新型复合电解质低温陶瓷燃料电池的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
低温(400-600oC)陶瓷燃料电池(CFC)是近年来燃料电池领域的研究热点,具有很好的商业化前景。发展实用的低温CFC的关键在于开发高性能、低成本的材料和工艺。本文基于新型复合电解质材料,开发了与之相匹配的电极材料,探索了合适的电池制备工艺,初步设计了电池堆的结构,建立了新型复合电解质燃料电池的理论电化学模型,为进一步研究开发低温CFC打下了基础。
     本文从Ce0.8Sm0.2O1.9(SDC)-碳酸盐复合电解质着手,制备了不同组成的材料体系,研究了材料的结构与电性能。结果表明,SDC与碳酸盐形成了两相复合体系,而且其导电行为具有两个显著特征:电导跃迁温度和电导率增强效应。电导跃迁温度主要与碳酸盐类型有关,通常比碳酸盐的共熔点低20-40oC。在电导跃迁温度附近,其电导率比SDC的电导率高几倍到数十倍,电导率增强效应与不同方法制备的SDC粉体、碳酸盐含量、碳酸盐摩尔比及碳酸盐类型有关。
     采用冷压工艺制备了SDC-碳酸盐复合电解质单电池,考察了上述材料因素和电池结构及操作条件等对电池性能的影响。结果表明,所有SDC-碳酸盐复合电解质低温CFC均表现出良好的性能。其中,采用SDC-LiNaCO3复合电解质的氢-空燃料电池在500oC时获得的最高性能为690mWcm-2,400oC时最高输出超过300mWcm-2。首次发现,该复合电解质在燃料电池气氛中的离子导电性质随LiNaCO3的含量而改变。发展了一体化热压新工艺制备较大尺寸的单电池。该电池在500-600oC能稳定工作,500oC时以约500mWcm-2的输出稳定放电超过12h,但在475oC以下性能不稳定。设计并组装了2-3个单电池的短堆,其中三片堆在550oC时的最大输出功率为1.55W,改进气体歧管密封有望提高其输出性能。
     制备了新型Ce0.8Zn0.2O1.9(ZDC)-碳酸盐复合电解质、类钙钛矿结构La2NiO4+δ(LNO)基阴极和NiO基双组分阳极,研究表明,采用这些新材料的复合电解质燃料电池适合在低温范围内工作,而且材料的匹配性良好。
     在离子-电子混合传导体系的基础上,结合缺陷化学理论,建立了共离子传导复合电解质燃料电池的一维电化学模型,并比较了SDC基复合电解质CFC与SDC电解质CFC的操作特性,表明新型共离子传导复合电解质CFC更有优势。
Low-temperature (400-600oC) ceramic fuel cell (CFC) has received much attention in recent years due to its promising prospect for commercialization. The key to develop practical low-temperature CFC is to develop materials and techniques with high performance and low cost. In this thesis, based on the innovative composite electrolyte materials, compatible electrode materials were developed, and suitable techniques were explored to fabricate single cell, furthermore, the structure of the fuel cell stack was designed. In addition, a theoretical electrochemical model was proposed to describe the fuel cell with a co-ionic conducting composite electrolyte. All these have laid a foundation for further R & D in low temperature CFC.
     Beginning from Ce0.8Sm0.2O1.9(SDC)-carbonate composite electrolytes, the material systems with various compositions were prepared, and the structure and electrical properties of these materials were studied. The results show that SDC and carbonates have formed a composite, and its conductivity behavior has two typical features: conductivity transition temperature and conductivity enhancement effect. The conductivity transition temperature is mainly dependent of the type of carbonates, and it is normally 20-40oC lower than the eutectic melting point of the carbonates. Around the conductivity transition temperature, the conductivities of these composite electrolytes are several to several ten times to that of SDC. The conductivity enhancement effect is related to the SDC powder prepared by different methods, the content of the carbonates, the mole ratio of the carbonates and the type of the carbonates.
     Single cells with SDC-carbonate composite electrolytes were fabricated by a cold-pressing technique, and the effects of the above factors, cell structure and operating conditions on the cell performances were investigated. The results show that all cells with SDC-carbonate composite electrolytes have exhibited excellent performances. Among them, the best performances of 690 mWcm-2 at 500oC and more than 300 mWcm-2 at 400oC were achieved by the hydrogen-air fuel cells with SDC-LiNaCO3 composite electrolytes. It has found for the first time that the ionic conduction properties of such composite electrolytes varied with the content of the carbonates. A new integrated hot-pressing technique has been developed to fabricate single cell with larger size. The cell was operated steadily at 500-600oC, and it discharged at 500oC for more than 12h with an output of about 500 mWcm-2. However, it became unsteady below 475oC. Short stacks with 2 or 3 cells were constructed with designed structure. A maximum output power of 1.55W was achieved at 550oC for a three-cell stack. The stack performances are expected to be improved by solving the sealing on the gas manifold.
     Novel Ce0.8Zn0.2O1.9(ZDC)-carbonate composite electrolytes, pervoskite-like structured La2NiO4+δ(LNO) based cathodes, and NiO based binary anodes were prepared and tested in fuel cells. It shows that the composite electrolyte fuel cells using these new materials are suitable to be operated at low temperatures, and they are compatible with existing material systems.
     Based on the ionic-electronic conducting system, a one-dimension electrochemical model was set up to describe the fuel cell with a co-ionic conducting composite electrolyte in combination with the theory of defect chemistry. The operating characteristics of the fuel cell with a SDC based composite electrolyte and the fuel cell with a SDC electrolyte were compared, which showed that the former is superior to the later.
