高速逆流色谱分离手性药物以及pH区带精制逆流色谱的应用基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文主要考察了两类手性试剂在高速逆流色谱(HSCCC)手性分离中的应用,对逆流色谱以及pH区带精制逆流色谱在手性药物以及异构体分离中的色谱保留机制以及相关理论进行了探讨。两类手性试剂是指水溶性手性试剂羟丙基-β-环糊精(HP-β-CD)以及脂溶性手性试剂酒石酸酯类化合物。选择了共10个外消旋体药物以及药物中间体作为手性拆分中的研究对象,包括药物中间体苯基琥珀酸、α-环已基扁桃酸,2-芳基丙酸类药物萘普生、布洛芬、酮基布洛芬、氟比洛芬、舒洛芬以及卡洛芬,p-受体阻滞剂类药物普萘洛尔和吲哚洛尔外消旋体。
     首先,通过手性萃取拆分研究确定了高速逆流色谱拆分苯基琥珀酸(PSA)的两相溶剂体系为:正已烷:甲基叔丁基醚:水相(0.5:1.5:2,v/v),其中水相为0.1mol/L磷酸盐缓冲溶液pH2.51并含0.05mol/L HP-β-CD。考察了影响对映体分布系数与分离因子的主要因素。计算了环糊精对PSA对映体手性识别过程中的焓变和熵变。测定了PSA对映体在两相溶剂中的Langmuirian等温分布图。采用制备型高速逆流色谱手性拆分了712mgPSA外消旋体。通过分析型高速逆流色谱实验探讨了色谱保留机制并计算了手性试剂-对映体包结常数。同时,提出了双相识别(S/M)逆流色谱手性分离模式,采用该方法拆分α-环已基扁桃酸(a-CHMA)对映体。推导出双相识别中分离因子的表达式,表明在双相识别体系中其对映体的选择性分离因子与两种手性试剂形成的识别能力成乘积关系,而非加和关系。合成了14种酒石酸酯,通过手性萃取拆分研究确定了高速逆流色谱拆分α-CHMA的两相溶剂体系:正已烷:甲基叔丁基醚:水相(9:1:10,v/v),其中水相为0.1mol/L磷酸盐缓冲溶液pH2.51并含0.1mol/L手性试剂HP-β-CD,双相识别过程中同时在有机相中添加0.3mo1/L的D-酒石酸-2-乙基已酯。对比研究了单相识别与双相识别模式中影响对映体分布系数与分离因子的主要因素。测定了双相识别过程中α-CHMA对映体在两相溶剂中的Langmuirian等温分布图。分别在单相识别与双相识别模式中采用制备型高速逆流色谱手性分离α-CHMA对映体。探讨了单相识别模式逆流色谱手性分离α-CHMA的色谱保留机制以及手性试剂-对映体包结常数的计算,提出了在逆流色谱中测定第二个平衡包结常数的方法。经过研究发现HP-β-CD在对CHMA对映体进行手性识别过程中以2:1的形式结合,并非通常认为的1:1结合模式。
     其次,将闭路循环洗脱模式(CLRM)应用于HSCCC手性拆分中。经3次循环洗脱,将2-芳基丙酸类药物萘普生(NAP)对映体分离度由原来的0.7提高至1.4,基本达到完全分离。选择的溶剂体系为正已烷:乙酸乙酯:水相(8:2:10,v/v),其中水相为0.1mol/L磷酸盐缓冲液pH2.6并含有0.1mol/L手性试剂HP-β-CD。考察了溶剂体系中影响萘普生对映体分布系数与分离因子的主要因素。环糊精在水相中不但起到手性识别作用,更重要的是通过环糊精的包结作用提高了有机分子在水相中的溶解度,这对于逆流色谱溶剂体系的选择是非常重要的。同时研究了其它5个2-芳基丙酸类药物外消旋体的拆分工作,但是均未获得成功。对HSCCC分离机理进行了探讨,特别是针对HSCCC分离度方程进行了深入的讨论,以分离NAP对映体为例探讨了如何提高对映体之间分离度问题,对逆流色谱手性分离具有指导性意义。
     然后,采用氯仿:水相(1:1,v/v)为溶剂体系,其中水相为0.05mol/L醋酸盐缓冲溶液pH4.4(三乙胺调节)并含0.1mol/L硼酸,有机相为氯仿含有0.1mol/L的L-酒石酸正已酯,采用HSCCC成功拆分了β-受体阻滞剂类药物普萘洛尔与吲哚洛尔。拆分原理主要基于在有硼酸的作用下,通过配位键等作用提高了对普萘洛尔和吲哚洛尔对映体的识别能力。另外,采用溶剂体系氯仿:水相(1:l,v/v),其中水相为0.1mol/L硼酸并添加5mmol/L的盐酸作为洗脱酸,有机相为氯仿含有0.1 mol/L的L-酒石酸正丁酯并添加20mmol/L的三乙胺作为保留碱,实现了pH区带精制逆流色谱拆分普萘洛尔对映体。
     最后,理论分析表明pH区带逆流色谱对于分离离子型化合物来说若有分离区带的交叉现象,主要有以下三个原因引起:一是进样量的增加;二是如果被分离的溶质疏水性大小与酸碱性pKa值类似会引起重叠,第三种情况是疏水性大小与酸碱性相差都比较大,但是这两种作用互相抵消,则也是引起峰型的交叉的原因。对于后两种情况,解决这个问题的方法是同时提高保留酸(碱)与洗脱碱(酸)的浓度。通过pH区带分离咖啡酰基奎尼酸类3个立体异构体组分包括3-咖啡酰基奎尼酸、3,5-二咖啡酰基奎尼酸和3,4-二咖啡酰基奎尼酸的实验验证了上述结果。
     HSCCC是一种良好的手性分离制备色谱,其主要缺陷是理论塔板数较低,本文建立了双相识别基础上的HSCCC手性分离方法,该模式可大大提高HSCCC手性分离中的分离因子;通过采用灵活多样的HSCCC洗脱模式如闭路循环洗脱模式以及pH区带精制逆流色谱模式也可以在一定程度上弥补HSCCC技术分离效率较低的缺点从而提高对映体之间的分离度;为提高对映体之间的分离度,考察了HSCCC色谱分离度方程,在HSCCC仪器以及手性试剂确定的情况下,主要可以通过提高对映体分布系数以及提高分离柱内固定相保留值的方法来获取相对较高的分离度。上述研究对逆流色谱手性分离具有指导性意义。
This work concentrates on the application of two chiral selectors including hydrophilic chiral selector hydroxypropyl-β-cyclodextrin (HP-β-CD) and lipophilic chiral selector dialkyl tartrate in enantioseparation of ten racemic drugs or intermediates by high speed counter-current chromatography (HSCCC). The chromatographic retention mechanism of racemates by HSCCC with HP-β-CD as chiral selector was proposed and discussed. Three stereoisomeric caffeoylquinic acids were selected and separated by pH-zone-refining counter-current chromatography (CCC) to study on elution sequence and zone overlap phenomena, which were frequently observed during pH-zone-refining CCC separation. The ten racemic drugs or intermediates were as follows:intermediates phenylsuccinic acid and a-cyclohexylmandelic acid,2-arylpropionic acid drugs including naproxen, ibuprofen, ketoprofen, flurbiprofen, suprofen and carprofen, andβ-blocker drugs propranolol and pindolol.
