陈艾荣.特大跨度桥梁抗风研究的新进展[J].土木工程学报,2003,36(4),2-8.
    [5]项海帆.进入21世纪的桥梁风工程研究[J].同济大学学报,2002,30(5):529-532.
    [6]中华人民共和国交通部.国家高速公路网规划[R].2005年1月.
    [7]刘聪,张忠义,黄世成.桥梁气象专题研究与服务[J].气象科技,2004,32(6):397-403.
    [8]项海帆,林志兴,鲍卫刚等.公路桥梁抗风设计指南[M].北京:人民交通出版社,1996:2-18,88-100.
    [9]何照明,连晓声.谈建筑抗风的重要性[J].南方建筑,2002,04:14-15.
    [10]贺德磬.我国风工程研究现状与展望[J].力学与实践,2002,24:10-19.
    [11]范学伟,徐国彬,黄雨.工程结构的风灾破坏和抗风设计[J].中国安全科学学报,2001,11.(5):73-76.
    [12]奚冀生,周述华.风对桥梁的作用[J].四川建筑,1996,16(2):41-43.
    [13]刘健新.斜拉桥的抗风设计及制振措施[J].华东公路,1995,第2期:29-30.
    [14]胡卫兵,何建.高层建筑与高耸结构抗风计算及风振控制[M].北京:中国建材出版社,2003:1-16,26-38.
    [15]朱瑞兆,风压计算的研究[M],北京:科学出版社,1996,2-18.
    [16]伊藤学,川田忠树.刘健新,和丕壮译.超长大桥梁建设的序幕—技术者的新挑战[M].北京:人民交通出版社,2002:39-54,132-142.
    [17]舒新玲,周岱,王泳芳.风荷载测试与模拟技术的回顾与展望[J],振动与冲击,2002,21(3):6-9.
    [18]A.Larsen.Aerodynamics of the Tacoma Narrows Bridge-60 Years Later,APCWE V.Japan,2001.
    [19]Francesco Ricciardelli.Prediction of the response of suspension and cable-stayed bridge tower to wind loading[J].J.of Wmd Engineering and Industrial Aerodynamics,1996;64:145-159.
    [20]张湘庭.工程抗风设计计算手册[M].北京:中国建筑工业出版社,1998:11-44.
    [21]中华人民共和国行业标准.公路桥梁抗风设计规范(JTH/TD60-2004)[S],北京:人民交通出版社,2004:6-14,29-45.
    [22]王冬姣,陈加菁.风的动力作用[J].海洋工程,1995,13(4):12-17.
    [23]Bucher C.G,Lin Y.K.Effects of Wind turbuience on motion Stability of long-spen bridges,Journal of Wind Engineering and Industrial Aerodynamic,1990,36:1355-1364.
    [24]日本本州四国联络桥公团.周述华译.日本本州四国联络桥抗风设计基准及说明(1976年)[S].日本:桥梁と基础,1992:5-29.
    [25]马进,周庆桐.日本明石大桥的抗风设计介绍[J],重庆交通学院学报,1994,13(2):83-88.
    [26]陈上及,马继瑞.海洋数据处理分析方法及其应用[M].北京:海洋出版社,1991:356-429.
    [27]幺枕生,丁裕国.气候统计[M].北京:气象出版社,1990:48-51.
    [28]合田良实著,陈家机译.论气象极值的重现期.港湾技术资料No.722,海洋译丛,1985,第5期.
    [29]Gumbel,E.J.T.,Statistical Theory of extreme value and some practical applications,National Bureau of Standards[J].1954,Applied Mathematics Scries 33:1-51.
    [30]马开玉,丁裕国,屠其璞,等.气候统计原理与方法[M].北京:气象出版社,1993:37-44.
    [31]马开玉,张耀存,陈星.现代应用统计学[M].北京:气象出版社,2004:177-193.
    [32]胡毅,李萍,杨建功,朱毅,应用气象学[M].北京:气象出版社,2005:250-250.
    [33]Palutiko J.P.,Brabson B.B.,Lister D.H..A review of method to calculate extreme wind speed[J].Meteorol Appl,1999,(6):119-132.