引文
[1] Hoogers G. Fuel Cell Technology Handbook, CRC Press, 2003
    [2]毛宗强.燃料电池.北京:化学工业出版社, 2005
    [3] Steele B C H, Heinzel A. Materials for fuel-cell technologies. Nature, 2001, 414(6861):345-352
    [4]衣宝廉.燃料电池——原理?技术?应用.北京:化学工业出版社, 2003
    [5]毛宗强.氢能——21世纪的绿色能源.北京:化学工业出版社, 2005
    [6]黄守国.中温固体氧化物燃料电池关键材料的研究[博士学位论文].合肥:中国科学技术大学, 2004
    [7] Fergus J W. Electrolytes for solid oxide fuel cells. Journal of Power Sources, 2006, 162, 1(8):30-40
    [8] Kharton V V, Marques F M B, Atkinson A. Transport properties of solid electrolyte ceramics: a brief review. Solid State Ionics, 2004, 174(1-4):135-149
    [9] Thangadurai V, Weppner W, Recent progress in solid oxide and lithium ion conducting electrolytes research. Ionics, 2006, 12(1):81-92
    [10] Kimpton J, Randle T H, Drennan J. Investigation of electrical conductivity as a function of dopant-ion radius in the systems Zr0.75Ce0.08M0.17O1.92 (M=Nd, Sm, Gd, Dy, Ho, Y, Er, Yb, Sc). Solid State Ionics, 2002, 149(1-2):89-98
    [11] Arachi Y, Sakai H, Yamamoto O, et al. Electrical conductivity of the ZrO2-Ln2O3 (Ln=lanthanides) system. Solid State Ionics, 1999, 121(1-4):133-139
    [12] Yamamoto O, Arati Y, Takeda Y, et al. Electrical conductivity of stabilized zirconia with ytterbia and scandia. Solid State Ionics, 1995, 79:137-142
    [13] Yahiro H, Eguchi K, Arai H. Electrical properties and reducibilities of ceria-rare earth oxide systems and their application to solid oxide fuel cell. Solid State Ionics, 1989, 36(1-2):71-75
    [14] Inaba H, Tagawa H. Ceria-based solid electrolytes. Solid State Ionics, 1996, 83(1-2):1-16
    [15] Sameshima S, Ichikawa T, Kawaminami M, et al. Thermal and mechanical properties of rare earth-doped ceria ceramics. Materials Chemistry and Physics, 1999, 61(1):31-35
    [16] Sato K, Yugami H, Hashida T. Effect of rare-earth oxides on fracture properties of ceria ceramics. Journal of Materials Science, 2004, 39(18):5765-5770
    [17] Atkinson A. Chemically-induced stresses in gadolinium-doped ceria solid oxide fuel cell electrolytes. Solid State Ionics, 1997, 95(3-4):249-258
    [18] Elangovan S, Heck B, Balagopal S, et al. Lanthanum gallate electrolyte for intermediate temperature SOFC operation. Ceramic Engineering and Science Proceedings, 2004, 25(3):213-217
    [19] Ishihara T, Shibayama T, Honda M, et al. Intermediate temperature solid oxide fuel cells using LaGaO3 electrolyte II. Improvement of oxide ion conductivity and power density by doping Fe for Ga site of LaGaO3. Journal of the Electrochemical Society, 2000, 147(4):1332-1337
    [20] Ishihara T, Akbay T, Furutani H, et al. Improved oxide ion conductivity of Co doped La0.8Sr0.2Ga0.8Mg0.2O3 perovskite type oxide. Solid State Ionics, 1998, 113-115:585-591
    [21] Ishihara T, Shibayama T, Ishikawa S, et al. Novel fast oxide ion conductor and application for electrolyte of solid oxide fuel cell. Journal of the European Ceramic Society, 2004, 24(6):1329-1335
    [22] Yamaji K, Horita T, Ishikawa M, et al. Chemical stability of the La0.9Sr0.1Ga0.8Mg0.2O2.85 electrolyte in a reducing atmosphere. Solid State Ionics, 1999, 121(1-4):217-224
    [23] Takahashi T, Esaka T, Iwahara H. Conduction in Bi2O3-based oxide ion conductors under low oxygen pressure en dash 1. Current blackening of the Bi2O3-Y2O3 electrolyte. Journal of Applied Electrochemistry, 1977, 7(4):299-302
    [24] Schober T, Kruq F, Schilling W. Criteria for the application of high temperature proton conductors in SOFCs. Solid State Ionics, 1997, 97(1-4):369-373
    [25] Bonanos N. Oxide-based protonic conductors: Point defects and transport properties. Solid State Ionics, 2001, 145(1-4):265-274
    [26] Nowick A S, Du Y, Liang K C. Some factors that determine proton conductivity in nonstoichiometric complex perovskites. Solid State Ionics, 1999, 125(1-4): 303-311
    [27] Münch W, Seifert G, Kreuer K D, et al. A quantum molecular dynamics study of proton conduction phenomena in BaCeO3. Solid State Ionics, 1996, 86-88:647-652
    [28] Bonanos N, Ellis B, Knight K S, et al. Ionic conductivity of gadolinium-doped barium cerate perovskite. Solid State Ionics, 1989, 25(1-2):179-188
    [29] Reichel U, Arons R R, Schilling W. Investigation of n-type electronic defects in the protonic conductor SrCe1-xYxO3-δ. Solid State Ionics, 1996, 86-88:639-645
    [30] Kreuer K D. Proton-conducting oxides. Annual Review of Materials Research, 2003, 33(1):333-363
    [31] Ryu K H, Haile S M. Chemical stability and proton conductivity of doped BaCeO3-BaZrO3 solid solutions. Solid State Ionics, 1999, 125(1-4): 355-367
    [32] Ostergard M J L, Clausen C, Bagger C, et al. Manganite-zirconia composite cathodes for SOFC: influence of structure and composition. Electrochimica Acta, 1995, 40(12):1971-1981
    [33] Brugnoni C, Ducati U, Scagliotti M. SOFC cathode/electrolyte interface, part I: reactivity between La0.85Sr0.15MnO3 and ZrO2-Y2O3. Solid State Ionics, 1995, 76(3-4):177-182
    [34] Doshi R, Richards V L, Carter J D, et al. Development of solid-oxide fuel cells that operate at 500oC. Journal of the Electrochemical Society, 1999, 146(4):1273-1278
