钠碱法烟气脱硫吸收过程气液传质及反应特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前常用的烟气脱硫技术普遍存在着设备投资及运行成本高的问题,严重地制约了脱硫措施的实施。在对膜电解和钠碱脱硫法进行深入研究的基础上,本课题组开发了一种解决烟气脱硫问题的新工艺——低价态膜电解超声波协同钠碱再生循环烟气脱硫工艺。本文即以该工艺为背景,通过理论模型模拟与实验研究相结合的方法,研究了钠碱烟气脱硫吸收过程中的气液传质及反应特性。
     根据液相化学平衡原理对SO_2吸收过程分析计算得出吸收平衡时吸收液的脱硫容量及饱和pH与气相SO_2分压关系,明确了钠碱脱硫中吸收的极限条件参数;进一步以Na_2SO_3为吸收剂进行了填料塔内烟气脱硫模拟实验研究,重点考察了吸收液pH、液气比(L/G)、空塔气速、烟气中SO_2初始浓度、吸收液温度及吸收剂初始浓度等对脱硫率的影响。结果表明,脱硫率随吸收液pH、L/G和吸收剂浓度的增加而提高,随吸收液温度、烟气温度、进气SO_2浓度及空塔气速的升高而降低;其中pH值对脱硫效率影响很大;而当液气比L/G大于3L/m3时,对脱硫效率的影响幅度明显变小。
     基于双膜传质理论,建立了填料塔内钠碱脱硫中气液反应的数学模型,根据工艺研究中的实验条件对模型赋初值,结合模型参数确定适宜的边界条件后,采用MATLAB对模型方程进行求解,得到了液膜内各组分的浓度分布曲线,以及气相分压、pH值、传质阻力、传质速率及吸收增强因子等沿塔高的分布特性。
     按化学吸收速率计算方法得出钠碱脱硫吸收塔中填料层高度的计算公式,经验证后,以钠碱脱硫系统中吸收塔的工业设计为例,针对工业烟气脱硫中化学吸收塔提出了完整的设计程序。
     本论文通过对钠碱脱硫吸收过程的气液反应特性进行系统研究,掌握了填料塔内钠碱溶液吸收烟气中低浓度SO_2的操作特性及其气液反应及传质规律,为推广低价态膜电解超声波协同钠碱再生循环烟气脱硫工艺这一湿法烟气脱硫技术提供了有价值的设计依据和理论指导,本研究也可为其它钠碱法脱硫工艺中实现低成本、高效率的吸收提供有益的参考。
Due to the high capital cost and the lack of technology support, the study of desulfurization in China is left behind. A novel wet FGD (Flue Gas Desulfurization) process is presented on the base of study of sodium alkali FGD and membrane electrolysis, which utilizing traditional ion-exchange membrane electrolysis and ultrasonic to regenerate sodium alkali fertile liquor and to reclaim sulfur dioxide as sulfuric acid. The absorption of SO_2 into sodium alkali solutioh is one of the key technics in the FGD technology. So in the thesis gas-giquid mass transfer and reaction characteristic of SO_2 absorption process in sodium alkali FGD was systematically investigated by both simulation and experiment.
     Based on the chemical equilibrium theory in liquid, the relationship between saturated pH of sodium alkaline solution, desulfurization capacity and partial pressure of SO_2 was obtained,which definitudes the ultimate parameters of absorption. Further the sodium alkali(Na_2SO_3) FGD process in a packing column was studied experimentally. Main parameters affecting SO_2 removal efficiency were studied for this process. These parameters include pH value of the absorption solution, liquid-gas ratio, superficial gas speed, inlet SO_2 concentration, temperature of absorption solution and initial Na_2SO_3 molar concentration. The experimental results show that SO_2 removal efficiency may be improved with the increase of pH,liquid-gas ratio and Na_2SO_3 molar concentration.And it may be dropped with the increase of other operating conditions. The effect of pH on the desulfurization efficiency is more obvious and the influence of L/G is not significant while L/G is more than 3L/m~3.