    [34]Harris R I.Gumbel.Revisited - a new look at extreme value statistics applied to wind speed[J].Journal of Wind Engineering and Industrial Aerodynamics,1996,59:1-22.
    [35]曲延禄,阎书院,张程道.我国地面气温极值和地面风速极值的渐近分布[J].气象学报,1988,46(2):187-193.
    [36]屠其璞.用韦伯分布估计风速分布的方法[J].气象教育与科技,1980,第四期:12-16.
    [37]陈上及,于继业,威布尔分布对风速极值的最优化拟合及其参数的数值解法[J].海洋学报,1987,9(3):301-310.
    [38]Takle,E.S.,and Brown,J.M.,Note on the use of Weibull statistics to characterize wind-speed Data[J].Journal of Applied Meteology,1978,17(4):556-559.
    [39]袁春红,薛桁,杨振斌.建筑风荷载风压计算中的若于问题[J].气象,2000,28(1):38-42.
    [40]段忠东,周道成,欧进萍.渤海和南海海域极值风速的置信区间[J].海洋通报,2003,22(2):17-24.
    [41]阎俊岳,黄爱芬.中国近海大风极值计算方法研究[J].气象学报,1996,54(2):233-239.
    [42]赵林,葛耀君,项海帆.平均风极值分布极大似然求解及其应用[J].土木工程学报,2004,37(6):41-46.
    [43]史凤坡.试用极大似然法估计皮Ⅲ型曲线参数值[J].河北水利水电技术,1995,第四期:1-4.
    [44]候兆滨.黑龙江主要城市建筑风压计算与分析[J],黑龙江气象,2003,第四期:27-28.
    [45]屠其璞,翁笃鸣,武全,姜余庆,潘里娜.气候资料超短序列订正方法讨论[J].南京气象学院学报,1978,1(1):59-67
    [46]屠其璞,翁笃鸣,武全,姜余庆,潘里娜.关于风短期资料的延长问题[J].气象科技(附刊),1992.12:7-9
    [47]江志红,丁裕国,屠其璞.气象场序列几种插补方案的对比试验[J].南京气象学报,1999,22(3).352-358.
    [48]Widget W.K.,Jr..Estimationgs of wind speed frequency distributions using only the montly average and fastest mile data[J],J Appl Meteor.1977,16(3):244-247.
    [49]田启明,王正.设计最大风速和风压计算中的有关问题[J].电力勘测,1999,24(4):47-51.
    [50]张相庭.国内外风荷载规范的评估和展望[J].同济大学学报,2002,30(5):539-543.
    [51]林敏.设计最大风速计算中资料的选取[J].电力勘测,2000,第8期:43-44.
    [52]刘红年,蒋维楣.细网格非静力二维高阶闭合模式对山体流场特征的模拟分析[J].高原气象,1994,13(4):430-438.
    [53]王卫国,蒋维楣.青岛地区边界层结构的数值模拟[J].大气科学,1996,20(2):229-234.
    [54]逢勇,濮培民.太湖区域三维湖陆风场数值模拟[J].大气科学,1995,19(2):243-251.
    [55]王世玉,钱永浦.P-σ坐标区域气候模式的垂直分辨率对模拟结果的影响[J].高原气 象,2001,20(1):28-35.
    [56]周嘉陵,罗哲贤.台风最大风速增强的数值研究[J].南京气象学院学报,2002,25(2):199-206.
    [57]赵鸣.考虑背景风压场影响的边界层数值模式[J].大气科学,1997,21(2):247-255.
    [58]陈水福,孙炳楠,唐锦春.建筑绕流风场的并行化数值模拟[J].浙江大学学报,1998,32(5):526-533.
    [59]苏成,韩大建,颜全胜等.大跨度桥梁风场模拟机气动力计算[J].华南理工大学学报(自然科学版),1999,27(11):36-43.
    [60]王宝民,孙向明,刘辉志等.二维街谷热力动力场数值模拟[J].北京大学学报(自然科学版),2004,40(5):774-780.
    [61]王之宏.风荷载的模拟研究[J].建筑结构学报,1994,15(1):44-52.
    [62]肖庆农,伍荣生.地形对于气流运动影响的数值研究[J].气象学报,1995,53(1):38-48.