    [35] Xu X, Xia C, Xiao G, et al. Fabrication and performance of functionally graded cathodes for IT-SOFCs based on doped ceria electrolytes. Solid State Ionics, 2005, 176(17-18):1513-1520
    [36] Bouchard D, Sun L, Gitzhofer F, et al. Comparison of cathode/electrolyte interface prepared by plasma spray and screen printing for IT-SOFC. 207th Meeting of the Electrochemical Society - Meeting Abstracts, Quebec, Canada, 2005, p.1151
    [37] Tai L, Nasrallah M M, Anderson H U, et al. Structure and electrical properties of La1-xSrxCo1-yFeyO3. Part 1. The system La0.8Sr0.2Co1-yFeyO3. Solid State Ionics, 1995, 76(3-4):259-271
    [38] Simner S P, Bonnett J F, Canfield N L, et al. Development of lanthanum ferrite SOFC cathodes. Journal of Power Sources, 2003, 113(1):1-10
    [39] Fukunaga H, Koyama M, Takahashi N, et al. Reaction model of dense Sm0.5Sr0.5CoO3 as SOFC cathode. Solid State Ionics, 2000, 132(3):279-285
    [40] Ishihara T, Honda M, Shibayama T, et al. Intermediate temperature solid oxide fuel cells using a new LaGaO3 based oxide ion conductor. Journal of the Electrochemical Society, 1998, 145(9):3177-3183
    [41] Shao Z, Haile S M. A high-performance cathode for the next generation of solid-oxide fuel cells. Nature, 2004, 431(7005):170-173
    [42] Atkinson A, Barnett S, Gorte R J, et al. Advanced anodes for high-temperature fuel cells. Nature Materials, 2004, 3(1):17-27
    [43] Huang P, Horky A, Petric A. Interfacial reaction between nickel oxide and lanthanum gallate during sintering and its effect on conductivity. Journal of the American Ceramic Society, 1999, 82(9):2402-2406
    [44] Minh N Q, Takahashi T. Science and technology of ceramic fuel cells. Elsevier Science B V, 1995
    [45] Park S, Cracium R, Vohs J M, et al. Direct oxidation of hydrocarbons in a solid oxide fuel cell. I. Methane oxidation. Journal of the Electrochemical Society, 1999, 146(10):3603-3605
    [46] Murray E P, Sever M J, Barnett S A. A direct-methane fuel cell with a ceria-based anode. Nature, 1999, 400(6745):649-651
    [47] Park S, Vohs J M, Gorte R J. Direct oxidation of hydrocarbons in a solid-oxide fuel cell. Nature, 2000, 404(6775):265-266
    [48] Steele B C H. Survey of materials selection for ceramic fuel cell. II. Cathodes and anodes. Solid State Ionics, 1996, 86-88(2):1223-1234
    [49] Tao S, Irvine J T S. A redox-stable efficient anode for solid-oxide fuel cells. Nature Materials, 2003, 2(5):320-323
    [50] Huang Y H, Dass R I, King Z L, et al. Double pervoskite as anode materials for solid-oxide fuel cells. Science, 312(5771):254-257
    [51] Ji Y, Huang Y H, Ying J R, et al. Electrochemical performance of La doped Sr2MgMoO6-δin nature gas. Electrochemistry Communications, 2007, 9(8):1881-1885
    [52] Ruiz-Morales J C, Canales-Vazquez J, Savaniu C, et al. Disruption of extended defects in solid oxide fuel cell anodes for methane oxidation. Nature, 2006, 439(7076):568-571
    [53]高建峰.中温固体氧化物燃料电池阴极材料及电极过程研究[博士学位论文].合肥:中国科学技术大学, 2003
    [54] Zhu W Z, Deevi S C. Development of interconnect materials for solid oxide fuel cells. Materials Science and Engineering A, 2003, 348(1-2):227-243
    [55] Frequs J W. Metallic interconnects for solid oxide fuel cells. Materials Science and Engineering A, 2005, 397(1-2):271-283
    [56] Matsuzaki Y, Yasuda I. Dependence of SOFC cathode degradation by chromium-containing alloy on compositions of electrodes and electrolytes. Journal of the Electrochemical Society, 2001, 148(2):A126-A131
    [57]韩敏芳,彭苏萍.固体氧化物燃料电池材料及制备.北京:科学出版社, 2004
    [58] Brochu M, Gauntt B D, Shah R, et al. Comparison between micrometer- and nano-scale glass composites for sealing solid oxide fuel cells. Journal of the American Ceramic Society, 2006,89(3):810-816
    [59] Batfalsky P, Hannappel V A C, Malzbender J, et al. Chemical interaction between glass-ceramic sealants and interconnect steels in SOFC stacks. Journal of Power Sources, 2006, 155(2):128-137
    [60] Chou Y S, Stevenson J W, Singh P. Combined aging and thermal cycling of compressive mica seals for solid oxide fuel cells. Ceramic Engineering and Science Proceeding, 2005, 26(4):265-272
    [61] Le S, Sun K, Zhang N, et al. Novel compressive seals for solid oxide fuel cells. Journal of Power Sources, 2006, 161(2):901-906
    [62] George R A, Bessette N F. Reducing the manufacturing cost of tubular solid oxide fuel cell technology. Journal of Power Sources, 1998, 71(1-2):131-137
    [63] George R A. Status of tubular SOFC filed unit demonstrations. Journal of Power Sources, 2000, 86(1-2):134-139
    [64] Veyo S, Lundberg W L, Vora S D, et al. Tubular SOFC hybrid power system status. Proceedings of the ASME Turbo Expo 2003. Volume 2: Combustion and Fuels, Industrial and Cogeneration, Atlanta, U.S.A., 2003, p.649-655
    [65] Vora S D. Advances in solid oxide fuel cell technology at Siemens Westinghouse. Advanced Materials and Processes, 2005, 163(8):54
    [66] Minh N Q. Ceramic fuel cells. Journal of the American Ceramic Society, 1993, 76(3):563-588
    [67] Okuo T, Naqata S, Kaqa Y, et al. Concept design consideration on kW class test facility for tubular type solid oxide fuel cells. Bulletin of the Electrotechnical Laboratory (Japan), 1996, 60(5):11-19