     Based on the two-film mass transfer theory, a model for SO_2 absorption into Na_2SO_3 solution was put forward and established. The model was validated using experimental conditions in packed column. The equations in the model could be solved using MATLAB with boundary conditions obtained by rational estimation of the parameters involved. Then the solution of the model was used to calculate concentration profiles in the liquid film, SO_2 partial pressure, mass transfer rate, pH profiles, enhancement factor and individual resistances along the column. The calculated results were compared to experimental data and a good agreement was achieved.
     The formula to caculate the tower height of packed column in sodium alkali FGD was advanced based on the rate of chemical absorption. Making use of the method the optimized design of packed column in industrial FGD process was stated. Thus an integrated design process to the industrial chemical absorber in FGD was summarized in the paper.
     The results described the mass transfer-reaction mechanism and operating parameters characteristic of SO_2 absorption into Na_2SO_3 solution in packed column. The study in this paper provide a basic study for theoretical analysis and engineering design of the process of SO_2 absorption into sodium alkali solution and other wet FGD process, which is very inportant to the practical application of desulfuriation equipments.
引文
[1]郝吉明,王书肖,陆永琪,燃煤二氧化硫污染控制技术手册[M],北京:化学工业出版社,2001年4月
    [2]童志权,工业废气净化与利用[M],北京:化学工业出版社,2001年5月
    [3]关丽杰,陶飞,邵双等,二氧化硫对植物生理生化的影响[J],环境保护科学,2005,31(2):51~53
    [4]杨宗慧,我国酸雨状况和对策[J],云南环境科学,2002,21(1):25~27
    [5]樊后保,世界酸雨研究概况[J],福建林学院学报,2002,22(4):371~375
    [6]张晓勇,王振红,当前酸雨形势和治理对策[J],环境科学与管理,2007,32(8):85~88
    [7]谌天兵,武建军,韩甲业等,燃煤污染现状及其治理技术综述[J],煤,2006,15(2):1~4
    [8]中国环境监测总站,2003年环境统计年报,火电厂二氧化硫排放情况,2004
    [9]中国环境监测总站,2004年环境统计年报,火电厂二氧化硫排放情况,2005
    [10]王健,姜开明,我国烟气脱硫技术现状[J],中国能源,2004,26(1):29~31
    [11]关多娇,严横,燃煤电厂烟气脱硫现状与发展探讨[J],沈阳工程学院学报(自然科学版),2005,1(3):48~51
    [12]张杨帆,李定龙,王晋,我国烟气脱硫技术的发展现状与趋势[J],环境科学与管理,2006,31(4):20~24
    [13]邢连中,应用国家政策推动火电厂烟气脱硫工作的全面实施[J],华东电力,2004,32(6):11~13
    [14]舒惠芬,燃煤电厂的SO2控制[J],电力设备,2003,4(4):4~8
    [15]国家环境保护总局,国家质量监督检验检疫总局,GB13233-2003,中华人民共和国国家标准,火电厂大气污染物排放标准,北京:环境科学出版社,2003年12月30日
    [16]杨飏,二氧化硫减排技术与烟气脱硫工程[M],北京:冶金工业出版社,2004年8月
    [17]李连山,大气污染控制工程[M],北京:高等教育出版社,2003年8月
    [18] Jun Cheng, Junhu Zhou, Jianzhong Liu et al., Sulfur removal at high temperature during coal combustion in furnaces: a review[J], Progress in Energy andCombustion Science, 2003, 29(5): 381~405
    [19]匡江红,赵爱华,工业锅炉二氧化硫污染控制现状与对策[J],上海工程技术大学学报,2004,18(2):144~147
    [20]孙锦余,控制大气污染的几种典型的烟气脱硫方法[J],节能,2004,(2):29~31
    [21]肖文德,吴志泉,二氧化硫脱除与回收[M],北京:化学工业出版社,2001年5月
    [22]蒋文举,朱晓帆,金燕等,改性活性炭脱硫剂的研究进展[J],环境污染治理技术与设备,2003,4(11):12~15