    [63]段建南,李旭霖,王改兰,李保国.应用于全球研究的区域风速模拟[J],水土保持学报,2001,15(5):99-101.
    [64]卞林根,陈彦杰,王欣等,北京大气边界层中风廓线的观测研究[J].应用气象学报,2002,13(特刊):13-25.
    [65]赵鸣,唐有声,刘学军.天津塔层风切变得研究[J].气象,1996,22(1):7-12.
    [66]李倩,刘辉志,胡非,洪钟祥.大风天气下北京城市边界层阵风结构特征[J].中国科学院研究生院学报,2004,21(1):40-44.
    [67]Amano,I,Fukushima H,Ohkuma T,et al..Observation of typhoon Wids in Okinawa by Doppler Sodar.Journal of Wind Enginreering and Industrial Aerodynamic,1999,83:11-20.
    [68]张宏升.近地面层湍流输送观测仪器和方法研究[J].北京大学博士学位论文,1995.
    [69]周明煜,钱粉兰,李诗明等.斜压对流层中风廓线和湍流特征的研究[J].地球地理学报,2000,43(3):296-303.
    [70]Wang Yuan.Laboratray simulation of wind speed profile of atmospheric surface layer,lnternational Scientific Conference on the Taklimakan Desert,1993.
    [71]Liu Shikuo,Peng Weihong,Huang Feng,et al.Effects of turbulent dispersion on wind speed profile in the surface layer[J].Advances in Atmospheric Sciences,2002,19(5):794-806.
    [72]董双林.中国的阵风及其统计研究[J].气象学报,2001,59(3):327-333.
    [73]许丽人,李宗恺,张宏曻.不同下垫面上近地层湍流的多尺度属性研究[J].气象学 报,2000,58(1):83-94
    [74]H.A.Panofsky,Zhou leyi,Some wind characteristics over complex terrain[J].Journal of the Meteorological Society of Japan,1982,60(1):432-438.
    [75]杨洪斌,刘万均,赵国珍等.沿海地区大气边界层扩散特征探讨[J].辽宁气象,2000,第二期:23-28.
    [76]陈伟,王海良,项海帆.风速统计特性研究探讨[J].石家庄铁道学院学报,1999,12(2):51-55.
    [77]Kaimal J.C.,J.C.Wyngaard,Y.Izumi and O.R.Cote,Spectral characteristics of surface layer turbulence,Quart.J.Roy.Meteor.Soc.,1972,98:563-589.
    [78]卞建春,乔劲松,吕达仁.大气近地层湍流能谱特征的再分析[J].大气科学,2002,26(4):474-479.
    [1]中华人民共和国行业标准.公路桥梁抗风设计规范(JTH/TD60-2004)[S].北京:人民交通出版社,2004,6-14:29-45.
    [2]项海帆,林志兴,鲍卫刚等.公路桥梁抗风设计指南[M].北京:人民交通出版社,1996:66-67.
    [3]刘聪,张忠义,黄世成.桥梁气象专题研究与服务[J].气象科技,2004,32(6):397-403.
    [4]陈政清.桥梁风工程[M].北京:人民交通出版社,2005:1-2,43-44.
    [5]张湘庭.工程抗风设计计算手册[M].北京:中国建筑工业出版社,1998:19.
    [6]中华人民共和国国家标准.建筑结构荷载规范(GB50009-2001)[S].北京:中国建筑工业出版社,2002:71-72,85-86.
    [7]袁春红,薛桁,杨振斌.建筑风荷载风压计算中的若于问题[J].气象,2000,28(1):38:-42.
    [8]合田良实著,陈家机译.论气象极值的重现期[J].港湾技术资料No.722,海洋译丛,1985,第5期.
    [9]Justus C G,Hargraves W R,Amil Mikhail,et al.Method for estimating wind speed frequency distribution[J].J Appl Meteor,1978,17(3):350-353.
    [10]Gumbel,E.J.T.,Statistical Theory of Extreme value and Some practical applications,National Bureau of Standards[J].1954,Applied Mathematics Scries 33:1-51.
    [11]马开玉,张耀存,陈星.现代应用统计学[M].北京:气象出版社,2004:177-193.
    [12]马进,周庆桐.日本明石大桥的抗风设计介绍[J].重庆交通学院学报,1994,13(2):83-88.