     Firstly, HSCCC was applied to resolution of phenylsuccinic acid (PSA) enantiomers with HP-β-CD as chiral selector and chromatographic retention mechanism was proposed. The two-phase solvent system composed of n-hexane-methyl tert-butyl ether-0.1 mol/L phosphate buffer solution with pH=2.51 containing 0.05 mol/L HP-β-CD (0.5:1.5:2, v/v). Influence factors involved in the chiral separation were investigated, including concentration of chiral selector, pH of aqueous phase and separation temperature. Thermodynamic parameters of inclusion complex were calculated. The correlation between both separation factor (a) and peak resolution (Rs) and the concentration of HP-β-CD was investigated. The chromatographic retention mechanism of PSA by HSCCC with HP-P-CD as chiral selector was discussed. A mathematical model showing the relationship of capacity factor (k') with HP-β-CD concentration, hydrogen ion concentration, complex formation constant (Kf) and dissociation constants (Ka) of PSA was proposed, in which the complex formation constants were calculated. Loading limits for HSCCC separation run with a given value of chiral selector was determined and Langmuirian isotherm for the enantiomers in the two phase solvent system was investigated. Under optimum separation conditions,712 mg of PSA racemate was separated using preparative apparatus. Meanwhile, a novel chiral separation technology named biphasic chiral recognition HSCCC was proposed and applied to resolution of racemic a-cyclohexylmandelic acid (CHMA). The biphasic chiral recognition HSCCC was performed by adding lipophilic (-)-2-ethylhexyl tartrate in the organic stationary phase and hydrophilic HP-β-CD in the aqueous mobile phase, which preferentially recognized the (-)-enantiomer and (+)-enantiomer, respectively. The two-phase solvent system composed of n-hexane-methyl tert-butyl ether-0.1 mol/L phosphate buffer solution with pH=2.51 (9:1:10, v/v/v) was selected. Totally 14 dialkyl tartrate derivatives were synthesized. Factors affecting the chiral separation were investigated. The mechanism involved in this biphasic recognition chiral separation by HSCCC was discussed. Loading limits for a given value of chiral selectors were estimated as for HSCCC separation. Under optimum separation conditions,365 mg of sample was separated using the preparative HSCCC. Enantioseparation of racemic CHMA by HSCCC using only HP-β-CD as chiral selector in the aqueous phase was also compared. The chromatographic retention mechanism was studied and an efficient method was developed for calculation of complex formation constant between HP-β-CD and CHMA enantiomer. Experimental results showed that a 2:1 stoichiometry between the cyclodextrin host and the guest molecule was found during chiral recognition instead of 1:1 stoichiometry.
     In the second place, closed loop recycling mode (CLRM) HSCCC was successfully applied to resolution of 2-arylpropionic acid drug (R,S)-naproxen (NAP) using HP-β-CD as chiral selector. The two-phase solvent system composed of n-hexane-ethyl acetate-0.1 mol/L phosphate buffer solution (8:2:10, v/v/v) was selected. Influence factors for the chiral separation process were investigated and several thermodynamic parameters of NAP-HP-β-CD inclusion complex were calculated.29 mg of (R,S)-NAP was separated using preparative recycling HSCCC. Resolution factor for NAP enantiomers could be improved from 0.7 to 1.2 when CLRM HSCCC was used. The successful enantioseparation of other five 2-arylpropionic acid drugs were not be achieved by HSCCCC using HP-[3-CD as chiral selector because enantioseparation factor was too small as for HSCCC. Theoretical aspects of HSCCC were demonstrated in order to improve resolution factor of NAP enantiomers. Exact equation for resolution factor of HSCCC was discussed in detail, which might be helpful for chiral separation by HSCCC.
     Then, dialkyl L-tartrate was used as chiral selector for enantioseparation ofβ-blockers propranolol and pindolol by HSCCC as well as pH-zone-refining counter-current chromatography. Dialkyl L-tartrate exhibited a distinctive chiral discrimination with respect to racemic P-amino-alcohols drugs propranolol and pindolol in the liquid-liquid two phase system in the presence of boric acid because a borate complex of the 1,2-diol group of the tartrate and the amino-alcohol was formed in the system. A two-phase system chloroform:aqueous (1:l,v/v) consisting of a chloroform solution of 0.1 mol/L dihexyl L-tartrate and an aqueous solution of 0.1 mol/L boric acid was successfully used for enantioseparation of propranolol and pindolol by HSCCC. pH-zone-refining CCC was also successfully used for preparative enantioseparation of racemic propranolol and 356 mg of propranolol racemate was separated by this method.
     Finally, principles about the elution sequence and zone overlaps during pH-zone-refining CCC were discussed. The chances of obtaining zone overlaps increase when the amount of injection in the CCC machine increase, the difference between the compounds to be separated is low (similar pKa and similar distribution coeffincients). The typical way to solve the problem is to increase both retainer and eluter concentrations. Two isomeric dicaffeoylquinic acids, including 3, 5-dicaffeoylquinic acid and 3,4-dicaffeoylquinic acid along with 3-caffeoylquinic acid were studied using pH-zone-refining CCC. The elution sequence of the isomeric dicaffeoylquinic acids was discussed in terms of their acidities, hydrophilicity, and steric configuration. The possible explanations were offered for the mechanism of separation.
     Although HSCCC is a powerful preparative technique with its high capacity, low cost of stationary phases and low solvent consumption, it yields low efficiency compared to classic liquid chromatography. The current studies demonstrated that biphasic chiral recognition would give much higher separation factor for enantiomers than monophasic chiral recognition during HSCCC enantioseparation, which could make up its disadvantage to some extent. Closed loop recycling elution mode and pH-zone-refining counter-current chromatography could also be applied to improve resolution factor. Under constant theoretical plates and the same chiral selector, better resolution factor could be obtained by improving distribution factor or retention of stationary phase in the separation column.
引文
[1]姚彤炜主编,手性药物分析,北京:人民卫生出版社,2008.
    [2]曾苏,王胜浩,杨波编著,手性药理学与手性药物分析,北京:科学出版社,2009.
    [3]黄量,戴立信主编,手性药物的化学与生物学,北京:化学工业出版社,2002.
    [4]尤启冬,林国强主编,手性药物-研究与应用,北京:化学工业出版社,2004.
    [5]陈立仁编著,液相色谱手性分离,北京:科学出版社,2006.
    [6]G. Subramanian, Chiral Separation Techniques:A Practical Approach, Second edition, Wiley-VCH Verlag GmbH,2001.
    [7]张天佑.逆流色谱技术.北京:北京科学技术出版社,1991.
    [8]曹学丽.高速逆流色谱分离技术及应用.北京:化工出版社,2005.
