不同术式健侧颈7神经根移位对幼年大鼠全臂丛根性撕脱伤术后脑功能重塑影响的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分跨突触病毒示踪法研究大鼠颈7神经根中枢神经系统支配回路组成
     目的研究猪假狂犬病病毒(PRV)减毒株颈7神经根注射后标记神经元在脑和脊髓的分布,为健侧颈7神经根移位术后的脑功能重塑研究奠定实验基础。
     方法SD大鼠20只,根据脊髓和脑组织取材时间随机分为4组:6小时组、12小时组、24小时组、36小时组。在右侧颈7神经根注射猪假狂犬病病毒液2μl。动物存活6~36小时后,处死动物,使用抗病毒的多克隆抗体,通过免疫组织化学方法检测相应脊髓节段(C1~C7)和脑中感染神经元的分布。结果病毒注射后6~36小时,脊髓和脑中的一些结构及区域可见阳性标记细胞,主要分布在C1~C7节段脊髓灰质、外侧类巨细胞网状核、A5细胞、红核、第一二运动皮质、第一二感觉皮质等。随着动物存活时间的延长,脊髓和脑中被标记神经元的数目也明显增多。
     结论本跨突触病毒示踪研究证实示踪剂标记的脊髓和脑组织结构与颈7神经根存在直接或(和)间接突触联系,可能直接或间接参与对颈7神经根的神经支配和调节。
     第二部分跨突触病毒神经示踪法研究不同术式健侧颈7神经根移位术对幼年大鼠全臂丛根性撕脱伤术后脑功能重塑的影响
     目的采用跨突触病毒神经示踪技术研究不同术式健侧颈7神经根移位对幼年大鼠术后脑功能重塑的影响。
     方法建立三种不同术式健侧颈7神经根移位幼年大鼠动物模型,分别是:健侧颈7神经根移位至上干前股(A组);健侧颈7同时移位至肌皮和正中神经(B组);健侧颈7神经根移位至正中神经(C组)。分别于术后1.5月、3月、6月、9月和12月在受体神经注射猪假狂犬病病毒液2μl。动物存活30小时后,使用抗病毒的多克隆抗体,通过免疫组织化学方法检测运动皮层前肢支配区椎体细胞层阳性神经元分布,以各时间点左右侧运动皮层阳性神经元数目的比值为指标,分析各实验组间观测指标的差别。
     结果随着术后时间的延长,各实验组大脑两侧运动皮层阳性神经元数量均逐渐增加。术后早期患肢同侧大脑运动皮层阳性神经元数量多于对侧,而后期则对侧多于同侧。各实验组术后各时间点左右两半球间阳性神经元的比值不同。健侧颈7神经根移位至上干前股组和同时移位至肌皮正中神经组术后脑功能发生跨半球重塑的速度和程度优于健侧颈7神经根移位至正中神经组(A和B之间t值为2.074,P>0.05;A和C,B和C之间t值分别是6.494和4.420,P均<0.01)。
     结论1.幼年大鼠周围神经损伤后脑功能重塑过程中存在神经通路的改变,重塑可能与新的神经通路的形成有关。2.受体神经类型影响周围神经损伤后脑重塑,健侧颈7神经根移位至臂丛上干前股或者同时移位至肌皮和正中神经更有利于实现脑功能的跨半球重塑。
     第三部分不同术式的健侧颈7神经根移位对幼年大鼠全臂丛根性撕脱伤术后脑功能重塑影响的电生理研究
     目的皮层微电极刺激法研究健侧颈7神经根移位术后脑功能的重塑变化,比较不同术式健侧颈7神经根移位对幼年大鼠术后皮层重塑变化的影响。
     方法建立三种不同术式健侧颈7神经根移位幼年大鼠动物模型,分别是:健侧颈7神经根移位至上干前股,健侧颈7神经根移位至肌皮和正中神经和健侧颈7神经根移位至正中神经。分别于术后1.5月、3月、6月、9月和12月,以微电极刺激技术检测患肢支配区在双侧大脑运动皮层的分布,比较各组术后脑功能重塑速度和程度的差异。
     结果术后患肢支配区在运动皮层的分布是一个动态变化过程。无论是哪种健侧颈7神经根移位术式,最初患肢支配区位于同侧运动皮层;随后,患肢支配区位于双侧运动皮层;随着术后时间的进一步推移,最后患肢支配区仅位于对侧运动皮层,就术后跨半球重塑的速度和程度而言,健侧颈7神经根移位至上干前股或同时至肌皮正中神经优于健侧颈7至正中神经。
     结论1.幼年大鼠健侧颈7神经根移位术后运动皮层患肢支配区可实现由同侧皮层到双侧最后到对侧皮层的跨大脑半球的功能重塑。2.健侧颈7神经根移位术受体神经的类型影响术后脑功能重塑,移位至臂丛上干前股或者同时移位至肌皮和正中神经更有利于实现脑功能的跨半球重塑。
PartⅠIdentification of CNS neural circuitry involved in the innervation of the C7 nerve root:a viral transsynaptic tracing study
     Objective The distribution of labeled positive neurons in the brain and spinal cord was studied after injecting the attenuated strain of pseudorabies virus(PRV) into the C7 nerve root so as to provide a baseline for further studying of brain functional reorganization after contralateral C7 was transfered.