    [13]日本本州四国联络桥公团.周述华译.日本本州四国联络桥抗风设计基准及说明(1976年)[S].日本:桥梁と基础.1992:5-29.
    [14]Francesco Ricciardelli.Prediction of the response of suspension and cable-stayed bridge tower to wind loading[J].J.of Wind Engineering and Industrial Aerodynamics,1996,64:145-159.
    [15]屠其璞,翁笃鸣.武全,姜余庆,潘里娜.关于风短期资料的延长问题[J],气象科技(附刊),1992.12.7-9.
    [16]江志红,丁裕国,屠其璞.气象场序列几种插补方法的对比试验[J].南京气象学报,1999,22(3):352-358.
    [17]林春育.天气学实验与诊断分析[M].南京:南京大学出版社,1991:69-71.
    [18]Kotz S,Nadarajah S.Extreme value distributions-theory and applications[M].London:Imperial College Press,2000:17-84.
    [19]Coles S..An Introduction to statistical modeling of extreme values[M].New York:Springer Verlag,2001:36-78.
    [20]陈上及,马继瑞.海洋数据处理分析方法及其应用[M].北京:海洋出版社,1991:356-429.
    [21]Takle,E.S.,and Brown,J.M.,Note on the use of Weibull statistics to characterize wind-speed data[J].Journal of Applied Meteology,1978,17:556-559.
    [22]Harris R I.Gumbel.Revisited-a new look at extreme value statistics applied to wind speed[J].Journal of Wind Engineering and Industrial Aerodynamics,1996,59:1-22.
    [23]曲延禄,阎书院,张程道.我国地面气温极值和地面风速极值的渐近分布[J].气象学报,1988,46(2):187-193.
    [24]张相庭.极值动态新Ⅰ型分布函数的模型及在汕头抗风防灾上的应用[J].自然灾害学报,1995,4(增刊):114-117.
    [25]谭冠日,严济远,朱瑞兆.气候应用手册[M].北京:气象出版社,1991:42-47,53,102-111.
    [26]H.A.Panofsky,Zhou leyi,Some wind characteristics over complex over complex terrai n[J].Journal of the Meteorological Society of Japan,1982,60(1):432-438.
    [27]黄兴棣.工程结构可靠性设计[M].北京:人民交通出版社,1989:132-135.
    [28]幺枕生.气候统计学基础[M].北京:科学出版社,1984:351,350-389,427-430.
    [29]B.L.阿姆斯塔特.可靠性数学[M].北京:科学出版社,1978:42-45.
    [30]陈上及,马继瑞.海洋数据处理分析方法及其应用[M]].北京:海洋出版社,1991:92-93.
    [31]陈家鼎,刘婉如,汪仁官.概率统计讲义[M].北京:高等教育出版社,2004:153-156.
    [32]陈希孺.高等数理统计学[M].合肥:中国科学技术大学出版社,1999:86-127.
    [33]Enrique Castillo,Extreme Value Theory in Engingering[M],Hardbound:Academic Press,Inc,1988:47-68.
    [1]中交公路规划设计院、上海市隧道工程轨道交通设计研究院.南通长江公路通道预可行性研究报告[R].1997:1-9.
    [2]中交公路规划设计院、江苏省交通规划设计院和同济大学.苏通大桥初步设计报告[R].2002:20-32.
    [3]中国建筑科学研究院等.建筑结构荷载规范[S].北京:中国建筑工业出版社,2002:116.
    [4]中华人民共和国行业标准.公路桥梁抗风设计规范(JTH/TD60-2004)[S],北京:人民交通出版社,2004:6-14,29-45.
    [5]潘守文.小气候考察的基础理论及其应用[M],北京:气象出版社,1989:4-23,258-271.
    [6]王树廷,王伯民.气象资料的整理和统计方法[M].北京:气象出版社,1982:46-62,117-129.
    [7]么枕生,丁裕国.气候统计[M].北京:气象出版社,1990:35-51,266-300.
    [8]邓朝亮,孔宁谦.广西沿海的风况特征[J].海洋学报,1999,16(1):71-75.