    [23]夏蔚,电子束烟气脱硫技术[J],科技情报开发与经济,2004,14(9):369~370
    [24]李红英,周长丽,王海英,干法烟气脱硫技术的进展及其应用分析[J],辽宁化工,2007,36(8):540~542
    [25]张凡,王军方,王凡等,半干法钙基烟气脱硫技术[J],能源环境保护,2004,18(1):44~47
    [26]石应杰,都基峻,田刚,燃煤电厂干法、半干法烟气脱硫应用前景[J],能源环境保护,2006,20(2):22~24
    [27]雷仲存,工业脱硫技术[M],北京:化学工业出版社,2001年5月
    [28]吴忠标,实用环境工程手册,大气污染控制工程[M],北京:化学工业出版社,2001年4月
    [29]吴忠标,刘越,谭天恩,双碱法烟气脱硫工艺的研究[J],环境科学学报,2001,21(5):534~537
    [30]赵鹏高,我国燃煤电厂烟气脱硫技术与设备国产化进展、问题及建议[J],电力环境保护,2004,20(2):1~3
    [31] Tang Z G, Zhou C C, Chen C et al., Studies on flue gas desulfurization by chemical adsorption using an ethylenediamine-phosphoric acid solution[J], Ind Eng Chem Res, 2004, 43(21): 6714~6722
    [32] Miller Michael J Retrofit, SO2 and NOx control technologies for coal-fired power plants[J], Environmental Progress, 1986, 5(3): 171~177
    [33] Amedeo Lancia, Dino Musmarra, Marina Prisciandaro et al., Catalytic oxidation of calcium bisulfite in the wet limestone-gypsum flue gas desulfurization process[J], Chemical Engineering Science, 1999, 54 (15/16): 3019~3026
    [34] Melkap B C, Kundu G,Biswas M N, Modeling of a novel multi-stage bubble column scrubber for flue gas desulfurization[J], Chemical Engineering Journal, 2002, 86(3): 331~342
    [35]王广建,马智,秦永宁等,等离子体法在烟气脱硫中应用进展[J],化学工业与工程,2007,24(3):266~271
    [36] Dam Johansen K,High-temperature reaction between sulphur dioxide and limestone-Comparison of limestone in two laboratory reactions and a pilot plant[J], Chem Eng Sci, 1991, 46(3): 827~837
    [37] Fabrizio Scala, Michele Ascenzo, Amedeo Labcia, Modeling of flue gas desulfurization by spray-dry absorption[J], Separation and Purification Technology, 2004, 34(1): 143~153
    [38] T.S.Butalia,W.E.Wolfe, J.W.Lee, Evaluation of a dry FGD material as a flowable fill[J],Fuel, 2001,80:845~850
    [39]蒋德林,周其刚,冯华伟燃煤电厂脱硫现状及展望能源环境保护[J],2006,20(3):10~14
    [40]许红,刘尧祥,燃煤电厂烟气脱硫现状及其工艺[J],中国煤炭,2006,32(11):48~50
    [41]崔一尘,刘惠永,廖洪强等,燃煤烟气脱硫技术发展及其应用前景[J],热电技术,2001,10(1):19~24
    [42]杨旭中,燃煤电厂脱硫装置[M],北京:中国电力出版社,2006年10月
    [43]张慧,齐庆杰,孟璐,石灰石-石膏湿法烟气脱硫在我国电厂的应用,能源技术与管理,2007,4(4):47~49
    [44]赛俊聪,吴少华,汪洪涛等,中国烟气脱琉技术现状及国产化问题[J],电站系统工程,2003,19(1):53~54
    [45]曾东瑜,陈凡植,郭洁茹等,国产化是我国未来烟气脱硫的发展方向[J],广东电力,2004,27(1):10~14
    [46]阎世辉,我国燃煤电厂二氧化硫减排技术经济分析[J],环境保护,2003,(4):46~48
    [47]苏仕军,垃圾渗沥液-烟气脱硫体系气液吸收与解吸过程研究,[博士学位论文],成都:四川大学,2004
    [48] Seader, J. D.,The rate-based approach for modeling staged separation[J],Chemical Engineering Progress, 1989, 85(10):41~49
    [49] B.M.拉姆著,刘凤志等编,气体吸收[M],北京:化学工业出版社,1985年11月
    [50] E. L.柯斯乐著,王宇新,姜忠义译,扩散:流体系统中的传质[M],北京:化学工业出版社,2002年12月
    [51] E. Sada, H. Kumazawa, Y. Sawada, Absorption of sulfur dioxide into aqueousslurries of sparingly soluble fine particles[J], Chem. Eng. Sci,1980,35(5) :771~774
    [52] E. Sada, H. Kumazawa, T. Hoshino, Absorption of lean SO2 in aqueous solutions of Na2CO3 and desorption of CO2[J], Chem. Eng. J.,1979,18(2) :125~128