     Method 20 adult Sprague Dawley rats were randomly divided into 4 groups according to the time of being sacrificed:6 hours,12 hours,24 hours and 36 hours groups.2ul of the virus was slowly injected into the right C7 nerve root. After survival times of 6-36 hours,the spinal cord(C1-C7) and brain were processed immunocytochemically using a polyclonal antibody against the PRV.
     Result PRV labeled positive neurons were found in some spinal cord and brain regions from 6 hours to 36 hours post injection,such as the gray matter in the C1-C7 spinal cord,the lateral paragigantocellular nuclei,and the A5 cells,red nucleus,primary and secondary motor cortex,primary and secondary somatosensory cortex et al.Increasing the number in viral labeling from the spinal cord to brain regions became apparent with increasing survival time.
     Conclusion The spinal cord and brain structures labelled from the C7 nerve root by the transsynaptic tracing technique are synaptically connected with C7 and presumably are involved in the neural regulation of C7.
     PartⅡA viral transsynaptic tracing study on brain functional reorganization of different contralateral C7 oprative modes treat total brachial plexus avulsion in young rats
     Objective To study the brain functional reorganization and compare the influence on functional reorganization by different operative modes on young rat models after contralateral C7 transfer opration by viral transsynaptic tracing technique.
     Method The contralateral C7 was transferred to musculocutaneous nerve,both the musculocutaneous and median nerves and median nerve respectively in three young rat models groups 1.5,3,6,9 and 12 months later respectively,2ul PRV was injected to the recipient nerves.After 30-hours survival times,the forelimb representation of motor cortex was processed immunocytochemically,using a polyclonal antibody against the PRV to detect the positive neurons and study the difference of the amount of them among differert operative modes.
     Result The amount of positive neurons increased in both motor cortex after the contralateral C7 transfer operation in all experimental groups.During earlier period,there were more positive neurons in the left motor cortex than that in the right one.Otherwise in the advanced stage the results were opposite.The funcional reorganization pace were faster in contralateral C7-to -musculocutaneous nerve group and contralateral C7-to-both the musculocutaneous and median nerves group than contralateral C7-to-median nerve group(P<0.01).
     Conclusion 1.There were changes of neural pathway in the brain functional reorganization after peripheral nerve injuries on young rats and the reorganization might be relevant with the formation of new neural pathway.2.the type of recipient nerve affected the brain functional reorganization after peripheral nerve injuries.To transfer contralateral C7 to musculocutaneous nerve or to both the musculocutaneous and median nerves were more beneficial to complete the functional reorganization across hemiphere.
     PartⅢAn electrophysiologicai study on brain functional reorganization of different contralateral C7 oprative modes treat total brachial plexus avulsion in young rats
     Objective To study the brain functional reorganization and compare the influence on functional reorganization by different operative modes in young rats after contralateral C7 transfer opration by microelectrode electrical stimulation.
     Method The contralateral C7 was transferred to musculocutaneous nerve,both the musculocutaneous and median nerves and median nerve respectively in three young rat models groups.1.5,3,6,9 and 12months later respectively,cortical representation of repaired limb at both hemisphere motor cortex will be determined to study the difference in dynamic process of functional reorganization across hemisphere among differert operative modes.
     Result A dynamic across hemispherical functional reorganization corresponding to the repaired limb was observed after operation.Cortical representation of repaired limb was firstly located at the ipsilateral cortex,and then at both sides. As the time paces,it was finally observed in the contralateral motor cortex.The funcional reorganization results were better in contralateral C7-to -musculocutaneous nerve group and contralateral C7-to-both the musculocutaneous and median nerves group.
     Conclusion 1.Cortical representation of repaired limb can complete the across hemispherical functional reorganization after the contralateral C7 transfer operation in young rats.2.The pace and extent of the functional reorganization would be influnenced by the operative modes of the contralateral C7 transfer.To transfer contralateral C7 to musculocutaneous nerve or both the musculocutaneous and median nerves could lead to better functional reorganization results.
