无线光网络若干关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着时代的发展和社会的进步,伴随通信业务迈向多媒体领域,相应带宽需求急速上升,多业务和大带宽全光联网是未来通信网络体系结构的必然特征。波分复用技术提供的丰富带宽资源使依靠光网络传送和交换海量的业务成为可能,传统光网络向下一代光网络演进的步伐正在加速。为满足政治、经济、军事、文化教育等的需要,光网络已成为各国国家信息架构中的基石。本文基于无线激光通信,展开光网络研究。
     光纤网络的所有网元都固定于一个不可分离的承载体,所有网元间、各网元与载体间处于相对静止状态。通常,光纤网络属于地面网络系统,其组建包含节点构建和光纤敷设两个独立过程,同时,其节点又被光纤束缚住。其建设周期长,有效利用网络资源与服务质量(Quality of Service,QoS)保障存在一定的矛盾。同时,其链路易遭破坏,并且,其不宜在不方便铺设线路、更不能够在星间通信等无法铺设线路的环境中实现。无线光通信的传输摆脱了有线介质的束缚,相应通信链路与节点可集成为一体。无线激光通信支持现有光纤通信的协议,能够提供类似光纤通信的信息传输速率。只要两点直线可视,就可建立一条天然具备抗御链路毁坏能力的无线激光通信链路。一个无线光网络系统可被承载于具有不同运动规律、位于离地心不同距离的多个相互离散的承载体,拥有光纤通信所不具备的巨大灵活性和支持移动通信等优越特性。可以在大范围移动中支持高速通信。再者,无线光通信单元设备体积小、重量轻,架设简单,搭建、配置和维护较为容易。此外,无线激光通信基于无线电子载波无法比拟的非可视窄波束,保密性强、抗干扰性好。
     然而,目前的光通信业界只是将无线光通信简单地以链路形式,作为光纤的替代来透明支持光纤通信协议,无法充分发挥无线光通信的优越特性。为了最大限度地提高资源利用率、保障QoS、和追求最佳性能,必须根据无线光通信的特性来进行组网技术和运行技术,及相应实现——无线光节点和承载体的研究开发。从而,本文在第二章中,基于无线光通信的独有特性,对无线光网络体系结构进行了研究,建立了相关理论模型,获得了多区多类三维网状网无线光网络构架。并结合无线光网络运行,对有机组成无线光网络体系的平面区骨干通信子网络和跨区三维骨干通信子网络的组建,以及相应平面区类子域、平面区类子域组、相邻跨区子域、非相邻跨区子域的构建和运行方式进行了推证和论述。获得了无线光网络最优基础构架——回路绕点无线光互联基。进而,得到了构建具有良好网络鲁棒性的无线光网络原始拓扑图的具体算法,以及基于回路绕点无线光互联基修剪无线光网络原始拓扑图,生成无线光网络拓扑图的具体算法。最后,获得了构造运行回路的具体算法,以及合理分配网络容量的具体算法。相应数字仿真证明了本章技术的有效性。
     只有在邻接无线光网络主网元通过连通激光源发出的激光桥接而连通后,无线光网络才能够将信息,由一个无线光节点送达另一个无线光节点。本文在第三章:研究了无线光网络主网元功能结构,并重点针对相互连通激光源——相干叠层列阵,结合Talbot腔和模式耦合等,建立了理论模型。对激光源在连通工作中的稳定性进行了分析,获得了漂移补偿技术及其实现方法和设备。并且,结合相关仿真软件和实验,对无线光通信环境的工作情形进行了分析和推证,获得了使激光源能够在恶劣多变温差环境中稳定工作,从而稳定地连通无线光节点的预失真补偿源技术及其实现系列装置。相关实验证明了其在连通中的有效性。
     各个网络成员互相认知是通信网络运行的前提;且为确保所获传送业务路由的合理及所需网络资源的正确分配,各个网络成员必须知晓网络内当前的状态。所以本文在第四章:结合无线光网络建立无线激光通信链路和邻居发现合一的操作特性等,研究了无线光网络路由。论述了无线光最短路径优先及无线光网络独特的指派路由器组播机制,得到了单层无线光网络状态信息扩散技术。进而,结合无线光网络多平面分层组播,论述了无线光网络分层逻辑结构形成,得到了分层无线光网络状态信息扩散技术。最后,论述了相应网络状态信息交互机制,得到了引入无线光通信的光网络设计算法。相应数字仿真证明了本章所获技术的有效性。
     鉴于业务的趋势变得快速动态化,引入通用多协议标记交换技术支持动态连接,是光网络控制的主流支撑技术。本文第五章:针对无线光通信具体特点,对通用多协议标记交换技术加以改造和拓展,得到了无线光通用多协议标记交换技术。定义了无线光通用多协议标记交换接口。在资源预留协议扩展了自适应域。研究清楚了无线光通用多协议标记交换标记对象格式内涵,以及当无线光与有线光互联时,相应通信功能模块所进行的处理。获得了无线光通用多协议标记交换嵌套技术,以及与以上各技术相关,建立交换路径操作技术。而后,研究了对应光突发交换机制的无线光突发标记交换技术,获得了无线光突发标记交换无线光网络构架,相应组建总则、关键细则、决策优化技术,以及通过有效覆盖的母锥体、有效覆盖、最短可视矢量法构建单向资源预留工作区域。论述了运行工作模式和相关算法,阐明了单向预约资源工作过程和相关运行特点,结合数字仿真,展示了无线光网络与光纤网络相辅相成相得益彰,从而给光网络性能带来的提升。随着研究的不断深入,无线光网络技术及其实现不断取得进步,光网络必将迎来更加美好光明的前景。本文所获得的研究成果,除本实验室的论文和专利外,目前未见有公开详细技术报告。
With development of the world, multimedia services are becoming more and moreimportant. The demands of bandwidth for transinformation are increasing sharply. Nowthat Wavelength Division Multiplex (WDM) can offer resourceful bandwidth, it makesoptical network have capacity for carrying and switching mass data. The characteristicof the future communication network must be all optical networking. For satisfyingrequirements for politics, economy, military affairs, education, optical network has beenthe cornerstone of national information infrastructure of a great power. Currently, thespeed of optical network development is accelerating. Based on wireless lasercommunication, this paper engages in study of optical network.