    [53] E. Sada, H. Kumazawa, M.A. Butt, Absorption of sulfur dioxide in aqueous slurries of sparingly soluble fine particles[J], Chemical Engineering Journal ,1977,19(10):131~135
    [54] E. Sada, H. Kumazawa, M.A. Butt, Single and simultaneous absorptions of lean SO2 and NO2 into aqueous slurries of Ca(OH)2 or Mg(OH)2 particles[J], Chem. Eng. Sci., 1979,12 (2) :111~113
    [55] E. Sada, H. Kumazawa, Y. Sawada et al., Kinetics of absorption of lean sulfur dioxide into aqueous slurries of calcium carbonate and magnesium hydroxide[J], Chem. Eng. Sci., 1981,36(8):149~152
    [56] E. Sada, H. Kumazawa, M.A. Butt et al., Removal of dilute SO2 by aqueous slurries of Mg(OH)2 particles[J], Chem. Eng. Sci.,1977,32(3):972~975
    [57] E. Sada,H.Kumazawa,C.H. Lee, Chemical absorption into aqueous slurry: absorption of CO2 and SO2 into aqueous slurries of Ca(OH)2[J], Chem. Eng. Sci.,1984,39(6):117~119
    [58]E.Sada,H.Kumazawa,H. Nishimu, Absorption of SO2 into aqueous double slurries containing limestone and Mg(OH)2[J], Chem. Eng. Sci.,1983,29(5):60~63
    [59] Manoj V. Dagaonkar,Antonie A. C. M. Beenackers,Vishwas,G., Enhancement of gas-liquid mass transfer by small reactive particles at realistically high mass transfer coefficients: absorption of sulfur dioxide into aqueous slurries of Ca(OH)2 and Mg(OH)2 particles[J], Chemical Engineering Journal,2001, 81(6):203~212
    [60] Rochelle,G., King, C. J.,The effect of additives on mass transfer in CaCO3 or CaO slurry scrubbing of SO2 from waste gases[J], Ind. Eng. Sci.Fundum.,1977.16(10): 6775~6778
    [61] Uchida, S., Moriguchi, H., Maejima, H. et al.,Absorption of sulfur dioxide into limestone slurry in a stirred tank reactor[J],Can.J.Chem.Eng. 1978, 56(4):690~697
    [62] H.Hikita, S.Asia, T.Tsuji, The absorption of lean SO2 in aqueous solutions of Na2CO3 accompanied by the desorption of CO2[J], Chem. Eng. J.,1983,27(3): 167~176
    [63] Sada E, Kumazawa H, HoshinoT,Absorption of lean SO2 in aqueous solutions of Na2CO3 and desorption of CO2[J], Chem. Eng. J., 1979, 18(5):125~130
    [64] Chang. C. S. Dempsey, J. H. Borgwardt, R. H. Toprac et al. , Effect of limestone type and grid on SO2 scrubber performance[J],Environ. Progr. 1982, 21(1): 59~64
    [65] Charlotte Brogren, Hans T. Karlsson, Modeling the absorption of SO2 in a spray scrubber using the penetration theory[J],Chemical Engineering Science,1997, 20(6):3085~3097
    [66]谢建治,张书廷,王洋等,钠碱法烟气脱硫膜电解再生研究[J],燃料化学学报,2006,34(1):91~95
    [67]谢建治,张书廷,赵新华等,钠碱脱硫废液电渗析再生机理研究[J],化工学报,2006,56(1): 131~135
    [68]张受谦主编,化工手册[M],济南:山东科学技术出版社,1986年2月
    [69]童志权主编,大气污染控制工程[M],北京:机械工业出版社,2003年3月
    [70]罗康碧,罗明河,李沪萍,反应工程原理[M],北京:科学出版社,2006年1月
    [71]H.Hikita,S.Asai,H.Nose,Absorption of sulfur dioxide into water[J],AIChEJ.,1978, 24(1):147~149