    [9]W.D. Conway. Overview of countercurrent chromatography. In:Moderm countercurrent chromatography. Vol.593. W.D. Conway and R.J. Petroski (Ed). New York:ACS Symposium Series,1995.
    [10]Y. Ito. Development of countercurrent chromatography and other centrifugal separation methods. In:A century of separation science. H.J. Issaq. (Ed.). New York:Marcel Dekker Inc, 2001.
    [11]Y. Ito, R.L. Bowman. Countercurrent chromatography:liquid-liquid partition chromatography without solid support. Science,1970,167 (3916):281-283.
    [12]Y. Ito, R.L. Bowman. Countercurrent chromatography:liquid-liquid partition chromatography without solid support.J. Chromatogr. Sci.1970,8(6):315-323.
    [13]L.C. Craig. Identification of small amounts of organic compounds by distribution studies II. Separation by counter-current distribution, J. Biol. Chem.,1944,155:519-534.
    [14]T. Tanimura, J.J. Pisano, Y. Ito, R.L. Bowman. Droplet countercurrent chromatography. Science,1970,169(3940):54-56.
    [15]K. Hostettmann, M. Hostettmann, A. Marston. Preparative chromatography techniques. Applications in natural product isolation. Berlin:Springer-Verlag,1986.
    [16]K. Hostettmann. Saponins with molluscicidal activity from Hedera helix L. Helv. Chimica. Acta,1980,63(3):606-609.
    [17]A.P. Foucault. (Ed.). Centrifugal partition chromatography. New York:Marcel Dekker Inc, 1994.
    [18]W. Murayama, T. Kobayashi, Y. Kosuge, H. Yano, Y. Nunogaki, K. Nunogaki. A new centrifugal counter-current chromatograph and its application. J. Chromatogr. A,1982,239: 643-649.
    [19]A. Berthod, D.W. Armstrong. Centrifugal partition chromatography. Ⅰ. General features.J.Liq. Chromatogr.,1988,11(3):547-566.
    [20]A. Berthod, D.W. Armstrong. Centrifugal partition chromatography. Ⅱ. Selectivity and efficiency.J.Liq. Chromatogr.,1988,11(3):567-583.
    [21]A.P. Foucault, O. Bousquet, F.L. Gaffic, J. Cazes. Countercurrent chromatography with a new centrifugal partition chromatographic system.J. Liq. Chromatogr.,1992,15 (15-16):2721-2733.
    [22]Y Ito. Efficient preparative counter-current chromatography with a coil planet centrifuge.J. Chromatogr.,1981,214(1):122-125.
    [23]Y. Ito, J. Sandlin, W.G. Bowers. High-speed preparative counter-current chromatography with a coil planet centrifuge.J. Chromatogr.,1982,244(2):247-258.
    [24]Y. Ito, W.D. Conway. Development of countercurrent chromatography. Anal. Chem.1984,56 (4):534A-536A,538A,540A,542A,544A,548A,550A,552A,554A.
    [25]Y. Ito. Development of high-speed countercurrent chromatography. Adv. Chromatogr.,1984 (24):181-226.
    [26]Y. Ito. Foam countercurrent chromatography based on dual countercurrent system. J. Liq. Chromatogr.,1985,8(12):2131-2152.
    [27]H. Oka, K.I. Harada, M. Suzuki, H. Nakazawa,Y. Ito. Foam countercurrent chromatography of bacitracin with nitrogen and additive-free water. Anal. Chem.,1989,61(17):1998-2000.
    [28]H. Oka, K.I. Harada, M. Suzuki, H. Nakazawa,Y. Ito. Foam counter-current chromatography of bacitracin. Ⅰ. Batch separation with nitrogen and water free of additives.J. Chromatogr.,1989, 482(1):197-205.
    [29]H. Oka, K.I. Harada, M. Suzuki, H. Nakazawa, Y. Ito. Foam counter-current chromatography of bacitracin. Ⅱ. Continuous removal and concentration of hydrophobic components with nitrogen gas and distilled water free of surfactants or other additives. J. Chromatogr.,1991,538(1): 213-218.
    [30]Y. Ito, E. Kitazume, M. Bhatnagar, F.D. Trimble. Cross-axis synchronous flow-through coil planet centrifuge (type XLL). Ⅰ. Design of the apparatus and studies on retention of stationary phase. J. Chromatogr,1991,538(1):59-66.
    [31]Y. Shibusawa, Y. Ito. Protein separation with aqueous-aqueous polymer systems by two types of counter-current chromatographs.J. Chromatogr,1991,550(1-2):695-704.
    [32]Y. Ito. Centrifugal precipitation chromatography applied to fractionation of proteins with ammonium sulfate.J. Liq. Chromatogr.& Rel. Technol.,1999,22(18):2825-2836.
    [33]Y. Ito. Centrifugal precipitation chromatography:Principle, apparatus, and optimization of key parameters for protein fractionation by ammonium sulfate precipitation. Anal. Biochem.,2000, 227(1):143-153.
    [34]Y. Ito, F. Yang, P.E. Fitze, J.V. Sullivan. Spiral disk assembly for HSCCC:Column design and basic studies on chromatographic resolution and stationary phase retention. J. Liq. Chromatogr.& Rel. Technol.,2003,26(9-10):1355-1372.
    [35]Y. Ito, F. Yang, P. Fitze, P. Jimmie; Ⅰ. David. Improved spiral disk assembly for high-speed counter-current chromatography. J. Chromatogr.A,2003,1017(1-2):71-81.
    [36]Y. Ito. in:N.B. Mandava, Y. Ito (Eds.), Countercurrent Chromatography:Theory and Practice, Marcel Dekker, New York,1988.
    [37]W.D. Conway. Countercurrent Chromatography:Apparatus, Theory and Applications, VCH, New York,1990.
    [38]W.D. Conway, R.J. Petroski (Eds.), Modern Countercurrent Chromatography (ACS Symposium Series No.593), American Chemical Society, Washington, DC,1995.
    [39]Y Ito. W.D. Conway (Eds.), High-speed Countercurrent Chromatography, Wiley-Interscience, New York,1996.
    [40]J.-M. Menet, D. Thi'ebaut (Eds.), Countercurrent Chromatography, Marcel Dekker, New York,1999.
    [41]A. Berthod (Ed.), Countercurrent Chromatography, Elsevier, Amsterdam,2003.
    [42]Y. Ito. in:E. Heftmann (Ed.), Chromatography V, Part A, Chapter 2, Journal of Chromatography Library, Elsevier, Amsterdam,1992, pp. A69-A107.
    [43]柳仁民.高速逆流色谱及其在天然产物分离中的应用,青岛:中国海洋大学出版社.2008.
    [44]Y. Ito. in:A. Townshend, G. Fullerlove (Eds.), Encyclopedia of Analytical Science, vol.2, Academic Press, London.1995.
    [45]Y. Ito. in:J. Cazes (Ed.), Encyclopedia of Chromatography, MarceIDekker, New York,2001.