引文
[1] Narakas AO,Hentz VR.Neurotization in brachial plexus in juries. Indication and results [J].Clin Orthop, 1988,237:43-56.
    [2] Gu YD, Wu MM, Zhen YL, et al.Phrenic nerve transfer for brachial plexus motor neurotization [J]. Microsurgery, 1989,10(4):287-289.
    [3] Gilbert A, Pivato G, Kheiralla T. Long-term results of primary repair of brachial plexus lesions in children [J].Microsurgery, 2006,26(4):334-342.
    [4] Gu YD, Shen LY. Electrophysiological changes after severance of the C7 nerve root [J]. J Hand Surg, 1994,19B:69-71.
    [5] Gu YD, Zhang GM, Chen DS, et al. Seventh cervical nerve root transfer from the contralateral healthy side for treatment of brachial plexus root avulsion [J]. J Hand Surg 1992,17B: 518-521.
    [6] Songcharoen P, Wongtrakul S, Mahaisavariya B, et al. Hemi-contralateral C7 transfer to median nerve in the treatment of root avulsion brachial plexus injury [J]. J Hand Surg, 2001, 26A:1058-1064.
    [7] Waikakul S, Orapin S, Vanadurongwan V. Clinical results of contralateral C7 root neurotization to the median nerve in brachial plexus injuries with total root avulsions [J]. J Hand Surg, 1999, 24B: 556-560.
    [8] Gu YD, Chen DS, Zhang GM, et al. Long-term functional results of contralateral C7 transfer [J]. J Reconstr Microsurg,1998, 14: 57-59.
    [9] El-Gammal TA, El-Sayed A, Kotb MM. Surgical treatment of brachial plexus traction injuries in children, excluding obstetric palsy [J]. Microsurgery, 2003,23:14-17.
    [10] Chen L, Gu YD, Hu SN, et al. Contralateral C7 transfer for treatment of root avulsions of the brachial plexus in children - a report of 12 cases [J]. J Hand Surg (Am)2007,32(1):96-103.
    [11] Roricht S, Meyer BU, Niehaus L, et al. Long-term reorganization of motor cortex outputs after arm amputation [J]. Neurology ,1999,53:106-111.
    [12] Roricht S, Machetanz J, Irlbacher K, et al.Reorganization of human motor cortex after hand replantation [J]. Ann Neurol, 2001,50:240-249.
    [13] Wu CW, Kaas JH. Reorganization in primary motor cortex of primates with long-standing therapeutic amputations [J]. J Neurosci 1999,19:7679-7697.
    [14] Giraux P, Sirigu A, Schneider F, et al. Cortical reorganization in motor cortex after graft of both hands [J]. Nat Neurosci. 2001,4(7):691-692.
    [15] Malessy MJ, van der Kamp W, Thomeer RT, et al. Cortical excitability of the biceps muscle after intercostals-to-musculocutaneous nerve transfer [J]. Neurosurgery, 1998, 42: 787-795.
    [16] Perani D, Brunelli GA, Tettamanti M, et al. Remodelling of sensorimotor maps in paraplegia: a functional magnetic resonance imaging study after a surgical nerve transfer [J]. Neurosci Lett, 2001, 27;303(1):62-66.
    [17] Lou L, Shou T, Li Z, et al.Transhemispheric functional reorganization of the motor cortex induced by the peripheral contralateral nerve transfer to the injured arm [J]. Neuroscience, 2006,138(4):1225-1231.
    [1] Gu YD, Zhang GM, Chen DS, et al. Seventh cervical nerve root transfer from the contralateral healthy side for treatment of brachial plexus root avulsion [J]. J Hand Surg [Br], 1992, 17(5):518-521.
    [2] Chen L, Gu YD, Hu SN, et al .Contralateral C7 transfer for the treatment of brachial plexus root avulsions in children - a report of 12 cases [J]. J Hand Surg [Am].2007,32(1):96-103.
    [3] Waikakul S, Orapin S, Vanadurongwan V. Clinical results of contralateral C7 root neurotization to the median nerve in brachial plexus injuries with total root avulsions [J]. J Hand Surg [Br]. 1999, 24 (5):556-560.
    [4] Kristensson K, Nennesmo L, Persson L, et al. Neuron to neuron transmission of herpes simplex virus. Transport of virus from skin to brainstem nuclei [J]. J Neurol Sci, 1982 ,54(1):149-156.
    [5] Jian BJ, Acernese AW, Lorenzo J, et al. Afferent pathways to the region of the vestibular nuclei that participates in cardiovascular and respiratory control [J]. Brain Res.2005,1044: 241-250.
    [6] Neafsey EJ, Bold EL, Haas G, et al. The organization of the rat motor cotex: a microstimulation mapping study [J]. Brain Res,1986,396:77-96.