     In fiber network, all elements can only be fixed in an supporting body, the positionof each element is changeless. Usually, a fiber network is of ground network system. Ittakes a long time to set up. The setting of nodes are independent of cabling, and areimprisoned by fibers as well. A fiber link is vulnerable. Furthermore, in manycircumstances, e.g. in intersatellite optical communication, to lay a fiber link is hard,even is impossible. Moreover, there is conflict between Quality of Service (QoS) andefficiency of using fiber network resources. Wireless optical communication cansupport all protocols of fiber communication. The rate of information transmission inwireless optical communication can be similar to that in fiber communication, butwireless optical communication extricates itself from the shackle of fiber. A wirelesslaser link can be established as long as there is a clear line of sight between two wirelessoptical nodes. So a wireless optical link can be integrated into the wireless optical nodes,the attribute of the wireless optical link is robust. Elements of a wireless optical networkcan be fixed in different supporting bodies. The distance between a supporting bodymay be different from other one's, so does the regularity of the supporting body. Thuswireless optical communication has unique merits, for example, the maneuverabilitywith confidentiality is so excellent, in fact, wireless optical communication is in a classby itself. It can support high-speed communication as supporting bodies are in moving.In addition, the sightless laser beam is narrower than microwave beam too much. This makes privacy and the security of information that carried by it be better, This is alsohighly beneficial to antijam. Sure enough, the volume is less, the weight is lighter. Toset up a wireless optical network is simple and easy, corresponding configuration andmaintenance are facile.
     At present wireless optical communication is applied as substitution of high-speedlink for fiber, but the advantage can not be taken sufficiently. For improving utilizationratio of resources to the upmost, guaranteeing QoS, achieving bestReliability---Availability---Serviceability (RAS), it is absolutely necessary that toresearch and develop wireless optical network based on the characteristics of wirelessoptical communication specially. Then the technology for optimally building wirelessoptical node, the technology for optimally setting up wireless optical network, and thetechnology for wireless optical network behaving optimally can be obtained. In the lightof the above consideration, in chapter 2, the architecture of wireless optical network ispresented. The multi-section multi-class three-dimensional wireless optical networkmodel is constructed. The technologies of building the wireless optical sectionsubnetwork and its section domain, the transregional three-dimensional subnetwork andits transregional domain, and the domains group are provided. The optimum structuralframe of wireless optical network is discussed in detail. With wireless optical nodevirtual ring connection graph, the algorithm for building the robust wireless opticalnetwork with high cost performance, the algorithm for allocating resources, and thealgorithm for steering virtual ring are proposed. With the numeric emulation, theeffectiveness of the technologies are demonstrated.
     None but is connected by laser beam, information can be transfered from onewireless optical network node to the other, so in chapter 3, the functional configurationsof wireless optical nodes are presented. After technique details about high power laserdiode arrays with Talbot cavity, especially the stability of the laser diode arrays working,are studied, technology for compensating the excursion in the external cavity isprovided. By the help of special simulation software and experiment, the influence ofenvironment on wireless optical communication is analyzed. And then the predistortiontechnology for guaranteeing high quality of the optical connection in poor workingconditions is provided. The effectiveness of the technologies are demonstrated by theexperiment.
     Only after all wireless optical network nodes well know the network state, routeplanning and allocation of resources can be done properly. Now that wireless opticallink establishment and neighbour discovery in wireless optical network becomeintegrated, so chapter 4 provides wireless optical open shortest path technology,wireless optical multi-cast technology, wireless optical monolayer routing technology,wireless optical hierarchical multi-layers routing technology, hybrid optical network andcorresponding routing technology. And presents the wireless optical hierarchical logicalstructure. Corresponding numeric emulation demonstrated the effectiveness of thetechnologies.
     Generalized Multi-Protocol Label Switching technology (GMPLS) is themainstream of control technique for setting up dynamical connection in optical networktimely. After GMPLS is extended into Wireless Laser Generalized Multi-Protocol LabelSwitching (WLGMPLS) in chapter 5, seven types of interfaces are defined. Andresource reservation protocol is modified to involve the self-adaption field. Thenformats and structures of wireless laser generalized label switching objects arepresented. Finally, wireless optical nesting technology is proposed. Subsequently, withWLGMPLS, the linchpin that Optical Burst Switching (OBS) technology uses wirelessoptics is exposed. The architecture, the general rules of constructing, the key detailedrules, decision-making technique are discussed. From the mother cone to the effectivecover, then to the shortest sight vector, the techniques for constructing the one-wayresource reservation domain in wireless optics are provided. Whereafter correspondingworking pattern and algorithms are proposed. With numeric emulation, wireless opticalcommunication who integrates with fiber network improves performance of opticalnetwork is demonstrated. Wireless optics and fiber optics are complementary. Aswireless optical network technology progresses, the prospect of optical network is beingbetter and better cheerful. To my knowledge, no proces-verbal to the above-mentionedtechnical details, except our lab's papers and patents, has been vended.