    [46]Y. Ito. High-speed countercurrent chromatography. CRC Crit. Rev. Anal. Chem.,1986,17(1) 65-143.
    [47]Y. Ito. Recent advances in counter-current chromatography. J. Chromatogr. A,1991,538(1): 3-25.
    [48]曹学丽,王尉,裴海闰.逆流色谱技术及其在食品领域的应用进展.北京工商大学学报(自然科学版),2010,28(3):6-11.
    [49]Y. Ito. Countercurrent chromatography. J. Biochem. Biophys. Methods.,1981,5(2):105-129.
    [50]A. Foucault. Centrifugal Partition Chromatography, Chromatographic Science Series, Vol.68. New York:Marcel Dekker Inc,1995.
    [51]Y. Ito. In:Advances in Chromatography, J.C. Giddings, E. Grushka, J. Cazes. (Ed.). Vol.25. Ch.6. New York:Marcel Dekker Inc,1984, pp.
    [52]Y. Ito. Countercurrent Chromatography, Journal of Chromatography Library Series, Vol.51A. Amsterdam:Elsevier,1992, pp.
    [53]Y. Ito. In:High-speed Countercurrent Chromatography. Y. Ito, W.D. Conway. (Ed.). Chemical Analysis, Vol.132. New York:Wiley,1996.
    [54]A. Berthod, K. Talabardon. In:Countercurrent chromatography. J.M. Menet, D. Thiebaut. (Ed.). New York:Marcel Dekker Inc,1999.
    [55]Y. Ito. Golden rules and pitfalls in selecting optimum conditions for high-speed counter-current chromatography. J. Chromatogr. A,2005,1065(2):145-168.
    [56]Y. Ito. Speculation on the mechanism of unilateral hydrodynamic distribution of two immiscible solvent phases in the rotating coil. J. Liq. Chromatogr,1992,15 (15-16):2639-2675.
    [57]H. Tsugita, Zikken Kagaku Koza 2 (Kisogijutsu Ⅱ), Maruzen, Tokyo,1956, pp.303-361, Chapter 9 (in Japanese).
    [58]L.C. Craig, Comprehensive Biochemistry, vol.4, Elsevier, Amsterdam,1962.
    [59]D.G. Martin, in:W.D. Conway, R.J. Petroski (Eds.), Modern Countercurrent Chromatography (ACS Symposium Series, No.593), American Chemical Society, Washington, DC,1995 (Chapter1O).
    [60]J.H. Renault, J.M. Nuzillard, O. Intes, A. Maciuk, in:A. Berthod(Eds.), Countercurrent Chromatography, Elsevier, Amsterdam,2003 (Chapter 3).
    [61]F. Oka, H. Oka, Y. Ito. Systematic search for suitable two-phase solvent systems for high-speed counter-current chromatography. J. Chromatogr.,1991,538 (1):99-108.
    [62]Y. Ito, W.D. Conway. Experimental observations of the hydrodynamic behavior of solvent systems in high-speed counter-current chromatography:Ⅲ. Effects of physical properties of the solvent systems and operating temperature on the distribution of two-phase solvent systems. J. Chromatogr,1984,301:405-414.
    [63]Q.Z. Du, C.J. Wu, J.G. Qian, P.D. Wu, Y. Ito. Relationship between the flow-rate of the mobile phase and retention of the stationary phase in counter-current chromatography. J. Chromatogr. A,1999,835(1-2):231-235.
    [64]D.E. Schaufelberger, T.G. McCloud, J.A. Beutler. Laser-light-scattering detection for high-speed countercurrent chromatography. J. Chromatogr,1991,538 (1) 87-90.
    [65]H. Oka, Y. Ito, in:J. Cazes (Ed.), Encyclopedia of Chromatography, Marcel Dekker, New York,2001.
    [66]F.-Q. Yang, Y. Ito. On-line flow-injection detection system and its application to the measurement of ethanol transfer and osmosis rate in centrifugal precipitation chromatography. J. Liq. Chromatogr. Rel. Technol.2004,27 (19):2979-2985.
    [67]A. Weisz, A.L. Scher, K. Shinomiya, H.M. Fales, Y. Ito. A new preparative-scale purification technique:pH-zone-refining countercurrent chromatography. J. Am. Chem. Soc.,1994,116 (2): 704-708.
    [68]Y. Ito, Y. Ma. pH-zone-refining countercurrent chromatography. J. Chromatogr. A,1996,753 (1):1-36.
    [69]Y. Ito, K. Shinomiya, H.M. Fales, A. Weisz, A.L. Scher, in:W.D.Conway, R.J. Petroski (Eds.), ACS Monograph on Modern Counter-current Chromatography,1995.
    [70]Y. Ito, in:J. Cazes (Ed.), Encyclopedia of Chromatography, Marcel Dekker, New York,2001.
    [71]A. Weisz, Y. Ito, in:I.D. Wilson, E.R. Adlard, M. Cooke, C.F. Poole (Eds.), Encyclopedia of Separation Science, vol.6 (Ⅲ), Academic Press, London,2000, pp.2588-2062.
    [72]Y. Ito, K. Shinomiya, H.M. Fales. Abstract 54P in the 1993 Pittsburgh Conference and Exposition on Analytical Chemistry and Applied Spectroscopy in Atlant GA.1993.
    [73]Y. Ito, K. Shinomiya, H.M. Fales. Presented at the Symposium on Countercurrent Chromatography in the 206th ACS National Meeting. Chicago:1993.
    [74]Y. Ito, Y. Shibusawa, H.M. Fales, H.J. Cahnman. Studies on an abnormally sharpened elution peak observed in counter-current chromatography. J. Chromatogr.,1992,625 (2) 177-181.
    [75]Y. Ma, Y. Ito, A. Foucault. Resolution of gram quantities of racemates by high-speed counter-current chromatography. J. Chromatogr. A,1995,704 (1):75-81.
    [76]Y. Ma, Y. Ito, in:J. Cazes (Ed.), Encyclopedia of Chromatography, Marcel Dekker, New York, 2001.
    [77]A. Weisz, A.L. Scher, Y. Ito. Isolation of 4'-bromo-4,5,6,7-tetrachlorofluorescein from a synthetic mixture by pH-zone-refining counter-current chromatography with continuous pH monitoring.J.Chromatogr. A,1996,732 (2):283-290.
    [78]E. Perez, C. Minguillon. Counter-Current Chromatography in the Separation of Enantiomers. Editor(s):Subramanian, Ganapathy. Chiral Separation Techniques (3rd Edition),2007.
    [79]A.P. Foucault. Enantioseparations in counter-current chromatography and centrifugal partition chromatography. J. Chromatogr A,2001,906(1-2):365-378.
    [80]Y. Ma, Y. Ito, A. Berthod. Chiral separation by high-speed countercurrent chromatography. Chromatographic Science Series.1999,82 (Countercurrent Chromatography), pp.223-248.
    [81]T.J. Ward, K.D. Ward. Chiral Separations:Fundamental Review 2010. Analytical Chemistry (Washington, DC, United States),2010,82(12):4712-4722.