    [7] Martin X, Dolivo M. Neuronal and transneuronal tracing in the trigeminal system of the rat using the herpes virus suis [J]. Brain Res,1983,273:253.
    [8] Enquist LW. Infection of the mammalian nervous system by pseudorabies virus (PRV) [J]. Seminars in Virology, 1994, 5: 221-231.
    [9] Chen S, Yang M, Miselis RR, et al. Characterization of transsynaptic tracing with central application of pseudorabies virus [J]. Brain Res, 1999, 838(1):171-183.
    [10] Smeraski CA, Sollars PJ, Onilvie MD, et al. Suprachiasmatic nucleus input to autonomic circuits identified by retronrade transsynaptic transport of pseudorabies virus from the eye [J]. J Comp Neurol. 2004, 471 (3):298- 313.
    [11] Yang M, Altschuler S, Zhao X, et al. Catecholaminernic connections to visceral motoneurons established by transneuronal transfer of pseudorabies virus from individual viscera [J]. Soc Neurosci Abstr, 1992, 18 (2):207- 215.
    [12] Daniels D, Miselis RR, Flanagan-Cato LM. Central neuronal circuit innervating the lordosis producing muscles defined by transneuronal transport of pseudorabies virus [J]. J Neurosci, 1999, 19(7):2823-2833.
    [13] Kreier F, Pliers IJ, Voshol PJ, et al. Selective parasympathetic innervation of subcutaneous and intra abdominal fat-functional implications [J]. J Clin Invest, 2002, 110(9):1243-1250.
    [14] Collins JJ, Lin CE, Berthoud HR, et al. Vagal afferents from the uterus and cervix provide ditect connenction to the brainstem. Cell and Tissue Research [J], 1999, 295 (1):43-54.
    [15] Rotto-Percelay DM, Wheeler JG, Osorio FA, et al. Transneuronal labeling of spinal interneurons and sympathetic preganglionic neurons after pseudorabies virus injections in the rat medial gastrocnemius muscle [J]. Brain Res,1992,574:291-306.
    [16] Molinari HH, Schultze KE, Strominger NL. Gracile, cuneate, and spinal trigeminal projections to inferior olive in rat and monkey [J]. J Comp Neurol, 1996,375:467-480.
    [17] Gerendai I, Toth IE, Kocsis K, et al. Identification of CNS neurons involved in the innervation of the epididymis: a viral transneuronal tracing study [J]. Auton Neurosci. 2001, 92(1): 1-10.
    [18] Marson L, Murphy AZ. Identification of neural circuits involved in female genital responses in the rat: a dual virus and anterograde tracing study [J]. Am J Physiol Regul Integr Comp Physiol,2006,291(2):R419-428.
    [19] Rye DB, Saper CB, Lee HJ, et al. Pedunculopontine tegmental nucleus of the rat: cytoarchitecture, cytochemistry, and some extrapyramidal connections of the mesopontine tegmentum [J]. J Comp Neurol, 1987,259: 483-528.
    [20] Rotto-Percelay DM, Wheeler JG, Osorio FA, et al. Transneuronal labeling of spinal interneurons and sympathetic preganglionic neurons after pseudorabies virus injections in the rat medial gastrocnemius muscle [J]. Brain Res,1992,574:291-306.
    [21] Lovick TA, Differential control of cardiac and vasomotor activity by neurones in nucleus paragigantocellularis lateralis in the cat [J]. J Physiol, 1987,389:23-35.
    [22] Jones BE, Yang TZ. The efferent projections from the reticular formation and the locus coeruleus studied by anterograde and retrograde axonal transport in the rat [J]. J Comp Neuro. 1985,242: 56-92.
    [23] Strack AM, Sawyer WB, Platt KB, et al. CNS cell groups regulating the sympathetic outflow to the adrenal gland as revealed by transneuronal cell body labeling with pseudorabies virus [J]. Brain Res, 1989,49:274-296.
    [24] Li YQ, Takada M, Mizuno N. Collateral projections of single neurons in the periaqueductal gray and dorsal raphe nucleus to both the trigeminal sensory complex and spinal cord in the rat [J]. Neurosci Lett, 1993,153:152-156.
    [25] Card JP, Rinaman L, Schwaber JS, et al. Neurotropic properties of pseudorabies virus: uptake and transneuronal passage in the rat central nervous system [J]. J Neurosci, 1990,10: 1974-1994.
    [26] Card JP, Whealy ME, Robbins AK, et al. Two alpha-herpesvirus strains are transported differentially in the rodent visual system [J]. Neuron, 1991,6:957-969.