引文
[1] http: //www.intelsat.com
    [2] 庞之浩.“闪电”通信兵与“射线”二传手.太空探索,2007(11):49-51
    [3] W. A. Leonard. Milstar and DoD teleport. 2000 IEEE 21st Century Military Communications Conference Proceedings, Vol. 2: 1181-1186
    [4] 戚发轫.毛泽东与东方红卫星.中国航天.2000,4:3-4
    [5] 程斐,陈建平,张良.日本海洋科学技术中心技术发展现状.2002,20(1):98-102
    [6] 徐荣,龚倩,纪越峰,叶培大.光通信网新技术.2000,16(11):16-20
    [7] U. S. Department of Defense. Annual Defense Report. Washington: Defense Pentagon, 2002
    [8] 吴诗其.卫星通信导论.北京:电子工业出版社,2006,183-188
    [9] 王秉钧,王少勇,田宝玉,野锦德.现代卫星通信系统.北京:电子工业出版社,2004,402-408
    [10] 李征,王晓宁,金添.接入网与接入技术.北京:清华大学出版社,2003,2-17
    [11] 国家广电总局科技委战略专业委员会“下一代通信技术和计算机技术对广播电视发展的影响”项目组.下一代通信技术的发展趋势.中国有线电视.2007(2):124-128
    [12] Z. Fan. Traffic engineering in IP overWDM networks. SPIE, 2002, 4874:78-88
    [13] K. K. Nguyen, B. Jaumard, A. Agarwal. A distributed and scalable routing table manager for the next generation of IP routers. Network, IEEE, 2008, 22(2): 6-14
    [14] 张宁,纪越峰.下一代网络NGN的技术发展.北京联合大学学报,2006,20(4):29-32
    [15] G. Charlet, J. Renaudier, H. Mardoyanetal. 12. 8 Tbit/stransmission of 160 PDM-QPSK(160×2×40 Gbit/s) channels with coherent detection over 2550km. 2007 Eur. Conf. Optical Commun., Postdeadline Paper PD1.6
    [16] I. Habib, Q. Song, Z. Li et al. Deployment of the GMPLS control plane for grid applications in experimental high-performance networks. IEEE Communications Magazine, 2006, 44(3): 65-73
    [17] K. Lu, J. Jue, G. Xiaoetal. Intermediate-node initiated reservation(IIR): A new signaling scheme for wavelength-routed networks. IEEE Journal on Selected Areas in Communications, 2003, 21(8): 1285-1294
    [18] 龚倩,徐荣,张民,叶培大.光网络的组网与优化设计.北京:北京邮电大学出版社, 2002,137-140
    [19] 信息产业部内部标准.SDH光缆干线工程调试项目及指标.北京:北京邮电大学出版社,1998
    [20] 邮电技术规定YDN099-1999.光同步传送网技术体制.北京:人民邮电出版社,1999.9
    [21] 邮电技术规定YDN117-1999.数字同步网的规划方法与组织原则.北京:人民邮电出版社,1999.9
    [22] 邮电技术规定YDN123-1999.SDH网定时的方法.北京:人民邮电出版社,1999-10
    [23] S. Cinkler, D. Bjornstad etal. On the future of the optical infrastructure-cost 266 views. 2002, Proc. 4th International Conference on, Vol. 1: 87-92
    [24] X. H. Jia, D. Z. Du etal. Optimization of wavelength assignment for QoS multicast in WDM networks. IEEE Transactions on Communications, 2001, 49(2): 341-350
    [25] A. Ding, G. S. Poo. A survey of optical multicast over WDM networks. Computer Communications, 2003, 26(2): 193-200
    [26] N. Guo, T. Gao etal. Distributed plug-and-play network management model based on mobile agents, e-Technology, e-Commerce and e-Service. 2004 IEEE International Conference on, Vol. 1: 487-491
    [27] T. Kazuo, U. Norihiko etal. QoS Control for Real Time Video Stream over Wireless LANs. 2003 IASTED International Conference on Wireless and Optical Communications, Vol. 3: 235-240
    [28] 张宝富,万谦,葛海波.宽带光网络技术与应用.北京:电子工业出版社,2002,1-19
    [29] 沈庆国,周卫东,陈涓,薛高阜.现代通信网络.北京:人民邮电出版社,2004,1-227
    [30] 中华人民共和国工业和信息化部.2007年全国通信业发展统计公报,北京:http://www.miit.gov.cn, 2007
    [31] International Telecommunications Union (ITU). ITU-T G. 805. Generic Functional Architecture of Transport Networks. Geneva: Telecommunication Standardization Sector of ITU (ITU-T), 2000
    [32] International Telecommunications Union (ITU). ITU-T G. 872. Architecture of Optical Transport Networks. Geneva: Telecommunication Standardization Sector of ITU (ITU-T), 2001
    [33] International Telecommunications Union (ITU). ITU-T G. 807/Y 1302. Requirements for the Automatic Switched Transport Network (ASTN). Geneva: Telecommunication Standardization Sector of ITU (ITU-T), 2001
    [34] 包东智.光传送网技术现状及其发展趋势分析.光通信,2006,8:16-19
    [35] P. Zhang. Metropolitan and local optical networks heat up in China. SPIE, 2001, 4583: 220-228
    [36] O. Aboul-Magd. Automatic Switched Optical Network (ASON) Architecture and Its Related Protocols. IETF draf, 2002, IETF draft-ietf-ipo-ason-02
    [37] International Telecommunications Union (ITU) ITU-T G. 8080/Y1304. Architecture for the automatically switched optical network (ASON). Geneva: Telecommunication Standardization Sector of ITU(ITU-T), 2006
    [38] http://www.zte.com.cn
    [39] http://www.Terabeam.com
    [40] http://www.airfiber.com
    [41] http://www.chinamobile.com
    [42] http://www.chinaunicom.com.cn
    [43] E. Leitgeb, M. Gebhart etal. Hybrid Wireless Networks for Civil-Military-Coope-ration(CIMIC) and Disaster Management. SPIE, 2004, 5614: 139-150
    [44] I. I. Kim, H. Hakakha, P. Adhikari. Scintillation reduction using multiple transmitters. SPIE, 1997, 2990: 102-113
    [45] H. Hemmati. Free-space optical communications program at JPL. 1999 IEEE Lasers and Electro-Optical 12th Annual Meeting, Vol. 1: 106-107
    [46] G. Nykolak, P. F. Szajowskil. A 40 Gb/s DWDM flee space optical transmission link over 4.4km. SPIE, 2000, 3932: 16-20
    [47] P. F. Szajowskil, G. Nykolak, J. Auborn. Key Elements of High-Speed WDM Terrestrial Free-Space Optical Communications Systems. SPIE, 2000, 3932: 2-14
    [48] I. I. Kim, J. Eric etal. Horizontal-Link performance of the STRV-2 lsercom experiment ground terminals. SPIE, 1999, 3615: 11-22
    [49] T. Jono, M. Toyoda. Acquisition, tracking and pointing system of OICETS for free space laser communications. SPIE, 1999, 3692: 41-50
    [50] A. Kazuhiko, K. Hidehiko, Y. Satoshi. Wide and fine pointing mechanism with flexible supports for optical inter-satellite communications. SPIE, 1999, 3615: 222-229