    [9]陈正洪,杨宏青,向玉春等.武汉阳逻长江公路大桥设计风速值的研究[J].自然灾害学报,2003,12(4):160-169.
    [10]谭冠日,严济远,朱瑞兆.气候应用手册[M],北京:气象出版社,1991:42-47,27-72.
    [11]张忠义,刘聪,居为民.南京长江第二大桥桥位风速观测及设计风速的计算[J].气象科学,2000,20(2):200-205.
    [12]陈伟,王海良,项海帆.风速统计特征研究探讨[J].石家庄铁道学院学报,1999,12(2):51-55.
    [13]张相庭.工程抗风设计手册[M].北京:中国建筑工业出版社,1998:1-44,185-208.
    [14]蒋维楣,徐玉貌,于洪彬.边界层气象学基础[M].南京:南京大学出版社,1994:210-218:242-250.
    [15]Le Mone M.A.,Mingyu Zhou,Chin-hoh Moeng,D.H.Lenschow,et al..An ovservational study of wind profile in the baroclinic convective mixed layer[J].BLM,1999,90:47-82.
    [16]胡非,洪钟祥,陈家宜,刘熙明.白洋淀地区非均匀大气边界层的综合观测研究——实验介绍及近地层微气象特征分析[J].大气科学,2006,30(5):883-892.
    [17]Stull.r.b.and E.W.Eloranta.Boundary layer experiment(1983[J]).Bull.Am.Meteoro.Soc.,1984,65:450-455.
    [18]李建东,陈希,蒋国荣,刘庭杰.海洋边界层内风、浪相互作用研究进展[J],海洋学报,2005,22(1):58-65.
    [19]Mayne J.R..The Estimation of extreme wind[J].Journal of Wind gngeineering and Industrial Aerodynamics,1979,5:109-137.
    [20]王桂玲,蒋维楣.复杂地形上的低层风场特征[J].解放军理工大学学报(自然科学版),2006,7(5):491-495.
    [1]陈政清.桥梁风工程[M].北京:人民交通出版社,2005:1-2,43-44.
    [2]项海帆,林志兴,鲍卫刚等.公路桥梁抗风设计指南[M].北京:人民交通出版社,1996:66-67.
    [3]刘聪,张忠义,黄世成.桥梁气象专题研究与服务[J].气象科技,2004,32(6):397-403.
    [4]中华人民共和国行业标准.公路桥梁抗风设计规范(JTH/TD60-2004)[S].北京:人民交通出版社,2004,6-14:29-45.
    [5]Francesco Ricciardelli.Prediction of the response of suspension and cable-stayed bridge tower to wind loading[J].J.of Wind Engineering and Industrial Aerodynamics,1996,64:145-159.
    [6]马进,周庆桐.日本明石大桥的抗风设计介绍[J].重庆交通学院学报,1994,13(2):83-88.
    [7]日本本州四国联络桥公团.周述华译.日本本州四国联络桥抗风设计基准及说明(1976年)[S].日本:桥梁と基础,1992:5-29.
    [8]H.A.Panofsky,Zhou leyi,Some wind characteristics over complex over complex terrai n[J].Journal of the Meteorological Society of Japan,1982,60(1):432-438.
    [9]陈正洪,向玉春,杨宏清,等.深圳湾公路大桥设计风速的推算[J].应用气象学报,2004,15(2):226-233.
    [10]张忠义,刘聪,居为民.南京长江第二大桥桥位风速观测及设计风速的计算.气象科学,2000,20(2):200-205.
    [11]江苏省气象科学研究所.润扬长江大桥桥位风速观测及风参数研究[R].2001:38-40.
    [12]张相庭.国内外风荷载规范的评估与展望[J].同济大学学报,2002,30(5):539-543.
    [13]章国才.美国WRF模式的进展和应用前景[J].气象,2004,30(12):27-31.
    [14]De[1]Development of a next-generation regional weather research and forecast model,Argonne National Laboratory preprint,ANL/MCS-P868-0101,2001,8.
    [15]Michalakes,J,J.Dudhia,D.Gill.Design of a next-generation regional weather research and forecast model,Towards Teracomputing,World Scientific,River Edge,New Jersey,J.Klemp,and W.Skamarock,1999:,117-124.