    [27] Rotto-Percelay DM, Wheeler JG, Osorio FA, et al.Transneuronal labeling of spinal interneurons and sympathetic preganglionic neurons after pseudorabies virus injections in the rat medial gastrocnemius muscle [J]. Brain Res, 1992,574:291-306.
    [28] Holstege G. The emotional motor system [J]. Eur J. Morphol. 1992,30:67-79.
    [29] Holstege G, The basic, somatic, and emotional components of the motor system in mammals [M]. The Rat Nervous System, 2nd edn., Academic Press, San Diego, 1995, 137-154.
    [30] Gerendai I, Toth IE, Boldogkoi Z, et al. Neuronal labeling in the rat brain and spinal cord from the ovary using viral transneuronal tracing technique [J]. Neuroendocrinology ,1998,68: 244-256.
    [1]顾玉东,张高孟,陈德松,等.健侧颈7神经根移位治疗臂丛根性撕脱伤.中华医学杂志,1989,69:563-565.
    [2]Chen L,Gu YD,Hu SN,et al.Contralateral C7 transfer for treatment of root avulsions of the brachial plexus in children - a report of 12 cases[J].J Hand Surg (Am) 2007,32(1):96-103.
    [3]Gu X,Staines WA,Fortier PA.Quantitative analyses of neurons projecting to primary motor cortex zones controlling limb movements in the rat[J].Brain Res,1999,835(2):175-187.
    [4]Gioanni Y,Lamarche M.A reappraisal of rat motor cortex organization by intracortical microstimulation[J].Brain Res,1985,344(1):49-61.
    [5]Rouzade-Dominguez ML,Miselis R,Valentino RJ.Central representation of bladder and colon revealed by dual transsynaptic tracing in the rat:substrates for pelvic visceral coordination[J].Eur J Neurosci,2003,18(12):3311-3324.
    [6]Czaja K,Kraeling RR,Barb CR.Are hypothalamic neurons transsynaptically connected to porcine adipose tissue[J]?Biochem Biophys Res Commun,2003,311(2):482-485.
    [7]Jang I,Cho K,Moon S,et al.A study on the centralneural pathway of the heart,Nei-Kuan(EH-6) and Shen-Men(He-7) with neural tracer in rats[J].Am J Chin Med,2003,31(4):591-609.
    [8]Aston-Jones G,Zhu Y,Card JP.Numerous GABAergic afferents to locus ceruleus in the pericerulear dendritic zone:possible intemeuronal pool[J].J Neurosci,2004,24(9):2313-2321.
    [9]Turner SL,Jenkins FJ.The roles of herpes simplex virus in neuroscience[J].J Neurovirol,1997,3(2):110-125.
    [10]Lee J,Erskine W.Pseudorabies virus tracing of neural pathways between the uterine cervix and CNS:effect of survival time,estrogen treatment,rhizotomy,and pelvic nerve transection[J].J Comp Neurol,2000,418(6):484-503.
    [11]Horváth S,Prandovszky E,Pankotai E,et al.Use of a recombinant pseudorabies virus to analyze motor cortical reorganization after unilateral facial denervation[J].Cereb Cortex,2005,15(4):378-84.
    [12]Card JP,Santone DJ,Gluhovsky MY,et al.Plastic reorganization of hippocampal and neocortical circuitry in experimental traumatic brain injury in the immature rat [J].J Neurotrauma,2005,22(9):989-1002.
    [13] Keller A, Arissian K, Asanuma H .Synaptic proliferation in the motor cortex of adult cats after long-term thalamic stimulation [J]. J Neurophysiol 1992, 68:295-308.
    [14] Kaas JH. Plasticity of sensory and motor maps in adult mammals [J]. Annu Rev Neurosci.1991,14: 137-167.
    [15] Darian-Smith C, Gilbert CD. Axonal sprouting accompanies functional reorganization in adult cat striate cortex [J]. Nature,1994, 368: 737-740.
    [16] Card JP. Exploring brain circuitry with neurotropic viruses: new horizons in neuroanatomy [J]. Anat Rec, 1998,253:176-185.
    [17] Card JP, Enquist LW, Miller AD, et al . Differential tropism of pseudorabies virus for sensory neurons in the cat [J]. J Neurovirol, 1997 , 3(1):49-61.
    [18] Malessy MJ, van der Kamp W, Thomeer RT, et al .Cortical excitability of the biceps muscle after intercostals-to-musculocutaneous nerve transfer [J]. Neurosurgery,1998,42:787-795.
    [19] Shinoda Y, Yokota JI, Futami T. Divergent projection of individual corticospinal axons to motor neurons of multiple muscles in the monkey [J]. Neurosci Lett ,1981,23:7-12.