    [51] A. Kazuhiko, Y. Yoshiho, K. Hidehiko. Wide-range fine pointing mechanism for free-space laser communications. SPIE, 2004, 5160: 495-506
    [52] T. Ohtsuki. Turbo-Coded Atmospheric Optical Communication Systems. IEEE Computer Society Press, 2002, 1358-1363
    [53] G. Bradshaw, J. Haines, A. Karmakar etal. Establishing TSAT-DISN Peering via the TGBE. 2007 Military Communications Conference, Vol. 1: 1-7
    [54] D. Voce, D. S. Gokhale, R. David etal. Considerations for a TSAT quality of service architecture. 2004 IEEE Military Communications Conference, Vol. 1: 85-92
    [55] M. Maher, H. Garcia, A. Das etal. Operations Timeline for Tsat Planning. 2006 Military Communications Conference, Vol.1: 1-7
    [56] F. Yegenoglu, D. Voce, D. Gokhale. TSAT advanced network services and routing architecture. 2006 IEEE Aerospace Conference, Vol.1: 4-11
    [57] J. N. Ptasinski, Y. Congtang. The Automated Digital Network System (ADNS) Interface to Transformational Satellite Communications System (TSAT). 2007 Military Communications Conference, Vol. 1: 1-5
    [58] A. Tu. A Gigabit/Second Turbo Decoder on Field Programmable Gate Array: Supporting Tsat Channel Coding Requirement. 2006 Military Communications Conference, Vol. 1: 1-5
    [59] D. M. Stround, P. T. Phong. Enabling transformation with TSAT. 2005 IEEE Military Communications Conference, Vol.1: 183-188
    [60] General Accounting Office. Transformational satellite program. 2003
    [61] U.S. Deparment of Defense. Joint Transformation Roadmap. 2004
    [62] U. S. Programs & Resources Department. Marine Corps Concepts and Programs 2004
    [63] Manzur T. Free Space Optical Communications (FSO). IEEE Avionics, Fiber-Optics and Photonics Technology Conference, 2007, 1: 21-21
    [64] 李睿,赵洪利,曾德贤.空间光通信及其关键技术.应用光学, 2006, 27(2): 152-154
    [65] Thomas E. Stem, Krishna Bala. Multiwavelength Optical Network A Layered Approach. Boston: Addison Wesley Longman Inc., 1999
    [66] Rajiv Ramaswami, Kumar Sivarajan. Optical Networks: A Practical Perspective. Amsterdam: Elsevier Science & Technology, 2001
    [67] Biswanath Mukherjee. Optical WDM Networks. Berlin: Springer, 2006
    [68] D. Y. Zhou, S. Subramaniam. Survivability in Optical networks. IEEE Network, 2000, 4 (6): 16-23
    [69] L. Valcarenghi, A. Fumagalli. Implementing stochastic preplanned restoration with propotional weighted Path choice in IP/GMPLS/WDM networks. Photonic Network Colnmunications, 2002, 4(3-4): 285-295
    [70] M. Sridharan, A. K. Somani, M. V. Salapaka. Approaches for capacity and revenue optimization in survivable WDM networks. Journal of High Speed Networks, 2001, 10(2): 109-125
    [71] G. Maier, A. Pattavina, S. D. Patre etal. Optical network survivability: Protection techniques in the WDM layer. Photonic Network Communications, 2002, 4(3-4): 251-269
    [72] A. Fumagalli, I. Cerutti, M. Taeea. Optimal design of survivable mesh networks based on line switched WDM self-healing rings. IEEE/ACM Transactions on Networking, 2003, 11(3): 501-512
    [73] Y. Wang, Q. J. Zeng, H. D. Zhao. Dynamic survivability in WDM mesh networks under dynamic traffic. Photonic Network Communications, 2003, 6(1): 5-24
    [74] D. A. A. Mello, J. U. pelegrini, M. S. Savasini etal. Inter-arrival planning for sub-graph routing protection in WDM networks. Lecture Notes in Computer Science, 2004, 3124: 328-335
    [75] G. R. Kiran, C. S. R. Murthy. QoS based survivable logical topology design in WDM optical networks. Photonic Network Communications, 2004, 7(2): 193-206
    [76] J. H. Hwang, W. Kim, J. W. Lee etal. Survivability-guaranteed network resiliency methods in DWDM networks. Lecture Notes in Computer Science, 2005, 3421: 1138-1145
    [77] C. S. Ho, L. Y. Chen, S. Y. Kuo. Multiple failures restoration by group protection in WDM Networks. Lecture Notes in Computer science, 2005, 3420: 186-193
    [78] T. Eilam, S. Moran, S. Zaks. Approximation algorithms for survivable optical networks. Lecture Notes in Computer Scienee, 2000, 1914: 104-118
    [79] G. Conte, M. Listanti, M. Settembre etal. Strategy for protection and restoration of optical paths in WDM backbone networks for next-generation Internet infrastructures. Journal of Lightwave Technology, 2002, 20(8): 1264-1276
    [80] R. Asthana, Y. N. Singh. Protection and restoration in optical networks. IETE Journal of Research, 2004, 50(5): 319-329
    [81] S. Tak, E. K. Park. Modeling and Performance study of restoration framework in WDM optical networks. Computer Networks, 2005, 49(2): 217-242
    [82] M. M. A. Azim, X. H. Jiang, P. H. Ho etal. Models of restoration Probability in WDM networks employing active restoration. Photonic Network Communications, 2005, 10(2): 141-153
    [83] J. Doueette, W. D. Grover. Shared-risk logical span groups in span-restorable optical networks: analysis and capacity planning model. Photonic Network Communications, 2005, 9(1): 35-53
    [84] C. Sivakurnar, G.. Mohan. Protocols for rapid restoration in WDM optical networks.Computer Communications, 2005, 25(1): 86-96
    [85] A. Haque, P. H. Ho, R. Boutaba. Group shared protection for spare capacity reconfiguration in optical networks. Computer Networks, 2006, 50(2): 168-180