    [82]Y. Ma, Y. Ito, Chiral CCC. Cazes, Jack. (Ed.). Encyclopedia of Chromatography (3rd Edition), 2010,1:413-415.
    [83]Y.J. Pan, Y.B. Lu. Recent progress in countercurrent chromatography.J.Liq. Chromatogr. Rel. Technol.,2007,30(5-8):649-679.
    [84]严志宏,艾萍,袁黎明,周岩,蔡瑛.逆流色谱分离手性化合物.化学通报,2006,69(3):w033/1-w033/6.
    [85]M.Kleinschnitz, M. Schmitt, D. Waldmann, P. Schreier. Analysis of chiral organic molecules by chromatography. Editor(s):G. Sontag, W. Pfannhauser. Current Status and Future Trends in Analytical Food Chemistry, Proceedings of the European Conference on Food Chemistry,8th, Vienna, Sept.18-20,1995,1:47-61.
    [86]V.A. Davankov, A.S. Bochkov, Y.P. Belov. Ligand-exchange chromatography of racemates: XV. Resolution of α-amino acids on reversed-phase silica gels coated with n-decyl-L-histidine. J. Chromatogr.,1981,218:547-557.
    [87]T. Takeuchi, R. Horikawa, T. Tanimura. Complete resolution of DL-isoleucine by droplet counter-current chromatography.J.Chromatogr,1984,284:285-288.
    [88]W.H. Pirkle, P.G. Murray. Chiral stationary phase design:use of intercalative effects to enhance enantioselectivit. J. Chromatogr,1993,641:11-19.
    [89]Y. Ma, Y. Ito.Chiral separation of enantiomers by high-speed countercurrent chromatography. PCT Int. Appl. (1996),25 pp. WO 9618895, Application:WO 1995-US16300.
    [90]Y. Ma, Y. Ito. Chiral separation by high-speed countercurrent chromatography. Anal. Chem., 1995,67(17):3069-3074.
    [91]Y. Ma,Y. Ito. Affinity countercurrent chromatography using a ligand in the stationary phase. Anal. Chem.,1996,68(7):1207-1211.
    [92]Y. Ma,Y. Ito, A. Berthod. A chromatographic method for measuring Kf of enantiomer-chiral selector complexes. J. Liq. Chromatogr.& Rel. Technol.,1999,22(19):2945-2955.
    [93]L. Oliveros, P.F. Puertolas, C. Minguillon, E. Camacho-Frias, A. Foucault, F.L. Goffic. Donor-acceptor chiral centrifugal partition chromatography:complete resolution of two pairs of amino-acid derivatives with a chiral Ⅱ donor selector. J. Liq. Chromatogr.,1994.17(11): 2301-2318.
    [94]B. Delgado, E. Perez, M.C. Santano, C. Minguillon. Enantiomer separation by counter-current chromatography optimisation and drawbacks in the use of L-proline derivatives as chiral selectors. J. Chromatogr. A,2005,1092(1):36-42.
    [95]A.M. Perez, C. Minguillon. Retention of fluorinated chiral selectors in biphasic fluorinated solvent systems and its application to the separation of enantiomers by countercurrent chromatography.J.Chromatogr. A,2010,1217(7):1094-1100.
    [96]K. Buchholz, B. Schulte, J. Gmehling, J. Martens. Separation of enantiomers by liquid-liquid counter current chromatography. Chem. Eng. Technol.,1998,21(5):404-408.
    [97]K. Buchholz, B. Schulte, J. Gmehling, J. Martens. Enantiomer separation by liquid-liquid countercurrent chromatography. Chemie-Ingenieur-Technik,1998,70(7):850,852-856.
    [98]D.W. Armstrong, Y.B. Tang, S.S. Chen, Y.W. Zhou, C. Bagwill, J.R. Chen. Macrocyclic antibiotics as a new class of chiral selectors for liquid chromatography. Anal. Chem.,1994,66(9): 1473-1484.
    [99]D.W. Armstrong, Y.W. Zhou. Use of macrocyclic antibiotic as the chiral selector for enantiomeric separations by TLC. J. Liq.Chromagr,1994,17:1695-1701.
    [100]D.W. Armstrong, K. Rundlett, G.L. Reid III. Use of a macrocyclic antibiotic, Rifamycin B, and indirect detection for the resolution of racemic amino alcohols by CE. Anal. Chem.,1994, 66(10):1690-1695.
    [101]P. Duret, A. Foucault, R. Margraff Vancomycin as a chiral selector in centrifugal partition chromatography. J. Liq. Chromatogr.& Rel. Technol.,2000,23(2):295-312.
    [102]BA Bergholdt, SV Lehmann. High-speed separation of ormeloxifene enantiomers using sulfated β-cyclodextrin in capillary electrophoresis. Chirality,1998,10:699-704.
    [103]J. Breinholt, S.V. Lehmann, A.R. Vanning. Enantiomer separation of 7-des-methyl-ormeloxifene using sulfated β-cyclodextrin in countercurrent chromatography. Chirality,1999,11(10):768-771.
    [104]J. Breinholt, A.R. Varming, in:Poster presented at the 11th International Symposium on Chiral Discrimination, Chicago, IL, USA, July25-28,1999.
    [105]Y.Wei, S.J. Du, Y. Ito. Enantioseparation of lomefloxacin hydrochloride by high-speed counter-current chromatography using sulfated-β-cyclodextrin as a chiral selector. J. Chromatogr. B,2010,878(28):2937-2941.
    [106]魏芸,杜世娟.手性药物盐酸洛美沙星的拆分方法,中国发明专利,申请号200910089013.X,公开号CN101607956A.
    [107]L.M. Yuan, J.C. Liu, Z.H. Yan, P. Ai, X. Meng, Z.G. Xu. Enantioseparation of chlorpheniramine by high-speed countercurrent chromatography using carboxymethyl-β-cyclodextrin as chiral selecter. J. Liq. Chromatogr & Rel. Technol.,2005,28(19): 3057-3063.
    [108]P. Ai, J.C. Liu, M. Zi, Z.H. Deng, Z.H. Yan, L.M. Yuan. Enantioseparation of aminoglutethimide by high-speed counter-current chromatography using carboxymethly-β-cyclodextrin as chiral select. Chin. Chem. Lett.,2006,17(6):787-790.
    [109]S.Q. Tong, J.Z. Yan,Y.-X. Guan, Y.E. Fu, Y. Ito. Separation of a-cyclohexylmandelic acid enantiomers using biphasic chiral recognition high-speed counter-current chromatography. J. Chromatogr. A,2010,1217(18):3044-3052.
    [110]S.Q. Tong, J.Z. Yan, Y.-X. Guan, B. Zheng, L.Y. Zhao. Enantioseparation of 2-arylpropionic acid nonsteroidal anti-inflammatory drugs by high speed counter-current chromatography using hydroxypropyl-β-cyclodextrin as chiral selector.J.Chromatogr. A, revised.