    [20] Cheng H, Shoung HM, Wu ZA, et al. Functional connectivity of the transected brachial plexus after intercostal neurotization in monkeys [J]. J Comp Neurol 1997,380:155-163.
    [21] Kawai H. Intercostal nerve transfer, in Kawai H, Kawabata H (eds): Brachial Plexus Palsy. Singapore: World Scientific, 2000, 161-236.
    [22] Kawai H, Murase T, Shibuya R, et al. Magnetic stimulation of bicepsafter intercostal cross-innervation for brachial plexus palsy. A study of motor evoked potentials in 25 patients [J]. J Bone Joint Surg (Br), 1994,76:666-669.
    [23] Malessy MJ, Bakker D, Dekker AJ, et al. Functional magnetic resonance imaging and control over the biceps muscle after intercostal-musculocutaneous nerve transfer [J]. J Neurosurg, 2003,98:261-268.
    [24] Lou L, Shou T, Li Z, et al.Transhemispheric functional reorganization of the motor cortex induced by the peripheral contralateral nerve transfer to the injured arm.Neuroscience [J]. 2006, 138(4): 1225-1231.
    [1]Hallett M.Plasticity in the human motor system[J].Neuroscientist.1999,5:324-332.
    [2]Gu X,Staines WA,Fortier PA.Quantitative analyses of neurons projecting to primary motor cortex zones controlling limb movements in the rat[J].Brain Res.1999,835(2):175-187.
    [3]Gioanni Y,Lamarche M.A reappraisal of rat motor cortex organization by intracortical microstimulation[J].Brain Res,1985,344(1):49-61
    [4]Stoney SD,Thompson WD,Asanuma H.Excitation of pyramidal tract cells by intracortical microstimulation:effective extent of stimulating current[J].J Neurophysiol.1968,31(5):659-669.
    [5]Jerome NS,John PD.Plasticity and primary motor cortex.Annual Review of Neuroscience[J].Health & Medical Complete,2000,23:393-415.
    [6]Humphrey DR,Reed DJ.Separate cortical systems for control of joint movement and joint stifness:reciprocal activation and coactivation of antagonist muscles[J].Adv Neurol,1983,39:347-372.
    [7]Sanes JN,Suner S,Donoghue JP.Dynamic organization of primary motor cortex out put to target muscle in adult rats I.Long-term patterns of reorganization following motor or mixed peripheral nerve lesion[J].Exp Brain Res,1990,79:479-491.
    [8]Xerri C,Merzenich MM,Peterson BE,et al.Plasticity of primary somatosensory codex paralleling sensorimotor skill recovery from stroke in adult monkeys[J].J Neurophysio 1,1998,79(4):2119-2148.
    [9]Kleim JA,Barbay S,Cooper NR,et al.Motor learning-dependent synaptogenesis is localized to functionally reorganized motor codex[J].Neurobiol Learn Mem.2002,77(1):63-77.
    [10]O'Boyle MP,Do V,Derrick BE,et al.In Vivo Recordings of Long-Term Potentiation and Long -Term Depression in the Dentate Gyrus of 20 the Neonatal Rat[J].J Neurophysiol.2004,91(2):613-622.
    [11]卢祖能,曾庆杏,李承晏,主编.肌电图学[M].北京:人民卫生出版社,2000,93-94.
    [12]Buchthal F,Schmalbruch H.Contraction times and fibre types in intact human muscle[J].Acta Physiol Stand,1970,79(4):435-52.
    [13]Liepert J,Tegenthof M,Malin JP.Changes of cortical motor area size during immobilization[J].Electroencephalogr Clin Neurophysiol,1995,97:382-386.
    [14]Pascual-LeoneA,Dang N,Cohen LG,et al.Modulation of muscler esponses evoked by transcranial magnetic stimulation during the acquisition of new fine motor skills[J].J Neurophysiol,1995,74:1037-1045.
    [15]Bolles R.Grooming behavior in the rat[J].J Comp Physiol Psychol,1960,53:306.
    [16]Chen L,Gu YD,Hu SN,et al.Contralateral C7 transfer for treatment of root avulsions of the brachial plexus in children - a report of 12 cases[J].J Hand Surg (Am) 2007,32(1):96-103.
    [17]Gilbert A,Pivato G,Kheiralla T.Long-term results of primary repair of brachial plexus lesions in children[J].Microsurgery,2006,26(4):334-342.
    [18]孙贵新,顾玉东,史其林,等.健侧颈7神经根移位同时修复两条神经的初步临床疗效[J].中华手外科杂志,2004,20(4),224-225.