    [16]Joseph B.Klemp.Weather Research and Forecasting Model:A technical Overview,84th AMS Annual Meeting,Seattle,U.S.A.Jan.10-15,2004.
    [17]缪国军,张镭,舒红.利用WRF对兰州冬季大气边界层的数值模拟[J].气象科学,2007, 27(2):169-175.
    [18]闫之辉,邓莲堂.WRF模式中的微物理过程及其预报对比试验。沙漠与绿洲气象,2007,1(6):1-6.
    [19]孔玉寿,章东华.现代天气预报技术.北京:气象出版社,2000:21-23
    [20]Eugenia Kalnay.Atmospheric Modeling,Data Assimilation and Predictability.Cambridge University Press,2002:22-25.
    [21]Giorgi F,Bates G T.Development of a Second Generation Regional Climate Model (RegCM2),Part Ⅰ:Boundary layer and radiative process.Mon Wen Rev,1993,121(10):2794-2813.
    [22]Xu Liren,Zhao Ming.The influence of boundary layer parameterization schemes on mesoscale heavy rain system.Adv Atmos Sci,2000,17(3):458-472.
    [23]Garratt J R.Sensitivity of climate simulations to land-surface and atmospheric boundary layer treatments-A review.J Climate,1993,6(3):419-449.
    [1]项海帆,葛耀君,朱乐乐,等.现代桥梁抗风理论与实践[M].北京:人民交通出版社.2005:7,50-51.
    [2]贺德磬.我国风工程研究现状与展望[J].力学与实践,2002,24:10-19.
    [3]中华人民共和国行业标准.公路桥梁抗风设计规范(JTH/TD60-2004)[S],北京:人民交通出版社,2004:6-14,29-45.
    [4]中华人民共和国行业标准.公路桥梁抗风设计规范(JTH/TD60-2004)[S].北京:人民交通出版社,2004:6-14,29-45.
    [5]蒋维楣,徐玉貌,于洪彬.边界层气象学基础[M].南京:南京大学出版社,1994:210-218:242-250.
    [6]Simiu E,Scanlan R H.Wind effects on structures:Fundamentals and applications to design[M].New York:John Wiley & Sons,INC,1996:2-48.
    [7]张琳琳,李杰.脉动风速互随机Fourier谱函数[J],建筑科学与工程学报,2006,23(2):57-61.
    [8]Bucher C.G,Lin Y.K.Effects of wind tuibuience on motion stability of long-spen bridges.Journal of Wind Bngireering and Indutrial Aerodynamics,1990,36,1355-1364.
    [9]Andersen OJ,Lovseth J.Gale force maritime wind,the Froya data base.Part Ⅰ:sites and instrumentation-review of the database[J].Journal of Wind Engineering and Industrial Aerodynamics,1995,57:97-109.
    [10]Mcclintock J D,Pond G S,Dacidson L W.Offshore wind gust climatologies.Sea Consult Limited.Report prepared for Atmospheric Environment,Service Canadian Climate Center Marine Applied Unit.
    [11]Panofsky H A,Dutton J A.Atmospheric turbulence-models and methods for engineering application.Wiley,Ny,1984.
    [12]Tieleman H.W.and Mullins S.E..The structure if moderately strong winds at a Mid-Atlantic coastal site(below 75m).Proc.Fifth International Conference on Wind Engineering.Fort Collins,Colorado,USa,July 1979,Cermak J.E.(Ed.),Pergamon Press,Oxford,1,145-1.
    [13]庞加斌,林志兴,葛耀君.浦东地区近地强风特性观测研究[J],流体力学实验与测量,2002,16(3):32-39.
    [14]刘树华,李洁,刘和平等.在EBEX22000实验资料中湍流谱和局地各向同性特征.大气 科学,2005,29(2):213-224。
    [15]王存忠,曹文俊.天津市郊大气边界层湍谱特征分析[J].气象学报,1994,52(4):484-491
    [16]宋丽莉,毛慧琴,黄浩辉等.登陆台风近地层湍流特征观测分析[J],气象学报,2005,63(6):915-921.
    [17]王立治,章小平,王晓晞等.城郊大气近地面层湍流特征的初步研究[J].大气科学,1985,9(1):11-17.