    [111]S.Q. Tong, J.Z. Yan, Y.-X. Guan, Y.M. Lu. Enantioseparation of phenylsuccinic acid by high speed counter-current chromatography using hydroxypropyl-β-cyclodextrin as chiral selector. J. Chromatogr. A, revised.
    [112]T. Arai, H. Kuroda. Distribution behavior of some drug enantiomers in an aqueous two-phase system using countercurrent extraction with protein. Chromatographia,1991,32(1-2): 56-60.
    [113]K. Shinomiya, Y. Kabasawa, Y. Ito. Enantiomeric separation of commercial D,L-kynurenine with an aqueous two-phase solvent system by cross-axis coil planet centrifuge. J. Liq. Chromatogr. & Rel. Technol.,1998,21(1-2):135-141.
    [114]A.P. Foucault. Enantioseparations in countercurrent chromatography and centrifugal partition chromatography. J. Chromatogr. A,2001,906(1-2):365-378.
    [115]E. Perez, M.J. Santos, C. Minguillon. Application of cellulose and amylose arylcarbamates as chiral selectors in countercurrent chromatography. J. Chromatogr. A,2006,1107(1-2):165-174.
    [116]E. Perez, C. Minguillon. Optimisation of the derivatization in cellulose-type chiral selectors for enantioseparation by centrifugal pattition chromatography. J. Sep. Sci.,2006,29(10): 1379-1389.
    [117]P. Franco, J. Blanc, W.R. Oberleitner, N.M. Maier, W. Lindner, C. Minguillon. Enantiomer separation by countercurrent chromatography using cinchona alkaloid derivatives as chiral selectors. Anal. Chem.,2002,74(16):4175-4183.
    [118]E. Gavioli, N.M. Maier, C. Minguillon, W. Lindner. Preparation enantiomer separation of dichlorprop with a cinchona-derived chiral selector employing centrifugal partition chromatography and high-performance liquid chromatography:a comparative study. Anal. Chem., 2004,76(19):5837-5848.
    [119]E. Kim,Y.M. Koo, D.S. Chung. Chiral counter-current chromatography of gemifloxacin guided by capillary electrophoresis using (+)-(18-crown-6)-tetracarboxylic acid as a chiral selector. J. Chromatogr. A,2004,1045(1-2):119-124.
    [120]E. Kim, S.I. Cho, D.S. Chung. Chiral separation of gemifloxacin using crown ether as a chiral selector in countercurrent chromatography. Abstracts of Papers,224th ACS National Meeting, Boston, MA, United States, August 18-22,2002
    [121]B. Domon, K Hostettmann, K Kovacevie, V. Prelog. Separation of the enantiomers of (±)-norephedrine by rotation locular counter-current chromatography.J. Chromatogr,1982, 250:149-151.
    [122]V. Prelog, Z. Stojanac, K. Kovacevie, Uber die Enantiomerentrennung durch Verteilung zwischen flussigen Phasen, Helv. Chim. Acta,1982,65(1):377-384.
    [123]Y. Cai, Z.H. Yan, M. Zi, L.M. Yuan. Preparative enantioseparation of DL-α-methylbenzylamine by high-speed countercurrent chromatography using L-(+)-tartaric acid as chiral selector. J. Liq. Chromatogr& Rel. Technol,2007,30(9-10):1489-1495.
    [124]Y.C. Lv, Z.H. Yan, C. Ma, L.M. Yuan. Preparative enantioseparation of ofloxacin by high speed countercurrent chromatography using L-(+)-tartaric acid as chiral selector. J. Liq. Chromatogr & Rel. Technol.,2010,33(13):1328-1334.
    [125]W.H. Pirkle, C.J. Welch. An improved chiral stationary phase for the chromatographic separation of underivatized naproxen enantiomers. J. Liquid Chromatogr.,1992,15 (11): 1947-1955.
    [126]W.H. Pirkle, C.J. Welch, B. Lamm, Design, synthesis, and evaluation of an improved enantioselective naproxen selector.J.Org. Chem.,1992,57 (14):3854-3860.
    [127]N. Rubio, S. Ignatova, C. Minguillon, I.A. Sutherland. Multiple dual-mode countercurrent chromatography applied to chiral separations using a (S)-naproxen derivative as chiral selector. J. Chromatogr. A,2009,1216(48):8505-8511.
    [128]N. Rubio, C. Minguillon. Preparative enantioseparation of (±)-N-(3,4-cis-3-decyl-1,2,3,4-tetrahydrophenanthren-4-yl)-3,5-dinitrobenzamide by centrifugal partition chromatography. J. Chromatogr. A,2010,1217(8):1183-1190.
    [129]S. Oya, J.K. Snyder. Chiral resolution of a carboxylic acid using droplet counter-current chromatography. J. Chromatogr,1986,370:333-338.
    [130]J.T. Hsu. Separation of mixtures by two-phase systems. U.S. Patent,1992,10 pp. Cont.-in-part of U.S.4,980,065.
    [131]J.T. Hsu. Two-phase system comprising chiral compound and water soluble polymer for mixture separation. U.S. Patent,1990,8 pp. US 4980065.
    [132]Y. Takahashi, R. Sawa, H. Koike, N. Kanomata. Method for optical resolution of optical isomers using asymmetry source and two-phase solvent system and optical resolution apparatus. Jpn. Kokai Tokkyo Koho 2006,23pp.
    [133]S. Muralidharan, J. Zhuang, H.L. Ma. Chiral separations with novel tryptophan dendrimers, Abstracts of Papers,223rd ACS National Meeting, Orlando, FL, United States, April 7-11,2002.
    [134]R.C. Bruening, F. Derguini, K. Nakanishi, Preparative scale isolation of 11-cis-retinal from isomeric retinal mixture by centrifugal partition chromatography. J. Chromatogr.,1986,357(2): 340-343.
    [135]D.W. Armstrong, R. Manges, I.W. Wainer, Use of centrifugal partition chromatography and proteins in the preparative separation of amino acid enantiomers. J. Liq. Chromatogr. & Rel. Technol.,1990,13(18):3571-3581.
    [136]O.R. Bousquet, J. Braun, F. Le Goffic. Countercurrent chromatography as an enzymatic reactor for organic synthesis. Tet. Lett.,1995,36 (45) 8195-8196.
    [137]M.J. van Buel, L.A.M. van der Wielen, K.Ch.A.M. Luyben, in:A.P. Foucault (Ed.), Centrifugal Partition Chromatography, Chromatographic Science Series, Vol.68, Marcel Dekker, New York,1994, p.51, Chapter 3.
    [138]M.J. van Buel, L.A.M. van der Wielen, K.Ch.A.M. Luyben. Pressure drop in centrifugal partition chromatography.J.Chromatogr. A,1997,773 (1-2):1-12.
    [139]M.J. van Buel, L.A.M. van der Wielen, K.Ch.A.M. Luyben. Modelling gradient elution in centrifugal partition chromatography.J. Chromatogr. A,1997,773 (1-2):13-22.