    [1] Neeraj J, Sherre L. Reorganization of Somatosensory Cortex After Nerve and Spinal Cord Injury [J]. News Physiol Sci, 1998, 13 (6): 143-149.
    [2] Thomas E, Brigitte R. Reorganization of Human Cerebral Cortex:The Range of Changes following Use and Injury [J].Neuroscientist, 2004,10:129-141.
    [3] Nudo RJ, Plautz EJ,M iliken GW.Adaptive plasticity in primate motor cortex as a consequence of behavioral experience and neuronal injury [J].Seminars in neuroscience, 1997,9 : 13-23.
    [4] Garraghty PE, Hanes DP, Florence SL, et al. Pattern of peripheral deafferentation predicts reorganizational limits in adult primate somatosensory cortex [J]. Somatosens Mot Res,1994,11(2):109-117.
    [5] Flor H, Elbert T, Knecht S, et al. Phantom-limb pain as a perceptual correlate of cortical reorganization following arm amputation [J]. Nature,1995, 375 (6531): 482-484.
    [6] Mogilner A, Grossman JA, Ribary U, et al. Somatosensory cortical plasticity in adult humans revealed by magnetoencephalography [J]. Proc Natl Acad Sci U S A, 1993, 90(8): 3593-3597.
    [7] Lundborg G. A 25-year perspective of peripheral nerve surgery: Evolving neuroscientific concepts and clinical significance [J]. J Hand Surg, 2000a, 25A: 391-414.
    [8] Lundborg G, Masquelet AC, Castanheira A. Bridging nerve defects - the role of tissue interpositioning. In: Severe Traumatic Defects of the Upper Limb [M]. London:Martin Dunitz Ltd,2003:132-133..
    [9] Rose'n B, Lundborg G, Dahlin LB, et al. Nerve repair: Correlation of restitution of functional sensibility with specific cognitive capacities [J]. J Hand Surg,1994,19B:452-458.
    [10] Lundborg G, Rose'n B. Sensory relearning after nerve repair [J]. Lancet, 2001,358:809-810.
    [11] Lundborg G. Brain plasticity and hand surgery: An overview [J]. J Hand Surg,2000b,25B:2422-2252.
    [12] Wall JT, Xu J,Wang X. Human brain plasticity: an emerging view of the multiple substrates and mechanisms that cause cortical changes and related sensory dysfunctions after injuries of sensory inputs from the body [J]. Brain Res Rev,2002,39:181-215.
    [13] Chen R, Cohen LG, Hallett M. Nervous system reorganization following injury [J]. Neuroscience,2002,111:761-773.
    [14] Silva AC, Rasey SK, Wu X. Initial cortical reactions to injury of the median and radial nerves to the hands of adult primates [J]. J Comp Neurol 1996, 366: 700-716.
    [15] Kaas JH, Florence SL. Mechanisms of reorganization in sensory systems of primates after peripheral nerve injury [J]. Adv Neurol,1997,73:147-158.
    [16] Nguyen QT, Sanes JR, Lichtman JW. Pre-existing pathways promote precise projection patterns [J]. Nat Neurosci,2002,5:861-867.
    [17] Florence SL, Hackett TA, Strata F. Thalamic and cortical contributions to neural plasticity after limb amputation [J]. J Neurophysiol,2000;83 (5): 3154-3159.
    [18] Dostrovsky JO. Immediate and long-term plasticity in human somatosensory thalamus and its involvement in phantom limbs [J]. Pain,1999, 6(suppl): S37-43.
    [19] Hua SE, Garonzik IM, Lee JI, et al. Microelectrode studies of normal organization and plasticity of human somatosensory thalamus [J]. J Clin Neurophysiol,2000,17:559-574.
    [20] Garraghty PE, Kaas JH. Functional reorganization in adult monkey thalamus after peripheral nerve injury [J]. Neuroreport, 1991,2:747-750.
    [21] Kalaska J, Pomeranz B. Chronic peripheral nerve injuries alter the somatotopic organization of the cuneate nucleus in kittens [J]. Brain Res, 1982, 236:35-47.
    [22] Dostrovsky, JO,Millar J, Wall PD. The immediate shift of afferent drive of dorsal column nucleus cells following deafferentation: a comparison of acute and chronic deafferentation in gracile nucleus and spinal cord [J]. Exp Neurol, 1976, 52: 480-495.
    [23] Knyihar-Csillik E, Seres L, Rakic P, et al. Dorsal root origin of axonal growth cones: regenerative synapto-neogenesis in the upper spinal dorsal horn of primates [J]. Neurobiology, 1997,5: 481-488.
    [24] Liss AG, Wiberg M. Loss of nerve endings in the spinal dorsal horn after a peripheral nerve injury. An anatomical study in Macaca fascicularis monkeys [J]. Eur J Neurosci, 1997,9:2187-2192.