    [18]卞林根,陆龙骅等.青藏高原南部昌都地区近地层湍流输送的观测研究[J].应用气象学报,2001,12(1):1-13.
    [19]张蔼琛,吕杰,张兵等.北京市郊区及城区边缘的大气湍流结构特征[J].大气科学,1991,15(4):87-96.
    [20]王存忠,曹文俊.天津市郊大气边界层湍谱特征分析.气象学报,1994,52(4):484-491.
    [21]王介民.山谷城市的近地层大气湍流谱特征[J].大气科学,1992,16(1):11-17.
    [22]刘聪,黄世成,张忠义,陈兵等.青岛海湾大桥工程桥位风速观测及风参数计算[R].江苏省气象科学研究所印制.2006.
    [23]Campbell Scientific,Inc.,Instruction Manual:CSAT3 Three Dimensional Sonic Anemometer.
    [24]许丽人,李宗恺,张宏曻.不同下垫面上近地层湍流的多尺度属性研究[J].气象学报,2000,58(1):83-94.
    [1]许铎.桥梁工程施工中事故环境风险评估[J].中国安全科学学报.2003.13(8):46-49.
    [2]刘聪,张忠义,黄世成.桥梁气象专题研究与服务[J].气象科技,2004,32(6):397-403.
    [3]金春姬,刘晓青.信息时代的交通气象服务[R].综合运输,2000,第四期:20-21.
    [5]中交公路规划设计院、江苏省交通规划设计院和同济大学.苏通大桥初步设计报告[R].2002:20-32.
    [6]钟章队,蒋文怡.GPRS通用无线分组业务[M].北京:人民邮电出版社,2001:22-46.
    [7]Josephho,Zhu Yixin,Seshu Mad-havapeddy.Throughput and buffer analysis for GSM General Packet Radio Service(GPRS)[R].Wireless Communications and Networking Conference,IEEE,1999.1427-1431.
    [8]韩冰,李芬华.GPRS技术在SCADA系统中的应用[J].电力系统通信,2003,24(7):4-7.
    [9]薛明.GPRS计费协议的分析[J].现代通信,2002,(8):9-11.
    [10]吕捷.GPRS技术[M].北京:北京邮电大学出版社,2001:1-16.
    [11]Tracton MS,Kalnay K Operational ensemble prediction at the National Meteorological Center:Practical aspects[R].1993,Wea and Fore.,8(3):379-398.
    [12]吴兑.环境气象学与特种气象预报[M],北京:气象出版社,2001:32-48
    [13]丁一汇.暴雨和中尺度气象学问题[J].气象学报,1994,52(3):274-284.
    [14]胡波,杜惠良.浙江省沿海海面日极大风预报[J].海洋预报,2006,23(增刊):64-66.
    [15]Hersbach H,Mureau R,Opsteegh J D,et al.Ashort-range ensem-ble prediction system for the European area.Mon Wea Rev,2000,128:3501-3519.
    [16]Glahn H R,and D A Lowry.The use of model output statistics(MOS)in obiective weather forecasting[J].J.Appl.Meteor.1972,(11):1203-1211.
    [17]伍荣生,谈哲敏,王元.我国业务天气预报发展的若干问题思考[J].气象科学,2007,27(1):112-116.
    [18]矫梅燕,龚建东,周兵,赵声蓉.天气预报的业务技术进展[J].应用气象学报,2006,17(5):594-600.
    [19]项忠南,刘玉梅.大庆市重大灾害性天气预警服务系统[J].黑龙江气象,2004,第一期:21-22.
    [20]郭家林,于宏敏,姬菊枝,景学义.哈尔滨市中尺度灾害性天气监测预警系统[J].黑龙江气象,2004年,第四期:1-2.
    [21]杜京朝,方乾,杨长明.T63数值预报产品相结合的江苏西南大风预报方法[J].气象科学,1998,18(3):271-276.
    [22]Doswell C A.Flash flood forecasting:an ingredients-based methodolo-gy.Wea Forecasting[J].1996,11:560-581.
    [23]Obsty F P.Operations of national severe storms forecast center[R].Wea Forecasting,1992,7:546-562
    [24]江苏省气象台.江苏省重要天气分析和预报[M].北京:气象出版社,1989.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700