    [86] J. P. Lang etal. Link management protocol (LMP). Request for Comments, 2005, RFC 4204: 1-84
    [87] A. Fredette, J. Lang. Link management protocol (LMP) for dense wavelength division multiplexing (DWDM) optical line systems. Request for Comments, 2005, RFC 4209: 1-16
    [88] J. P. Lang, D. Papadimitriou. Synchronous Optical Network (SONET)/Synchronous Digital Hierarchy (SDH) Encoding for Link Management Protocol (LMP) Test Messages. Request for Comments, 2005, RFC4207: 1-15
    [89] D. Fedyk, O. Aboul-Magd, D. Brungard, J. Lang, D. Papadimitriou. A Transport Network View of the Link Management Protocol (LMP). Request for Comments, 2006, RFC4394: 1-18
    [90] I. Chlamtac, A. Ganz, G Karmi. Lightpath Communications: An approach to high bandwidth optical WANs. IEEE Transactions on Communications, 1992, 40(7): 1171-1182
    [91] B. Mukherjee, D. Banaerjee, S. Ramamurthy etal. Some Principles for Designing a Wide Area WDM Optical Network. IEEE/ACM Transactions on Networking, 1996, 4(5): 684-695
    [92] R. R. Amaswami, K. N. S. Ivarajan. Optical Networks: A Practical Perspective. San Francisco: Morgan Kaufmann Publishers, 1998
    [93] D. J. Blumenthal, R. J. Feuerstein, J. R. Sauer. First demonstration of multihop all-optical packet switching. IEEE Photonics Technology Letters, 1994, 6(3): 457-460
    [94] M. Renuad, F. Masetti, C. Cuillemot etal. Network and system concepts for optical packet switching. IEEE Communications Magazine, 1997, 35(4): 136-142
    [95] P. Gambini, R. Monique, G. Christian etal. Transparent optical packet switching: network architecture and demonstrators in the KEOPS project. IEEE Journal on Selected Areas in Communications, 1998, 16(7): 1245-1259
    [96] A. Jourdan, D. Chiaroni, E. Dotaro etal. Perspective of optical packet switching in IP dominant backbone and metropolitan networks. IEEE Communication Magazine, 2001, 39(3): 136-141
    [97] T. S. E-BIawba, J. Shni. Optical Packet switching in core networks: between vision and reality. IEEE Communications Magazine, 2002, 40(9): 60-65
    [98] H. J. S. Dorren, M. T. Hill, Y. Liu, etal. Optical Packet Switching and Buffering by Using All-Optical Signal Processing Methods. Journal of Lightwave Technology, 2003, 21(1): 2-12
    [99] C. Qiao, M. Yoo. Optical Burst Switching (OBS)-A New Paradigm for an Optical Internet. Journal of High Speed Networks, 1999, 8(1): 69-84
    [100] Y. Chen, C. Qiao, X. Yu. Optical Burst Switching (OBS): A New Area in Optical Networking Research. IEEE Network, 2004, 18(3): 16-23
    [101] K. Dolzer, C. Gauger, J. Sp(?)th, S. Bodamer. Evaluation of Reservation Mechanisms for Optical Burst Switching. AEU-International Journal of Electronics and Communications, 2001, 55(1): 18-26
    [102] S. Verma, H. Chaskar, R. Ravikanth. Optical burst switching: a viable solution for terabit IP backbone. IEEE Network, 2000, 14(6): 48-53
    [103] C. Qiao. Labeled optical burst switching for IP-over-WDM integration. IEEE Communications Magazine, 2000, 38(9): 104-114
    [104] Z. Rosberg, L. V. Hai, M. Zukerman, J. White. Performance analyses of optical burst switching networks. IEEE Journal on Selected Areas in Communications, 2003, 21(7): 1187-1197
    [105] T. Battestilli, H. Perros. Optical burst switching for the next generation Internet. IEEE Potentials, 2005, 23(5): 40-43
    [106] J. Li, C. Qiao, J. Xu, D. Xu. Maximizing Throughput for Optical Burst Switching Networks. Networking, IEEE/ACM Transactions on. 2007, 15(5): 1163-1176
    [107] K. A. Sohraby, M. T. Fatehi. Digital container: a mechanism for heterogeneous traffic transport over an all optical network. Optical Networks Magazine, 2001, 2(3): 45-57
    [108] Y. M. Lin, W. I. Way, G. K. Chang. A novel optical label swapping technique using erasable optical single-sideband subcarrier label. IEEE Photonics Technology Letters, 2000, 12(8): 1088-1090
    [109] G. Rossi, O. Jerphagnon, B. E. Olsson etal. Optical SCM data extraction using a fiber-loop mirror for WDM network systems. IEEE Photonics Technology Letters 2000, 12(7): 897-899
    [110] H. J. Lee, S. J. B. Yoo, V. K. Tsui etal. A simple all-optical label detection and swapping technique incorporating a fiber bragg grating filter. IEEE Photonic Technology Letters, 2001, 13(6): 635-637
    [111] N. Chi, J. Zhang, P. Jeppesen. All-optical subcarrier labeling based on the carrier suppression of the payload. IEEE Photonics Technology Letters, 2003, 15(5): 781-783
    [112] S. J. B. Yoo, H. J. Lee, Z. Pan etal. Rapidly switching all-optical packet routing system with optical-label swapping incorporating tunable wavelength conversion and a uniform-loss cyclic frequency AWGR. IEEE Photonics Technology Letters, 2002, 14(8): 1211-1213
    [113] Mari Maeda. Management and Control of Transparent Optical Networks. IEEE Journal on Selected Areas in Communications, 1998, 16(7): 1008-1023
    [114] L. Berger. Generalized Multi-Protocol Label Switching (GMPLS) Signaling Functional Discription. Request for Comments, 2003, RFC3471: 1-34
    [115] L. Berger. Generalized Multi-Protocol Label Switching (GMPLS) Signaling Resource Reservation Protocol-Traffic Engineering (RSVP-TE) Extensions. Request for Comments, 2003, RFC3473: 1-42