    [68] Singhal S C. Advances in solid oxide fuel cell technology. Solid State Ionics, 2000, 135(1-4):305-313
    [69] Williams M C, Strakey J, Sudoval W. U.S. DOE fossil energy fuel cell program. Journal of Power Sources, 2006, 159(2):1241-1247
    [70] Nishiwaki F, Inagaki T, Kano J, et al. Development of disc-type intermediate-temperature solid oxide fuel cell. Journal of Power Sources, 2006, 157(2):809-815
    [71] Voisard C. Manufacturing solid oxide fuel cells for the Sulzer Hexis stationary system. International Journal of Applied Ceramic Technology, 2004, 1(1):31-39
    [72] Ogasawara K, Baba Y, Fujita K, et al. Development of kW-class planar SOFC stacks operable under fast thermal cycles. Solid Oxide Fuel Cells IX, SOFC IX: Cells, Stacks, and Systems - Proceedings of the International Symposium, Quebec, Canada, 2005, p.396-402
    [73] Majumdar S, Claar T, Flandermever B. Stress and fracture of monolithic fuel cell tapes. Journal of the American Ceramic Society, 1986, 69(8):628-633
    [74] EG&G Technical Services, Inc. Fuel Cell Handbook (Seventh Edition). U.S. Department of Energy, 2004
    [75] Stambouli A B, Traversa E. Solid oxide fuel cells (SOFCs): a review of an environmentally clean and efficient source of energy. Renewable and Sustainable Energy Reviews, 2002, 6(5):433-455
    [76] Zhu B. Advanced intermediate temperature solid oxide fuel cells for electrical vehicles. Proceedings of the 13th World Hydrogen Energy Conference, Beijing China, 2000, volume 2, p.750-755
    [77] Williams M C, Singhal S C. Mass-produced ceramic fuel cells for low-cost power. Fuel Cells Bulletin, 2000, 3(24):8-11
    [78]彭冉冉.中温固体氧化物燃料电池新型电解质材料性能研究[博士后研究报告].北京:清华大学, 2005
    [79] Suzuki T, Funahashi y, Yamaguchi T, et al. Fabrication and characterization of micro tubular SOFC for advanced ceramic reactors. Journal of Alloys and Compounds, 2007, doi:10.1016/j.jallcom.2007.04.149
    [80] Dicks A L. Hydrogen generation from natural gas for the fuel cell systems of tomorrow. Journal of Power Sources, 1996, 61(1-2):113-124
    [81] Park S, Gorte R J, Vohs J M. Applications of heterogeneous catalysis in the direct oxidation of hydrocarbons in a solid-oxide fuel cell. Applied Catalysis A: General, 2000, 200(1):55-61
    [82] Aquiar P, Adjiman C S, Brandon N P. Anode-supported intermediate temperature direct internal reforming solid oxide fuel cell. I: Model-based steady-state performance. Journal of Power Sources, 2004, 138(1-2):120-136
    [83] Gao Z, Sekizawa K, Eguchi K. Power generation characteristics of SOFC with internal CO2 reforming of methane. Electrochemistry, 67(4):336-339
    [84] Zhan Z, Barnett S A. Solid oxide fuel cells operated by internal partial oxidation reforming of iso-octane. Journal of Power Sources. 2006, 155(2):353-357
    [85] Zhan Z, Barnett S A. An octane-fueled solid oxide fuel cell. Science, 2005, 308(5723):844-847
    [86] Minh N Q. Solid oxide fuel cell technology—features and applications. Solid State Ionics, 2004, 174(1-4):271-277
    [87] Brandon N P, Blake A, Corcoran D, et al. Development of metal supported solid oxide fuel cells for operation at 500-600°C. Journal of Material Engineering and Performance, 2004, 13(3):253-256
    [88] Hui S, Yang D, Wang Z, et al. Metal-supported solid oxide fuel cell operated at 400-600oC. Journal of Power Sources, 2007, 167(2):336-339
    [89] Tucker M C, Lau G Y, Jacobson C P, et al. Performance of metal-supported SOFCs with infiltrated electrodes. Journal of Power Sources, 2007, 171(2):477-482
    [90] Suzuki T, Funahashi y, Yamaguchi T, et al. Anode-supported micro tubular SOFCs for advanced ceramic reactor system. Journal of Power Sources, 2007, 171(1):92-95
    [91] Suzuki T, Funahashi Y, Yamaguchi T, et al. Design and fabrication of light weight submillimeter tubular solid oxide fuel cells. Electrochemical and Solid-State Letters, 2007, 10(8):A177-A179
    [92] Riess I, Van der Put P J, Schoonman J. Solid oxide fuel cells operating on uniform mixtures of fuel and air. Solid State Ionics, 1995, 82(1-2):1-4
    [93] Hibino T, Ushiki K, Kuwahara Y. New concept for simplifying SOFC system. Solid State Ionics, 1996, 91(1-2):69-74
    [94] Yano M, Tomita A, Sano M, et al. Recent advances in single-chamber solid oxide fuel cells: A review. Solid State Ionics, 2007, 177(39-40):3351-3359
    [95] Hibino T, Wang S, Kakimoto S, et al. One-chamber solid oxide fuel cell constructed from a YSZ electrolyte with a Ni anode and LSM cathode. Solid State Ionics, 2000, 127(1-2): 89-98
    [96] Suzuki T, Jasinski P, Petrovsky V, et al. Performance of a porous electrolyte in single-chamber SOFCs. Journal of the Electrochemical Society, 2005, 152(3):A527-A531
    [97] Hibino T, Hashimoto A, Inoue T, et al. Single-chamber solid oxide fuel cells at intermediate temperatures with various hydrocarbon-air mixtures. Journal of the Electrochemical Society, 2000, 147(8):2888-2892
    [98] Hibino T, Hashimoto A, Yano M, et al. High performance anodes for SOFCs operating in methane-air mixture at reduced temperatures. Journal of the Electrochemical Society, 2002, 149(2):A133-A136
    [99] Shao Z, Haile S M, Ahn J, et al. A thermally self-sustained micro solid-oxide fuel-cell stack with high power density. Nature, 2005, 435(7043):795-798