    [25] Garraghty PE, LaChica EA, Kaas JH. Injuryinduced reorganization of somatosensory cortex is accompanied by reductions in GABA staining [J]. Somatosens Mot Res,1991,8:347-354.
    [26] Jacobs KM, Donoghue JP. Reshaping the cortical motor map by unmasking latent intracortical connections [J]. Science,1991,251:944-947.
    [27] Florence SL, Kaas JH. Large-scale reorganization at multiple levels of the somatosensory pathway follows therapeutic amputation of the hand in monkeys [J]. J Neurosci,1995,15: 8083-8095.
    [28] Keller A, Arissian K, Asanuma H. Synaptic proliferation in the motor cortex of adult cats after long-term thalamic stimulation [J]. J Neurophysiol 1992, 68: 295- 308.
    [29] Curtiss S, de Bode S. How normal is grammatical development in the right hemisphere following hemispherectomy? The root infinitive stage and beyond [J]. Brain Lang, 2003, 86(2): 193-206.
    [30] Lundborg G, Rosen B. Sensory relearning after nerve repair [J]. Lancet, 2001, 358:809-810.
    [31] Florence SL, Jain N, Pospichal MW, et al. Central reorganization of sensory pathways following peripheral nerve regeneration in fetal monkeys [J]. Nature, 1996,381:69-72.
    [32] Sanes JN, Suner S, Donoghue JP. Dynamic organization of p rimary motor cortex out put to target muscle in adult rats. Long-term patterns of reorganization following motor or mixed peripheral nerve lesion [J]. Exp Brain Res, 1990, 79: 479-491.
    [33] Pons T, Garraghty PE, Ommaya AK, et al. Massive cortical reorganization after sensory deafferentationin adult macaques [J]. Science, 1991, 252: 1857-1860.
    [34] Lundborg G. Nerve injury and repair-a challenge to the plastic brain. Richard P. Bunge memorial lecture [J]. J Peripher Nerv Syst 2003, 8: 209-226.
    [35] Miltner WH, Bauder H, Sommer M, et al. Effects of constraint-induced Movement therapy on patient swith chronic motor deficits after stroke:a replication [J]. Stroke, 1999, 30: 586-592.
    [36] Liepert J, Storch P, Fritsch A, et al. Motor cortex disinhibition in acute stroke [J]. Clin Neurophysiol, 2000, 111: 671-676.
    [37] Bavelier D, Neville HJ. Cross-modal plasticity: where and how [J]? Nat Rev Neurosci, 2002, 3: 443-452.
    [38] Rose'n B, Lundborg G. Early use of artificial sensibility to improve sensory recovery after repair of the median and ulnar nerve [J]. Scand J Plast Reconstr Surg Hand Surg, 2003, 37: 54-57.
    [39] Lundborg G . Enhancing posttraumatic nerve regeneration [J]. J Peripher Nerv Syst, 2002, 7: 139-140.
    [40] Johansson BB, Grabowski M. Functional recovery after brain infarction: plasticity and neural transplantation [J]. Brain Pathol, 1994, 4: 85-95.
    [41] Kilgard MP, Merzenich MM. Cortical map reorganization enabled by nucleus basalis activity [J]. Science,1998, 279: 1714-1718.
    [42] Patil MM, Linster C, Lubenov E, et al. Cholinergic agonist carbachol enables associative long-term potentiation in piriform cortex slices [J]. J Neurophysiol 1998, 80: 2467-2474.
    [43] Mohammed AH. Effects of cholinesterase inhibitors on learning and memory in rats: a brief review with special reference to THA [J]. Acta Neurol Scand Suppl 1993,149:13-15.
    [44] Brasil NJ, Valls SJ, Pascual LA, et al. Rapid modulation of human cortical motor outputs following ischaemic nerve block [J]. Brain,1993, 116: 511-525.
    [45] Weiss T, Miltner WH, Liepert J, et al. Rapid functional plasticity in the primary somatomotor cortex and perceptual changes after nerve block [J]. Eur J Neurosci, 2004, 20: 3413-3423.
    [46] Bjorkman A, Rosen B, Lundborg G. Enhanced function in nerve-injured hands after contralateral deafferentation [J]. Neuroreport, 2005, 16: 517-519.
    [47] Ward NS, Cohen LG. Mechanisms underlying recovery of motor function after stroke [J]. Arch Neurol, 2004, 61:1844-1848.
    [48] Bjorkman A, Rosen B, van Westen D, et al. Acute improvement of contralateral hand function after deafferentation [J]. Neuroreport, 2004, 15: 1861-1865.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700