    [116] Z. Lin, D. Pendarakis. Documentation of LANA assignments for Generalized Multiprotocol Label Switching (GMPLS) Resource Reservation Protocol-Traffic Engineering (RSVP-TE) Usage and Extensions for Automatically Switched Optical Network (ASON). Request for Comments, 2003, RFC3474: 1-25
    [117] E. Mannie. Generalized Multi-Protocol Label Switching (GMPLS) Architecture. Request for Comments, 2004, RFC3945: 1-69
    [118] K. Kompella, Y. Rekhter. OSPF Extensions in Support of Generalized Multi-Protocol Label Switching (GMPLS). Request for Comments, 2003, RFC4203: 1-11
    [119] K. Kompella, Y. Rekhter. Label Switched Paths (LSP) Hierarchy with Generalized Multi-Protocol Label Switching(GMPLS) Traffic Engineering(TE). Request for Comments, 2005, RFC4206: 1-14
    [120] K. Kompella, Y. Rekhter, L. Berger. Link Bundling in MPLS Traffic Engineering (TE). Request for Comments, 2005, RFC4201: 1-12
    [121] D. Brungard. Requirements for Generalized Multi-Protocol Label Switching (GMPLS) Routing for the Automatically Switched Optical Network (ASON). Request for Comments, 2005, RFC4258: 1-22
    [122] D. Papadimitriou. Generalized Multi-Protocol Label Switching (GMPLS) Signaling Extensions for G. 709 Optical Transport Networks Control. Request for Comments, 2006, RFC4328: 1-23
    [123] J. Lang, B. Rajagopalan, D. Papadimitriou. Generalized Multi-Protocol Label Switching (GMPLS) Recovery Functional Specification. Request for Comments, 2006, RFC4426: 1-23
    [124] P. Ashwood-Smith, L. Berger. Generalized Multi-Protocol Label Switching (GMPLS) Signaling Constraint-based Routed Label Distribution Protocol (CR-LDP) Extensions. Request for Comments, 2003, RFC3472: 1-23
    [125] K. Kompella, Y. Rekhter. Routing Extensions in Support of Generalized Multi-Protocol Label Switching (GMPLS). Request for Comments, 2005, RFC4202: 1-27
    [126] T. T. Nielsen. Pointing, Acquisition and Tracking system for the free space laser communication system, SILEX. SPIE, 1995, 2381: 194-205
    [127] R. Cockshott, D. Purll. SILEX acquisition and tracking sensors. SPIE, 1995, 2381: 206-214
    [128] R. P. Mathur, C. I. Beard, D. J. Purll. Analysis of SILEX tracking sensor performance. SPIE, 1990, 1218: 129-141
    [129] G. Oppenhauser et al. The European SILEX project-Concept, Performances, Status and Planning. SPIE, 1990, 1218: 27-37
    [130] I. I. Kim, E. J. Korevaar. Horizontal-Link performance of the STRV-2 lasercom experiment ground terminals. SPIE, 1999, 3615: 11-22
    [131] I. I. Kim, H. Hakakha, B. Riley. Preliminary results of the STRV-2 satellite-to-ground lasercom experiment. SPIE, 1998, 3266: 153-164
    [132] K. Eric, R. J. Hofmeister et al. Design of Satellite Terminal for BMDO Lasercom Technology Demonstation. SPIE, 1995, 2381: 60-71
    [133] R. Ruigok, P. Adhikari, R. Stieger. Preliminary Tracking Performance of the STRV-2 lasercom Transceiver. SPIE, 1996, 2699: 198-209
    [134] J. Schusterm, H. Hakaha, E. Korevaar. Optomechanical Design of STRV-2 Lasercom Transceiver using Novel Azimuth/Slant Gimbal. SPIE, 1996, 2699: 227-239
    [135] E. korevaar, J. Schuster et al. Description of STRV-2 lasercom Experimental Operations. SPIE, 1997, 2990: 60-69
    [136] E. J. Korevaar, J. J. Schuster, H. Hakakha etal. Design of ground terminal for STRV-2 Satellite-to-Ground lasercom experiment. SPIE, 1998, 3266: 153-164
    [137] I. I. Kim, B. Riley, N. M. Wong. Lessons learned from the STRV-2 satellite-to-ground lasercomm experiment. SPIE, 2001, 4272: 1-15
    [138] A. Biswas, G. Williams, K. E. Wilson. Results of the STRV-2 lasercom terminal evaluation tests. SPIE, 1998, 3266, 2: 2-13
    [139] 徐俊明.图论及其应用.合肥:中国科学技术大学出版社,2003,1-78
    [140] 杨炳儒.图论概要.天津:天津科学技术出版社,1990,1-119
    [141] D. B. Johnson. Finding All the Elementary circuits of a directed graph. SIAM Journal on Computing, 1975, 4(1): 77-84
    [142] K. W. KO, K. W. Cheung. A local map based (LMB) self-healing scheme for arbitrary topology networks, 1997 IEEE Global Telecommunications Conference, Vol. 3: 1393-1397
    [143] M. H. Macgregir, W. D. Grover. Optimized k-shortest paths algorithm for facility restoration. Software-Practice&Experience, 1994, 24(9): 823-834
    [144] C. C. Skiscim, B. L. Golden. Computing k-Shortest Path Lengthin Euclidean Networks. Networks, 1987, 17(3): 341-352
    [145] V. V. Apollonov, S. I. Derzhavin, V. I. Kislov, A. A. Kazakov, Y. P. Koval, V. V. Kuzminov et al. Spatial phase locking of linear arrays of 4 and 12 wide-aperture semiconductor laser diodes in an external cavity. Quantum Electron, 1998, 28(3): 257-263
    [146] X. Gao, Y. Zheng, H. Kan, K. Schinoda. Effective suppression of beam divergence for a high-power laser diode bar by an external-cavity technique. Optics Letters, 2004, 29(4): 361-363
    [147] M. V. Romalis, Narrowing of high power diode laser arrays using reflection feedback from an etalon. Applied Physics Letters, 2000, 77(8): 1080-1081
    [148] V. V. Apollonov, S. I. Derzhavin, V. A. Filonenkoetal. High power laser diode array phase-locking. SPIE, 2000, 3889: 134-146
    [149] J. R. Leger. Lateral mode control of an AIGaAs laser array in a Talbot cavity. Applied Physics Letters, 1989, 5(4): 334-336
    [150] A. F. Glova. Phase locking of optically coupled laser. Quantum Electron, 2003, 33 (4): 283-306