    [100] Hibino T, Hashimoto A, Inoue T, et al. Low-operating temperature solid oxide fuel cell in hydrocarbon-air mixtures. Science, 2000, 288(5473):2031-2033
    [101] Hibino T, Hashimoto A, Inoue T, et al. A solid oxide fuel cell using an exothermic reaction as the heat source. Journal of the Electrochemical Society, 2001, 148(6):A544-549
    [102] Buergler B E, Siegrist M E, Gauckler L J. Single chamber solid oxide fuel cells with integrated current-collectors. Solid State Ionics, 2005, 176(19-22):1717-1722
    [103] Tomita A, Hirabayashi D, Hibino T, et al. Single-chamber SOFCs with a Ce0.9Gd0.1O1.95 electrolyte film for low-temperature operation, Electrochemical and Solid-State Letters, 2005, 8(1):A63-A65
    [104] Tomita A, Teranishi S, Nagao M, et al. Comparative performance of anode-supported SOFCs using a thin Ce0.9Gd0.1O1.95 electrolyte with an incorporated BaCe0.8Y0.2O3-αlayer in hydrogen and methane, Journal of the Electrochemical Society, 2006, 153(6):A956-A960
    [105] Hosomi T, Matsuda M, Miyake M. Electrophoretic deposition for fabrication of YSZ electrolyte film on non-conducting porous NiO-YSZ composite substrate for intermediate temperature SOFC. Journal of the European Ceramic Society, 2007, 27(1):173-178
    [106] Chen Y Y, Wei W C. Processing and characterization of ultra-thin yttria-stablized zirconia (YSZ) electrolytic films for SOFC. Solid State Ionics, 2006, 177(3-4):351-357
    [107] Huang H, Nakamura M, Su P, et al. High-performance ultrathin solid oxide fuel cells for low-temperature operation. Journal of the Electrochemical Society, 2007, 154(1):B20-B24
    [108] Shim J H, Chao C C, Huang H, et al. Atomic layer deposition of yttria-stablized zirconia for solid oxide fuel cells. Chemistry of Materials, 2007, 19(15):3850-3854
    [109] Yang D, Zhang X, Nikumb S, et al. Low temperature solid oxide fuel cells with pulsed laser deposited bi-layer electrolyte. Journal of Power Sources, 2007, 164(1):182-188
    [110] Ishihara T, Yan J W, Shinagawa M, et al. Ni-Fe bimetallic anode as an active anode for intermediate temperature SOFC using LaGaO3 based electrolyte film. Electrochimica Acta, 2006, 52(4):1645-1650
    [111] Yan J, Enoki M, Matsumoto H, et al. Nanoporous Ni-Fe bimetallic plates for nonfragile reliable SOFCs. Electrochemical and Solid-State Letters, 2007, 10(9):B139-B141
    [112] Tomita A, Teranishi S, Nagao M, et al. Comparative performance of anode-supported SOFCs using a thin Ce0.9Gd0.1O1.95 electrolyte with an incorporated BaCe0.8Y0.2O3-αlayer in hydrogen and methane. Journal of the Electrochemical Society, 2006, 153(6):A956-A960
    [113] Ito N, Iijima M, Kimura K, et al. New intermediate temperature fuel cell with ultra-thin proton conductor electrolyte. Journal of Power Sources, 2005, 152(1):200-203
    [114] Xia C, Liu M. Novel cathodes foe low-temperature solid oxide fuel cells. Advanced Materials, 14(7):512:523
    [115] Peng R, Xia C, Liu X, et al. Intermediate-temperature SOFCs with thin Ce0.8Y0.2O1.9 films prepared by screen-printing. Solid State Ionics, 2002, 152-153:561-565
    [116] Hibino T, Hashimoto A, Yano M, et al. Ru-catalyzed anode materials for direct hydrocarbon SOFCs. Electrochimica Acta, 2003, 48(17):2531-2537
    [117] Zha S, Moore A, Abernathy H, et al. GDC-based low-temperature SOFCs powered by hydrocarbon fuels. Journal of the Electrochemical Society, 2004, 151(8):A1128-A1133
    [118] Leng Y J, Chan S H, Jiang S P, et al. Low-temperature SOFC with thin film GDC electrolyte prepared in situ by solid-state reaction. Solid State Ionics, 2004, 170(1-2):9-15
    [119] Liu Q L, Khor K A, Chan S H. High-performance low-temperature solid oxide fuel cell with novel BSCF cathode. Journal of Power Sources, 2006, 161(1):123-128
    [120] Zhang Y, Huang X, Lu Z, et al. A screen-printed Ce0.8Sm0.2O1.9 film solid oxide fuel cell with a Ba0.5Sr0.5Co0.8Fe0.2O3-δcathode. Journal of Power Sources, 2006, 160(2):1217-1220
    [121] Meng G, Jiang C, Ma J, et al. Comparative study on the performance of a SDC-based SOFC fueled by ammonia and hydrogen. Journal of Power Sources, 2007, 173(1):189-193
    [122] Zhu B, Liu X, Zhou P, et al. Innovative solid carbonate-ceria composite electrolyte fuel cells. Electrochemistry. Communications, 2001,3(10):566-571
    [123] Zhu B, Liu X, Zhou P. Cost-effective yttrium doped ceria-based composite ceramic materials for intermediate temperature solid oxide fuel cell applications. Journal of Material Science Letters, 2001, 20(7):591-594
    [124] Zhu B, Liu X, Zhu Z. Innovative Composite Electrolytes for Low Temperature SOFC Applications. Proceedings of the 5th European SOFC Forum, Lucerne, Switzerland, 2002, p.616-623
    [125] Zha S, Cheng J, Fu Q et al. Ceramic fuel cells based on ceria-carbonate salt composite electrolyte. Materials Chemistry and Physics, 2002, 77(2):594-597
    [126] Fu Q X, Zhang W, Peng R R, et al. Doped ceria-chloride composite electrolyte for intermediate temperature ceramic membrane fuel cells. Materials Letters, 2002, 53(3):186-192