    [72] Pasiuk-Bronikowska W., Rudzinski K.,Absorption of SO2 into aqueous systems[J], Chem. Eng. Sci.,1991, 46 (9): 2281~2291
    [73] Haruo Hikita, Satoru Asai, Tadashi Tsuji,Absorption of sulfur dioxide into aqueous sodium hydroxide and sodium sulfite solutions[J],AIChE Journal,1977,23(4): 538~544
    [74]大连理工大学编,化工原理[M],北京:高等教育出版社,1998年8月
    [75]涂晋林,吴志泉,化学工业中的吸收操作—气体吸收工艺与工程[M],上海:华东理工大学出版社,1994年6月
    [76]袁渭康,朱开宏编著,化学反应工程分析[M],上海:华东理工大学出版社,1995年6月
    [77]林肇信,大气污染控制工程[M],北京:高等教育出版社,1996年5月
    [78]叶世超,夏素兰,易美桂等,化工原理(下册)[M],北京:科学出版社,2005年8月
    [79]王树楹,现代填料塔技术指南[M],北京:中国石化出版社,1998年8月
    [80]李兆东,王世和,王小明,压力式喷嘴在湿法烟气脱硫中的应用[J],电力环境保护,2005 ,21(1):30~32
    [81]李连山,大气污染控制工程[M],北京:高等教育出版社,2003年8月
    [82]吴分苗,胡小吐,梁晓宁,聚丙烯填料塔用于PCB废气净化的工程实践[J],环境工程,2003,21(5):32~35
    [83]兰州石油机械研究所主编,现代塔器技术[M],北京:中国石化出版社,2005年1月
    [84]上海工程技术大学组织编写,塔填料产品及技术手册[M],北京:化学工业出版社,1995年5月
    [85]李锡源,王恩祥,张绍军,塑料花环填料的流体力学及传质性能研究[J],化学工程,1991,19(3):43~47
    [86]刘天奇主编,三废处理工程技术手册[M],北京:化学工业出版社,2000年9月
    [87]肖衍繁,李文斌,物理化学[M],天津:天津大学出版社,2005年2月
    [88]林传仙,白正华,张哲儒,矿物及有关化合物热力学数据手册[M],北京:科学出版社,1985年5月
    [89]《硫酸工业》编辑部,低浓度二氧化硫烟气脱硫[M],上海:上海科学技术出版社,1981年1月
    [90] E.Y Kenig,Mass transfer-reaction coupling in two-phase multicomponent fluid system[J],Chemical Engineering Science,1995,57(5):189~204
    [91] E.Y Kenig, R. Schneider, Multicomponent unsteady-state film model--a general analytical solution to the linearized diffusion-reaction problem[J],Chemical Engineering Science,2001,83(1) :85~94
    [92] E.Y Kenig, R. Schneider, Rigorous dynamic modelling of complex reactive absorption processes[J], Chemical Engineering Science,1999,54(6) :5195~5203
    [93] E.Y Kenig, A film model based approach for simulation of multicomponent reactive separation[J], Chemical Engineering Science,1995,34(10): 97~103
    [94] Lars Kuckaa, Ivo Moullerb, On the modelling and simulation of sour gas absorption by aqueous amine solutions[J],Chemical Engineering Science, 2003,58(4):3571~578
    [95]谭天恩,麦本熙,丁惠华,化工原理(上册)[M],北京:化学工业出版社,1990年5月
    [96]李文昊,钠碱脱硫吸收液的物化性质的研究,[本科学位论文],天津:天津大学,2006
    [97]周爱月,化工数学[M],北京:化学工业出版社,1996年5月
    [98] Chang, C. S., Rochelle,SO2 absorption into aqueous solutions[J],A.I.Ch.E. Journal, 1981,27(2): 292~297
    [99] Jerzy Buzek, Manfred Jaschik,Gas-liquid equilibria in the system SO2-aqueous solutions of NaHSO3/Na2SO3/Na2SO4[J],Chemical Engineering Science, 1995, 50(19): 3067~3075
    [100] Teramoto.M.,Nagamochi.M.,Hiramine.S. et al.,Simultaneous absorption of SO2 and CO2 in aqueous Na2SO3 solutions[J], Int. Chem. Eng.,1978,18(9):250~253
    [101]苏仕军,万海清,朱家骅等,城市垃圾渗滤液烟气脱硫体系气液吸收与解吸过程的数学模拟[J],四川大学学报(工程科学版),2006,38(2):47~54
    [102] Gerard P.,Segantini G., Vanderschuren J., Modeling of dilute sulfur dioxide absorption into calcium sulfite slurries[J],Chemical Engineering Science,1996,51(12):349~3358.