    [140]M.J. van Buel, L.A.M. van der Wielen, K.Ch.A.M. Luyben. Effluent concentration profiles in centrifugal partition chromatography. AIChE,1997,43 (3):693-702.
    [141]M.J. van Buel, F.E.D. van Haldema, L.A.M. van der Wielen, K.Ch.A.M. Luyben. Flow regimes in centrifugal partition chromatography. AIChE,1998,44 (6):1356-1362.
    [142]J.L. den Hollander, B.I. Stribos, M.J. van Buel, K.Ch.A.M. Luyben, L.A.M. van der Wielen. Centrifugal partition chromatographic reaction for the production of chiral amino acids. J. Chromatogr. B,1998,711(1-2):223-235.
    [143]J.L. den Hollander, Y.W. Wong, K.Ch.A.M. Luyben, L.A.M. van der Wielen. Non-separating effects in a centrifugal partition chromatographic reactor for the enzymatic production of L-amino acids. Chem. Eng. Sci.,1999,54 (15-16):3207-3215.
    [144]M. Sardin, D. Schweich, J. Villermaux, in:G. Ganetsos, P.E. Barker (Eds.), Preparative and Production Scale Chromatography, Marcel Dekker, New York,1993.
    [145]M. Mazzotti, B. Neri, D. Gelosa, M. Morbidelli. Dynamics of a chromatographic reactor: esterification catalyzed by acidic resins. Ind. Eng. Chem. Res.,1997,36 (8):3163-3172.
    [146]李乃瑄,肖如亭,董迎,高素华,杨俊杰.双相识别HPLC法拆分普萘洛尔对映体.应用化学,2003,20(11):1084-1087.
    [147]李乃瑄,肖如亭.HPLC双相识别拆分氯胺酮对映体.药物分析杂志,2005,25(11):1339-1342.
    [148]胡珊珊,吴怡祖,史美仁.β-环糊精手性流动相HPLC法拆分α-环已基扁桃酸对映体,精细化工,2004,21(10):731-732.
    [149]王钟辉,满瑞林,唐课文.HP-β-CD对苯基琥珀酸对映体色谱保留机制及拆分机理的研究.分析测试学报,2009,28(2):162-167.
    [150]宁凤容,黄可龙,刘素琴,焦飞鹏.手性流动相HPLC法拆分萘普生对映体的研究.分析讨验室,2006,25(6):1-5.
    [151]J.C. Ye, W.Y. Yu, G.S. Chen, Z.G. Shen, S. Zeng, Enantiomeric separation of 2-arylpropionic acid nonsteroidal anti-inflammatory drugs by HPLC with hydroxypropyl-β-cyclodextrin as chiral mobile phase additive. Biomed. Chromatogr.,2010,24:799-807.
    [152]Y. Abe, T. Shoji, M. Kobayashi, W. Qing, N. Asai, H. Nishizawa. Enantioselective distribution of amino-alcohols in a liquid-liquid two-phase system containing dialkyl L-tartrate and boric acid. Chem. Pharm. Bull,1995,43(2):262-265.
    [153]Y. Abe, T. Shoji, S. Fukui, M. Sasamoto, H. Nishizawa. Enantioseparation by dual-flow countercurrent extraction:its application to the enantioseparation of (+-)-propranolol. Chem. Pharm. Bull.,1996,44(8):1521-1524.
    [154]张雪曼,阮源萍.脲型手性固定相高效液相色谱拆分苯基琥珀酸对映体.色谱,2003, 21(5):533-533.
    [155]阮源萍,郑子达,张雪曼,黄培强.手性流动相添加剂高效液相色谱法分离苯基琥珀酸对映体.分析测试学报,2004,23(1):55-57.
    [156]K.W. Tang, J.M. Yi, Y.B. Liu, X.Y. Jiang, Y. Pan. Enantioselective separation of R,S-phenylsuccinic acid by biphasic recognition chiral extraction. Chem. Engineer. Sci.,2009, 64(18):4081-4088.
    [157]R. Kuhn, F. Erni, T. Bereuter, J. Hausler. Chiral recognition and enantiomeric resolution based on host-guest complexation with crown ethers in capillary zone electrophoresis. Anal. Chem.,1992,64 (22):2815-2820.
    [158]R. Cirilli, F. La Torre. Stereoselective analysis of benazepril and its stereoisomers by reversed-phase high-performance liquid chromatography on a chiral AGP column. J. Chromatogr. A,1998,818(1)53-60.
    [159]T. Shiraiwa, Y. Sado, S. Fujii, M. Nakamura, H. Kurokawa. Optical resolution of (±)-phenylsuccinic acid by using (-)-proline as resolving agent. Bull. Chem. Soc. Jpn.,1987,60 (2): 824-826.
    [160]A. Gunnar, R.M. John. Methods and compositions for treating urinary incontinence using optically pure (s)-oxybutynin. US patent:5532278,1996.
    [161]G. Abery, R.M. John, Y. Fang. Treating urinary incontinence using (s)-desethyloxybutynin. US patent:5677346,1997.
    [162]P.B. Roger, L.L. Jorge, X.M.Francis. Carbonate intermediates useful in the preparation of optically active cyclohexylphenylglycolate. US patent:5973182,1999.
    [163]胡珊珊,吴怡祖,史美仁.α-环已基扁桃酸的制备及拆分.淮海工学院学报(自然科学版),2004,13(2):44-47.
    [164]胡珊珊,吴怡祖,史美仁.以L-酪氨酸甲酯为拆分剂制备S-(+)-α-环已基扁桃酸.南京工业大学学报,2005,27(1):37-40.
    [165]K.G. Feitsma, J. Bosman, B.F.H. Drenth, R.A. de Zeeuw. A study of the separation of enantiomers of some aromatic carboxylic acids by high-performance liquid chromatography on a P-cyclodextrin-bonded stationary phase.J. Chromatogr.,1985,333(1):59-68.
    [166]刘佳佳,周丹,唐课文.酒石酸酯/β-环糊精分离体系分离α-环已基扁桃酸对映体.药学学报,2006,41(4):376-379.
    [167]周丹,刘佳佳,唐课文.手性酯类萃取剂萃取拆分α-环已基扁桃酸外消旋体.分析测试学报,2006,25(6):49-52.
    [168]Kewen Tang,Yuanyuan Chen, Kelong Huang, Jiajia Liu. Enantioselective resolution of chiral aromatic acids by biphasic recognition chiral extraction. Tetrahedron:Asymmetry.,2007, 18(20):2399-2408.
    [169]Dushu Huang, Kelong Huang, Shiping Chen, Suqin Liu, Jingang Yu. Enantioseparation of racemic a-cyclohexyl-mandelic acid across hollow fiber supported liquid membrane. J. Braz. Chem. Soc,2008,19(3):557-562.
    [170]E. Heldin, K.J. Lindner, C.Pettersson, W. Lindner, R. Rao. Tartaric acid derivatives as chiral selectors in liquid chromatography. Chromatographia,1991,32(9-10):407-416.