    [127] Fu Q X, Zha S W, Zhang W, et al. Intermediate temperature fuel cells based on doped ceria-LiCl-SrCl2 composite electrolyte. Journal of Power Sources, 2002, 104(1):73-78
    [128] Zhu B, Bai X Y, Chen G X, et al. Fundamental study on bio-mass-fuelled ceramic fuel cell. International Journal of Energy Research, 2002, 26(1):57-66
    [129] Zhu B, Liu X, Sun M, et al. Calcium doped ceria-based materials for cost-effective intermediate solid oxide fuel cells. Solid State Science, 2003, 5(8):1127-1134
    [130] Zhu B. Functional ceria-salt-composite materials for advanced ITSOFC applications. Journal of Power Sources, 2003, 114(1):1-9
    [131] Zhu B, Yang X T, Xu J, et al. Innovative low temperature SOFCs and advanced materials. Journal of Power Sources, 2003, 118(1-2):47-53
    [132] Sun J, Mao Z, Lin Q, et al. Low temperature(300-600oC) SOFCs R&D in China, Proceedings of 6th European Solid Oxide Fuel Cell Forum, Lucerne, Switzerland, 2004, Volume 1, p.30-31
    [133] Zhu B. Advanced hybrid ion conducting ceramic composites and applications in new fuel cell generation. Key Engineering Materials, 2005, 280-283(1):413-418
    [134] Zhu B. Advantages of intermediate temperature solid oxide fuel cells for tractionary applications. Journal of Power Sources, 2001, 93(1-2):82-86
    [135] Meng G Y, Fu Q X, Zha S W, et al. Novel intermediate temperature ceramic fuel cells with doped ceria-based composite electrolytes. Solid State Ionics, 2002, 148(3-4):533-537
    [136] Liu X R, Zhu B, Xu J, et al. Sulphate-ceria composite ceramics for energy environmental co-generation technology. Key Engineering Materials, 2005, 280-283(1):425-430
    [137] Zhu B, Liu X, Schober T. Novel hybrid conductors based on doped ceria and BCY20 for ITSOFC applications. Electrochemistry Communications, 2004, 6(4):378-383
    [138] Zhu B. Next generation fuel cell R&D. International Journal of Energy Research, 2006, 30(11):895-903
    [139] Zhu W, Xia C, Ding D, et al. Electrical properties of ceria-carbonate composite electrolytes. Materials Research Bulletin, 2006, 41(11):2057-2064
    [140] Liang C C. Conduction characteristics of the lithium iodide-aluminum oxide solid electrolytes. Journal of the Electrochemical Society, 1973, 120(10):1289-1292
    [141] Jow T, Wagner J B. The effect of dispersed alumina particles on the electrical conductivity of cuprous chloride. Journal of the Electrochemical Society, 1979, 126(11):1963-1972
    [142] Shahi K, Wagner J B. Enhanced ionic conduction in dispersed solid electrolyte systems (dses) and/or multiphase systems: AgI-Al2O3, AgI-SiO2, AgI-fly ash and AgI-AgBr. Journal of Solid State Chemistry, 1982, 42(2):107-119
    [143] Mejerovich J, Improvement of solid electrolyte conductivity and cathodic properties of the LiLiI·H2O(SiO2)PbI2 electrochemical cell. Journal of Power Sources, 1992, 38(3):345-349
    [144] Shahi K, Wagner J B. Ionic conductivity and thermoelectric power of pure and Al2O3-dispersed AgI. Journal of the Electrochemical Society, 1981, 128(1):6-13
    [145] Dudney N J. Composite electrolytes. Annual Review of Materials Science, 1989, 19:103-120
    [146] Uvarov N F, Isupov V P, Sharma V, et al. Effect of morphology and particle size on the ionic conductivities of composite solid electrolytes. Solid State Ionics, 1992, 51(1-2):41-52
    [147] Stoneham A M, Wade E, Kilner J A. A model for the fast ionic diffusion in alumina-doped LiI. Materials Research Bulletin, 1979, 14(5):661-666
    [148] Pack S, Owens B, Wagner J B. Electrical conductivity of the LiI-H2O-Al2O3 system. Journal of the Electrochemical Society, 1980, 127(10):2177-2179
    [149] Maier J. On the conductivity of polycrystalline materials. Berichte Der Bunsen-Gesellschaft-Physical Chemistry Chemical Physics, 1986, 90:26-33
    [150] Maier J. Heterogeneous doping of silver bromide (AgBr:Al2O3). Materials Research Bulletin, 1985, 20(4):383-392
    [151] Maier J. Space charge region in solid two-phase systems and their conduction contribution - I. Conductance enhancement in the system ionic conductor-‘inert’phase and application on AgCl:Al2O3 and AgCl:SiO2. Journal of Physics and Chemistry of Solids, 1985, 46(3):309-320
    [152] Bunde A, Dieterich W, Roman E. Monte Carlo studies of ionic conductors containing an insulating second phase. Solid State Ionics, 1986, 18-19:147-150
    [153] Bunde A, Dieterich W, Roman E. Dispersed ionic conductors and percolation theory. Physical Review Letters, 1985, 55(1):5-8
    [154] Herle J V, Kawada T, Sakai N, et al. Low temperature fabrication of (Y, Gd, Sm) doped ceria electrolyte. Solid State Ionics, 1996, 86-88:1255-1258
    [155] Peng R, Xia C, Peng D, et al. Effect of powder preparation on (CeO2)0.8(Sm2O3)0.1 thin film properties by screen-printing. Materials Letters, 2004, 58(5):604-608
    [156] Chick L A, Pederson L R, Maupin G D, et al. Combustion synthesis of YBa2Cu3O7?x: glycine/metal nitrate method. Material Letters, 1990, 10(1-2):6-12
    [157] Hui S, Roller J, Yick S, et al. A brief review of the ionic conductivity enhancement for selected oxide electrolytes. Journal of Power Sources, 2007, 172(2):493-502
    [158] Binet C, Daturi M, Lavalley J C. IR study of polycrystalline ceria properties in oxidised and reduced states. Catalysis Today, 1999, 50(2):207-225