    [103]化学工程手册编辑委员会,化学工程手册(第12篇)[M],气体吸收,北京:化学工业出版社,1982年3月
    [104] Derek G., Leaist J.,Diffusion coefficient of aqueous sulfur dioxide at 25℃[J],Chem. Eng. Data,1984, 29(3): 281~282.
    [105] Martin Zidar, Gas-liquid equili equilibium operation diagram: graphical presentation of absorption Of SO2 in the NaOH-SO2-H2O system taking place within a laboratory absorber[J], Ind. Eng. Chem. Res., 2000, 39(10): 3042~3050
    [106] Chung Shih Chang, Gary T.,Rochelle, Sulfur dioxide absorption into sodium hydroxide and sodium sulfite aqueous solutions[J],Ind. Eng. Chem. Fundam., 1985, 24(1):7-11
    [107] Xia, J., Rumpf, B., Maurer G., Solubility of sulfur dioxide inaqueous solutions of acetic acid, sodium acetate, and ammonium acetate in the temperature range from 313 to 393 K at pressures up to 3.5 MPa:experimental results and comparison with correlations/predictions[J],Industrial & Engineering Chemistry Research, 1999,38(3):1149~1158.
    [108] Onda K., Sada E., Okumoto Y., Mass transfer coefficient between gas and liquid phases in packed columns[J], Journal of Chemical Engineering of Japan, 1968,1(1): 62~66
    [109] Onda K., Takahashi M., Okumoto Y., Mass transfer coefficient between gas and liquid phases in packed columns[J], Journal of Chemical Engineering of Japan, 1968,1(1): 56~62
    [110]李锡源,谈遒,李阿娜,三种开孔环形填料传质性能的研究[J],化工学报,1984,3(4):375~385
    [111]麦本熙,几种开孔子填料的性能研究(四)---传质系数关联式[J],化学工程,1986,4(4):1~6
    [112] S.Ebrahimi C., Picioreanu R., Kleerebezem J. et al.,Rate-based modelling of SO2 absorption into aqueous NaHCO3/Na2CO3 solutions accompanied by the desorption of CO2[J], Chemical Engineering Science, 2003, 58(16): 3589~3600
    [113]陈敏恒,丛德滋,方图南等,化工原理(下册,第二版)[M],北京:化学工业出版社,2003年5月
    [114]匡国柱,化工单元过程及设备课程设计[M],北京:化学工业出版社,2002年8月
    [115]王国胜主编,化工原理课程设计[M],大连:大连理工大学出版社,2005年1月
    [116]魏兆灿,李宽宏主编,塔设备设计[M],上海:上海科学技术出版社,1988年2月
    [117]《化学工程手册》编辑委员会编,化学工程手册(第13篇)[M],气液传质设备设计,北京:化学工业出版社,1982年3月
    [118]燃化部第六设计院石油化工设计化学工程建设组编,气液传质设备设计[M],北京:化学工业出版社,1979年9月
    [119]余国琮主编,化工机械工程手册(第17篇)[M],北京:化学工业出版社,2003年7月
    [120]谭蔚,化工设备设计基础[M],天津:天津大学出版社,2000年6月
    [121] (德)毕力特(Billet,Reinhard),天津大学化工分离与新型填料开发中心译,填料塔分析与设计[M],北京:化学工业出版社,1993年11月
    [122]夏清,陈常贵,化工原理(上册)[M],天津:天津大学出版社,2005年6月
    [123]姚玉英主编,化工原理(下册)[M],天津:天津大学出版社,2004年7月

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700