    [171]R.M.C. Viegas, C.A.M. Afonso, J.G. Crespo, I.M. Coelhoso. Modelling of the enantio-selective extraction of propranolol in a biphasic system. Sep. Purif. Technol.,2007,53(3) 224-234.
    [172]B. Tan, G.S. Luo, J.D. Wang. Extractive separation of amino acid enantiomers with co-extractants of tartaric acid derivative and Aliquat-336. Sep. Purif. Techno!.,2007,53 (3): 330-336.
    [173]V. Prelog, M. Kovakevi, M. Egli. Lipophilic tartaric acid esters as enantioselective ionophores. Angew. Chem.,1989,28 (9):1147-1152.
    [174]D.W. Armstrong, F. Nome, L.A. Spino, T.D. Golden. Efficient detection and evaluation of cyclodextrin multiple complex formation. J. Am. Chem. Soc.,1986,108(7):1418-1421.
    [175]Q.B. Han, J.Z. Song, C.F. Qiao, L. Wong, H.X. Xu. Preparative separation of gambogic acid and its C-2 epimer using recycling high-speed counter-current chromatography. J. Chromatogr. A, 2006,1127 (1-2):298-301.
    [176]J. Xie, J. Deng, F. Tan, J. Su. Separation and purification of echinacoside from Penstemon barbatus (Can.) Roth by recycling high-speed counter-current chromatography. J. Chromatogr. B, 2010,878 (28):2665-2668.
    [177]R.A. Sheldon (Eds). Chirotechnology. Marcel Decker:New York (1993) 56.
    [178]H.Y. Lin, S.W. Tsai. Dynamic kinetic resolution of (R, S)-naproxen 2,2,2-trifluoroethyl ester via lipase-catalyzed hydrolysis in micro-aqueous isooctane. J. Mol. Catal B Enzym.,2003, 24-25:111-120.
    [179]H. Yokoyama, T. Horie, S. Awazu. Naproxen-induced oxidative stress in the isolated perfused rat liver. Chem. Biol. Interact.,2006,160 (2):150-158.
    [180]K. Sakaki, L. Giorno, E. Drioli. Lipase-catalyzed optical resolution of racemic naproxen in biphasic enzyme membrane reactors. J. Memb. Sci.,2001,184 (1):27-38.
    [181]K. Nakata, Y.-S. Onda, K. Ono, I. Shiina. An effective kinetic resolution of racemic a-arylpropanoic acids, a-arylbutanoic acids, and (3-substituted-a-arylpropanoic acids with bis(9-phenanthryl)methanol as a new achiral nucleophile in the asymmetric esterification using carboxylic anhydrides and the acyl-transfer catalyst. Tetrahedron Lett.,2010,51 (43):5666-5669.
    [182]P. Franco, C. Minguillon, L. Oliveros. Solvent versatility of bonded cellulose-derived chiral stationary phases for high-performance liquid chromatography and its consequences in column loadability. J. Chromatogr. A,1998,793 (2):239-247.
    [183]J. Olsovska, M. Flieger, F. Bachechi, A. Messina, M. Sinibaldi. Direct resolution of optically active isomers on chiral packings containing ergoline skeleton.6. Enantioseparation of profens. Chirality,1999,11 (4):291-300.
    [184]L.O. Healy, J. P. Murrihy, A. Tan, D. Cocker, M. Mcenery, J.D. Glennon. Enantiomeric separation of R, S-naproxen by conventional and nano-liquid chromatography with methyl-β-cyclodextrin as a mobile phase additive. J. Chromatogr. A,2001,924 (1-2):459-464.
    [185]宁凤容,黄可龙,焦飞鹏.HP-β-CD手性流动相HPLC法拆分萘普生对映体的色谱保留机制和拆分机理研究.化学通报,2006,6:425-429.
    [186]严全鸿.2-芳基丙酸类药物对映体的色谱法拆分研究[硕士学位论文].浙江大学,2004,pp.2.
    [187]J.T.F. Keurentjes, L.J.W.M. Nabuurs, E.A. Vegter. Liquid membrane technology for the separation of racemic mixtures. J. Memb Sci.,1996,113(2):351-360.
    [188]田丰娟,松丽涛,蒋新宇.酮洛芬对映体的双相识别手性萃取分离.化学通报,2010,73(7):634-639.
    [189]扬福全.逆流色谱的基本关系式.色谱,1999,11(3):136-139.
    [190]W.D. Conway. Countercurrent Chromatography, Theory and Practice (Chromatographic science series, Vol.44), Ed. N.B. Mandava and Y. Ito, Marcel Dekker, New York,1988, pp.455.
    [191]C. Pettersson, E. Heldin, H.W. Stuurman. Separation of enantiomeric aminoalcohols and amines using (2R,3R)-di-n-butyl tartrate as chiral selector in reversed-phase partition chromatography. J. Chromatogr. Sci.,1990,28 (8):413-420.
    [192]E. Heldin, N.H. Huynh, C.Pettersson. (2R,3R)-Dicyclohexyl tartrate as a chiral mobile phase additive. J.Chromatogr,1991,585 (1):35-44.
    [193]K. Nakamura, T. Saeki, M. Matsuo, S. Hara, Y. Dobashi. Direct resolution of enantiomeric diols by capillary gas chromatography on a chiral polysiloxane derived from (R,R)-tartramide. Anal. Chem.,1990,62(5):539-541.
    [194]Y. Dobashi, K. Nakamura, T. Saeki, M. Matsuo, S. Hara, A. Dobashi. New chiral polysiloxane derived from (R, R)-tartramide for enantiomer resolution by capillary gas chromatography.J. Org. Chem.,1991,56(10):3299-3305.
    [195]李乃瑄,阎秀芳,肖如亭.HPLC手性离子对试剂法拆分普萘洛尔对映体.应用化工.2003,32(2):48-50.
    [196]A. Weisz, A. Idina, J. Ben-Ari, M. Karni, A. Mandelbaum, Y. Ito.Preparative separation of isomeric and stereoisomeric dicarboxylic acids by pH-zone-refining counter-current chromatography.J.Chromatogr. A,2007,1151 (1-2):82-90.
    [197]B. Billardello, A. Berthod, in A. Berthod (Ed.), Counter-Current Chromatography-The Support Free Liquid Stationary Phase (Comprehensive Analytical Chemistry, Vol.38), Elsevier, Amsterdam,2002, pp.181-193.
    [198]Y. Ito, K. Shinomiya, H.M. Fales, A. Weisz, A.L. Scher in W.D. Conway and R.J. Petrowski (Ed.), Modern Counter-Current Chromatography (ACS Symposium Series, Vol.593), American Chemical Society, Washington,1995, pp.156-183.
    [199]J.B. Friesen, G.F. Pauli. Rational development of solvent system families in counter-current chromatography. J. Chromatogr. A,2007,1151 (1-2):51-59.
    [200]M.Y. Moridani, A. Siraki, T. Chevaldina, H. Scobie, Peter J. O'Brien. Quantitative structure toxiciry relationships for catechols in isolated rat hepatocytes. Chem. Biol. Interact.,2004,147 (3): 297-307.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700