    [159] Schober T. Composites of Ceramic High-Temperature Proton Conductors with Inorganic Compounds. Electrochemical and Solid-State Letters, 2005, 8(4):A199-A200
    [160] Matsuda M, Hosomi T, Murata K, et al. Fabrication of bilayered YSZ-SDC electrolyte film by electrophoretic deposition for reduced-temperature operating anode-supported SOFC. Journal of Power Sources, 2007, 165(1):102-107
    [161] Kim S G, Yoon S P, Nam S W, et al. Fabrication and characterization of a YSZ/YDC composite electrolyte by a sol-gel coating method. Journal of Power Sources, 2002, 110(1):222-228
    [162] Horita T, Sakai N, Yokokawa H, et al. Ceria-zirconia composite electrolytes for solid oxide fuel cells. Journal of Electroceramics, 1997, 1(2):155-164
    [163] Hirabayashi D, Tomita A, Hibino T, et al. Design of a reduction-resistant Ce0.8Sm0.2O1.9 electrolyte through growth of a thin BaCe1-xSmxO3-αlayer over electrolyte surface. Electrochemical and Solid-State Letters, 2004, 7(10):A328-A320
    [164] Wang L S, Barnett S A. Sputter-deposited medium-temperature solid oxide fuel cells with multi-layer electrolytes. Solid State Ionics, 1993, 61(4):273-276
    [165] Leng Y J, Chan S H. Anode-supported SOFCs with Y2O3-doped Bi2O3/Gd2O3-doped CeO2 composite electrolyte film. Electrochemical and Solid-State Letters, 2006, 9(2):A56-A59
    [166] Wachsman E D, Jayaweera P, Jiang N, et al. Stable high conductivity ceria/bismuth oxide bilayered electrolytes. Journal of the Electrochemical Society, 1997, 144(1):233-236
    [167] Park J Y, Yoon H, Wachsman E D. Fabrication and characterization of high-conductivity bilayer electrolytes for intermediate-temperature solid oxide fuel cells. Journal of the American Ceramic Society, 2005, 88(9):2402-2408
    [168] Wachsman E D. Functionally gradient bilayer oxide membranes and electrolytes. Solid State Ionics, 2002, 152-153:657-662
    [169] Yan J, Matsumoto H, Enoki M, et al. High-power SOFC using La0.9Sr0.1Ga0.8Mg0.2O3-δ/Ce0.8Sm0.2O2-δcomposite film. Electrochemical and Solid-State Letters, 2005, 8(8):A389-A391
    [170] Bi Z, Yi B, Wang Z, et al. A high-performance anode-supported SOFC with LDC-LSGM bilayer electrolytes. Electrochemical and Solid-State Letters, 2004, 7(5):A105-A107
    [171] Mishama Y, Mitsuyasu H, Ohtaki M, et al. solid oxide fuel cell with composite electrolyte consisting of samaria-doped ceria and yttria stabilized zirconia. Journal of the Electrochemical Society, 1998, 145(3):1004-1007
    [172] Ball R J, Stevens R. Characterization of Ce0.8Gd0.2O1.9/3Y-TZP composite electrolytes—Effects of 3Y-TZP particle treatment. Journal of Materials Science, 2002, 37(19):4137-4144
    [173] Luo J, Ball R J. Stevens R. Gadolinia doped ceria/yttria stabilized zirconia electrolytes for solid oxide fuel cell applications. Journal of Materials Science, 2004, 39(1):235-240
    [174] Xu D, Liu X, Wang D, et al. Fabrication and characterization of SDC-LSGM composite electrolyte materials in IT-SOFCs. Journal of Alloys and Compounds, 2007, 429(1-2):292-295
    [175] Lunden A, Mellander B E, Zhu B. Mobility of proton and oxide ions in lithium sulphate and oxyacid salts. Acta Chemica Scandinavica, 1991,45:981-982
    [176] Zhu B, Mellander B E. Intermediate temperature fuel cells with electrolytes based on oxyacid salts. Journal of Power Sources, 1994, 52(2):289-193
    [177] Zhu B, Mellander B E. Proton conduction in salt-ceramic composite systems. Solid State Ionics, 1995, 77:244-249
    [178] Zhu B. Intermediate temperature proton conducting salt-oxide composites. Solid State Ionics, 1999, 125(1-4):397-405
    [179] Zhu B, Hu J D, Tao S W, et al. Natural salt and fluoride electrolyte fuel cells. Ionics, 1999, 5:472-476
    [180] Zhu B. New advanced ceramic fuel cell technology using MFx (M=Na, Ca, Ba, La, x=1-3) based electrolytes. Journal of Power Sources, 1999, 84(1):39-44
    [181] Zhu B, Fu Q X, Meng G Y, et al. LiF-MgF2 composite electrolyte for advanced ceramic fuel cells: Structure, electrical properties and applications. Solid State Ionics, 2002, 148(3-4):583-589
    [182] Xia C, Chen F, Liu M. Reduced-temperature solid oxide fuel cells fabricated by screen printing. Electrochemical and Solid-State Letters, 2001, 4(5):A52-A54
    [183] Zhang X, Robertson M, Deces-Petit C, et al. Internal shorting and fuel loss of a low temperature solid oxide fuel cell with SDC electrolyte. Journal of Power Sources, 2007, 164(2):668-677
    [184] Blander M. Quasi-Lattice Model of Reciprocal Salt Systems. A Generalized Calculation. The Journal of Chemical Physics, 1961, 34(2):432-438
    [185] Sampathrajan A, Dubey A K, Rifau A, et al. Rolling tape-casting technological development of high-performance IT-SOFCs based on functional ceria-saltcomposite materials. Proceedings of 6th European Solid Oxide Fuel Cell Forum, Lucerne, Switzerland, 2004, Volume 1, p.268-277
    [186] Zhu B, Liu X, Zhu Z. Development of low temperature solid oxide fuel cells. Proceedings of 4th International ASME Conference on Fuel Cell Science, Engineering and Technology. Irvine, U.S.A., 2006, p.1-4