    [151] H. Yang, J. G. Chen, D. Y. Yan etal. Analytical characterizing far field pattern of super-modes from extemal cavity phase locked diode array. Optics Communications, 2005, 256(1-3): 132-138
    [152] D. Mehuys, W. Streifer, R. G. Waarts etal. Modal analysis of linear Tablot-cavity semiconductor lasers. Optics Letters, 1991, 16(11): 823-825
    [153] J. Chen, H. Chen, H. Yang etal. General discussion on mode selectivity imposed by extemal cavity used to phase lock broad stripe diode arrays, Journal of Optical Communications, 2006, 27(3): 163-167
    [154] I. Hassiaoui, N. Michel, M. Lecomte etal. In-phase coherent coupling of tapered lasers in an external Talbot cavity. SPIE, 2007, 6485: E1-E10
    [155] J. K. Butler, D. E. Ackley, D. Botez. Coupled-mode analysis of phase-locked injection laser array. Applied Physics Letters, 1984, 44(3): 293-295
    [156] F. Wang, A. Hermerschmidt, H. J. Eichler. Narrow-bandwidth ligh-power output of a laser diode array with a simple external cavity. Optics Communications, 2003, 1(1-3): 135-139
    [157] B. Chann, I. Nelson, T. G. Walk. Frequency-narrowed external-cavity diode-laser-array bar. Optics Letters, 2000, 25(18): 1352-1354
    [158] V. V. Apollonov, S. I. Derzhavin, V. I. Kislov, V. V. Kuzminov, D. A. Mashkovsky, A.M. Prokhorov. Phase-locking of the 2d structures. Optics Express, 1999, 4(1): 19-26
    [159] V. V. Apollonov, S. I. Derzhavin, V. I. Kislov, A. A. Kazakov, Y. P. Koval, V. V. Kuz'minov et al. Phase locking of eight wide-aperture semiconductor laser diodes in one-dimensional and two-dimensional configuration in an external Talbot cavity. Quantum Electron, 1998, 28(4): 344-346
    [160] Yasuo Kokubun. Lightwave Engineering. Tokyo: Kyoritsu Shuppan Co. Ltd., 1999
    [161] A. Abtahi, P. F. Braunlich, P. Kelly etal. Laser stimulated thermoluminescence. Journal of Applied Physics, 1985, 58(4): 1626-1639
    [162] W. A. McGahan, K. D. Cole. Solutions of the heat conduction equation in multilayers for photothermal deflection experiments. Journal of Applied Physics, 1992, 72(4): 1362-1373
    [163] P. Loza, D. Kouznetsov, R. Ortega. Temperature distribution in a uniform medium heated by linear absorption ofa Gaussian light beam. Applied Optics, 1994, 33(18): 3831-3836
    [164] M. K. Loze, C. D. Wright. Temperature distributions in semi-infinite and finite-thickness media as a result of absorption of laser light. Applied Optics, 1997, 36(2): 494-507
    [165] M. K. Loze, C. D. Wright. Temperature distributions in laser-heated semi-infinite and finite-thickness media with convective surface losses. Applied Optics, 1998, 37(28): 6822-6832
    [166] Q. W. Nowacki. Thermoelaticity. Poland: PWN-Polish Scientific Publishers, 1986
    [167] J. L. Nowinsik. Theory of thermoelasticity with applications. Netherlands: Sijthoff & Noordhoff, Alphen aan den Rijin, 1978
    [168] N. Fan, L. Yang, R. Shi. Design of Semiconductor Laser Collimator. Spacecraft Environment Engineering, 2006, 23(1): 51-55
    [169] Y. Takeuti, S. Zaima, N. Noda. Thermal stresses problems in industry 1: On thermoelastic distortion in machine metals. Thermal Stress, 1978, 1(2): 199-210
    [170] 杨绪灿,金建三.弹性力学.北京:高等教育出版社,1987,206-221
    [171] R. Geyl, M. Cayrel. Low CTE glass, SiC and beryllium for lightweight mirror substrates. SPIE, 2005, 5965(1F): 1-7
    [172] C. T. Tanaka, K. Webb. Chemical vapour composite silicon carbide for space telescopes. SPIE, 2006, 6265(2Q): 1-9
    [173] H. Murakami. Japanese infrared survey mission IRIS (ASTRO-F). SPIE, 1998, 3356: 471-477
    [174] S. Lubarsky, Y. P. Khimitch. Light weighted mirrors for space tclcscopcs. SPIE, 1994, 2199: 938-944
    [175] G. T. Petrovsky, M. N. Tolstoy, S. V. Ljubarsky etal. 2.7-meter-diameter silicon carbide primary mirror for the SOFIA telescope. SPIE, 1994, 2199: 263-270
    [176] D. Castel, B. Calvel, P. Lamy etal. The monolithic SiC telescope of the OSIRIS Narrow Angle Camera for the cometary mission ROSETTAk. SPIE, 1999, 3785: 56-65
    [177] C. J. Shih, A. Ezis. Application of hot-pressed silicon carbidc to large high-precision optical structures. SPIE, 1995, 2543: 24-37
    [178] K. J. Held, J. D. Barry. Precision pointing and tracking between satellite-borne optical systems. Optical Engineering, 1988, 27(4): 325-333
    [179] V. Trent, M. Greene, S. Hung. Precision pointing error analysis in a satellite optical communication optical system. IEEE Proc. Aerospace Conference, 1990, Vol. 1: 190-194
    [180] W. Hayen, T. McCullough, A. Reth. Wide-band precision two-axis beam steerer tracking servo design and test results. SPIE, 1993, 1866: 271-279
    [181] Shinhak Lee, James W. Alexander and Muthu Jeganathan. Pointing and tracking subsystem design for optical communications link between the International Space Station and ground. SPIE, 2000, 3932: 150-157
    [182] 郑小平,张锋,奉飞飞等.自动交换光网络的分层路由体系及其路由实现方法.电信科学,2003(8):29-32
    [183] A. Banerjee, J. Drake, J. P. Lang etal. Generalized Multiprotocol Label Switching: an Overview of Routing and Management Enhancements. IEEE Communications Magazine, 2001, 39(1): 144-150
    [184] J. Y. Wei. Advances in the Management and Control of Optical Internet. IEEE Journal of Selected Area in Communications, 2002, 20(4): 768-785
    [185] D. Katz, K. Kompella, D. Yeung. Traffic engineering Extensions to OSPF version 2. Request for Comments, RFC 3630: 1-14