    [187] Panhans M A, Blumenthal R N. A thermodynamic and electrical conductivity study of nonstoichiometric cerium dioxide. Solid State Ionics, 1993, 60(4):279-298
    [188] Naik K, Tien T Y. Small-polaron mobility in nonstoichiometric cerium dioxide. Journal of Physics and Chemistry of Solids, 1978, 39(3):311-315
    [189] Eguchi K, Setoguchi T, Inoue T, et al. Electrical properties of ceria-based oxides and their application to solid oxide fuel cells. Solid State Ionics, 1992, 52(1-3):165-172
    [190] Steele B C H. Appraisal of Ce1-yGdyO2-y/2 electrolytes for IT-SOFC operation at 500oC. Solid State Ionics, 2000, 129(1-4):95-110
    [191] Li R, Yabe S, Yamashita M, et al. Synthesis and UV-shielding properties of ZnO- and CaO-doped CeO2 via soft solution chemical process. Solid State Ionics, 2002, 151(1-4):235-241
    [192] Li R, Yabe S, Yamashita M, et al. UV-shielding properties of Zinc doped Ceria via soft solution chemical routes. Materials Chemistry and Physics, 2002, 75(1-3):39-44
    [193] Kalyani P, Kalaiselvi N. Various aspects of LiNiO2 chemistry: A review. Science and Technology of Advanced Materials, 2005, 6(6):689-703
    [194] Antolini E, Leonini M, Massarotti V, et al. On the role of lithium carbonate in preparation of doped nickel oxide cathodes for molten carbonate fuel cell. Solid State Ionics, 1990, 39(3-4):251-261
    [195] Tao S W, Wu Q Y, Peng D K, et al. Electrode materials for intermediate temperature proton-conducting fuel cells. Journal of Applied Electrochemistry, 2000, 30(2):153-157
    [196] Fontaine M L, Laberty-Robert C, Ansart F, et al. Composition and porosity graded La2-xNiO4+δ(x≥0) interlayers for SOFC: Control of the microstructure via a sol-gel process. Journal of Power Sources, 2006, 156(1):33-38
    [197] Laberty C, Zhao F, Swider-Lyons K E, et al. High-performance solid oxide fuel cell cathodes with lanthanum-nickelate based composites. Electrochemical and Solid-State Letters, 2007, 19(10):B170-B174
    [198] Munnings C N, Skinner S J, Amov G, et al. Oxygen transport in the La2Ni1-xCoxO4+δsystem, Solid State Ionics, 2005, 176(23-24):1895-1901
    [199] Xie Z, Xia C, Zhang M, et al. Ni1-xCux alloy-based anodes for low-temperature solid oxide fuel cells with biomass-produced gas as fuel. Journal of Power Sources, 2006, 161(2):1056-1061
    [200] Xie Z, Zhu W, Zhu B, et al. FexCo0.5-xNi0.5-SDC anodes for low-temperature solid oxide fuel cells. Electrochimica Acta, 2006, 51(15):3052-3057
    [201] Liao X, Ma Z, Zhu B, et al. Copper-based electrode materials for intermediate or low temperature solid oxide fuel cells. Proceedings of the 3rd Sino-Swedish ILTSOFC workshop, Stockholm, Sweden, 2004, p.124-128
    [202] Tsipis E V, Naumovich E N, Patrakeev M V, et al. Oxygen non-stoichiometry and defect thermodynamics in La2Ni0.9Fe0.1O4+δ. Journal of Physics and Chemistry of Solids, 2007, 68(7):1443-1455
    [203] Patrakeev M V, Naumovich E N, Kharton V V, et al. Oxygen nonstoichiometry and electron-hole transport in La2Ni0.9Co0.1O4+δ. Solid State Ionics, 2005, 176(1-2):179-188
    [204] Singhal S C, Kendall K. High Temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications. Elsevier Ltd. 2003
    [205] Wagner C. Beitrag zur Theorie des Anlaufvorgangs. Zeitschrift für physikalische Chemie, 1933, B21:25-41
    [206] Riess I. Theoretical treatment of the transport equations for electrons and ions in a mixed conductor. Journal of the Electrochemical Society, 1981,128(10):2077-2081
    [207] Riess I. Current-voltage relation and charge distribution in mixed ionic electronic solid conductors. Journal of Physics and Chemistry of Solids, 1986, 47(2):129-138
    [208] Riess I. Measurements of electronic and ionic partial conductivities in mixed conductors, without the use of blocking electrodes. Solid State Ionics, 1991, 44(3-4):207-214
    [209] Riess I. The possible use of mixed ionic electronic conductor instead of electrolytes in fuel cells. Solid State Ionics, 1992, 52(1-3):127-134
    [210] Riess I, Godickemeier M, Gauckler L J. Characterization of solid oxide fuel cells based on solid electrolytes or mixed ionic electronic conductors. Solid State Ionics, 1996, 90(1-4):91-104
    [211] Godickemeier M, Gauckler L J. Engineering of solid oxide fuel cells with ceria-based electrolytes. Journal of the Electrochemical Society, 1998, 45(2):414-421
    [212] Nafe H. Solid electrolyte galvanic cell under load. Journal of Applied Electrochemistry, 2001, 31(11): 1235-1241
    [213] Yuan S, Pal U. Analytic Solution for Charge Transport and Chemical-Potential Variation in Single-Layer and Multilayer Devices of Different Mixed-Conducting Oxides. Journal of the Electrochemical Society, 1996, 143(10):3214-3222
    [214] Matsui T, Inaba M, Mineshige A, et al. Electrochemical properties of ceria-based oxides for use in intermediate-temperature SOFCs. Solid State Ionics, 2005, 176(7-8):647-654
    [215] Zha S W, Xia C R, Meng G Y. Calculation of the e.m.f. of solid oxide fuel cells. Journal of Applied Electrochemistry, 2001, 31(1):93-98
    [216] Demin A, Tsiakaras P, Gorbova E, et al. A SOFC based on a co-ionic electrolyte. Journal of Power Sources, 2004, 131(1-2):231-326

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700