    [186] R. Coltun. The OSPF opaque LSA option, Request for Comments, 1998, RFC 2370: 1-15
    [187] ATM Forum. Private Network-network Interface Specification(PNNI), version 1. 0. Moutain View: Technical Committee, 1996
    [188] B. Awerbuch, Y. Du, B. Khan etal. Routing Through Networks with Hierarchical Topology Aggregation. Third IEEE Symposium on Computers and Communications, Vol.1: 406-412
    [189] J. Behrens, J. J. Garcia-Luna-Aceves. Hierarchical Routing Using Link Vectors. Seventeenth Annual Joint Conference of the IEEE Computer and Communications Societies, Vol.2: 702-710
    [190] L. Ong, G. Bernstein, D. Cheng. Hierachical Routing Using GMPLS-OSPF, Optical Internetworking Forum Draft, 2003, OIF2002. 023. 08
    [191] International Telecommunications Union (ITU). ITU-T, G. 7715/Y. 1706, Architecture and Requirements for Routing in the Automatically Switched Optical Network. Geneva: Telecommunication Standardization Sector of ITU (ITU-T), 2002
    [192] W. C. Lee. Topology Aggregation for Hierarchical Routing in ATM Networks. 1995 Conference on Applications, Technologies, Architectures and Protocols for Computer Communication, Vol.25: 82-92
    [193] F. Hao, E. W. Zegura. On Scalable QoS Routing: performance Evaluation of Topology Aggregation. 2000 Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies, Vol.1: 147-156
    [194] X. Masip-Bruin, S. Sanchez-Lopez, J. Sole-Pareta etal. Hierarchical Routing with QoS Constraints in Optical Transport Networks. Lecture notes in computer science, 2004, 3042: 662-674
    [195] R. Guerin, A. orda. QoS-based Routing in Networks with Inaccurate Information: Theory and Algorithm. IEEE/ACM Transaction on Networking, 1999, 7(3): 350-364
    [196] K. S. Lui, K. Nahrstedt. Routing with Topology Aggregation in Delay-Bandwidth Sensitive Networks. IEEE/ACM Transaction on Networking. 2004, 12(1): 17-29
    [197] D. H. Lorenz, A. Orda. Qos Routing in Networks with Uncertain parameters. IEEE/ACM Transactionon Networking, 1998, 6(6): 768-778
    [198] B. Awerbuch, Y. Du, B. Khan. Routing Through Teranode Networks with Hierarchical Topology Aggregation. Journal of High Speed Network, 1998, 7(1): 57-73
    [199] X. Masip-Bruin, S. Sanchez-Lopez, D. Colle. Routing and wavelength assignment under inaccurate routing information in networks with sparse and limited wavelength conversion. 2003 IEEE Global Telecommunications Conference, Vol. 5: 2575-2579
    [200] J. J. Gareia-Luno-Aceves, J. Behrens. Distributed Scalable Routing Based on Vectors of Link States. IEEE Journal on Selected Areas in Communications, 1995, 13(8): 1383-1395
    [201] T. Korkmaz, M. Krunz. Source-oriented Topology Aggregation with Multiple QoS Parameters in Hierarchical Networks. IEEE/ACM Transactions on Modeling and Computer Simulation. 2000, 10(4): 295-325
    [202] Y. Tang, S. Chen. QoS Information Approximation for Aggregated Networks. 2004 IEEE International Conference on Communications, Vol. 4: 2107-2111
    [203] W. C. Lee. Spanning Tree Method for Link State Aggregation in Large Communication Networks. 1995 Fourteenth Annual Joint Conference of the IEEE Computer and Communications Societies, Vol. 1: 297-302
    [204] L. Guo, I. Matta. On State Aggregation for Scalable QoS Routing. 1998 IEEE ATM workshop, Vol. 1: 306-314
    [205] J. Y. Le Bouder, T. Przygienda. A Route Pre-Computation Algorithm for Integrated Services Networks. Journal of Network and Systems Management, 1995, 3(4): 427-449
    [206] I. Habib, Q. Song, Z. Li etal. Deployment of the GMPLS control plane for grid applications in experimental high-performance networks. IEEE Communications Magazine, 2006, 44(3): 65-73
    [207] K. Lu, J. Jue, G. Xiao etal. Intermediate-node initiated reservation(ⅡR): A new signaling scheme for wavelength-routed networks. IEEE Journal on Selected Areas in Communications, 2003, 21(8): 1285-1294
    [208] D. Shimazaki, E. Oki, K. Shiomoto etal. GMPLS and IP+MPLS interworkring technologies routing and signaling. 2004 IEEE Workshop on High Performance Switching and Routing, Vol. 1: 27-31
    [209] Y. Q. Fan. GMPLS-based passive optical network. SPIE, 2005, 5626: 905-909
    [210] E. Mannie, D. Papadimitriou. Generalized Multi-Protocol Label Switching (GMPLS) Extensions for Synchronous Optical Network (SONET) and Synchronous Digital Hierarchy (SDH)Control. Request for Comments, 2006, RFC4606: 1-25
    [211] L. B. Ulich. Overview of acquisition, tracking, and pointing system technologies. SPIE, 1988, 887: 40-63
    [212] P. W. Scott, P. W. Young. Impact of temporal fluctuations of signal-to-noise ratio (burst error) on free-space laser communication system design. SPIE, 1986, 616: 174-181
    [213] S. Arnon, S. Rotman, N. S. Kopeika. Optimum transmitter optics aperture for satellite optical communication. IEEE Transactions on Aerospace and Electronic Systems, 1998, 34(2): 590-596
    [214] S. Amon, S. Rotman, N. S. Kopeika. Beam width and transmitter power adaptive to tracking system performance for free-space optical communication. Applied Optics, 1997, 36(24): 6095-6101
    [215] S. Arnon, N. S. Kopeika. Adaptive bandwidth for satellite optical communication. IEE Proceedings-Optoelectronics, 1998, 145(2): 109-115
    [216] 张英海,霍泽人,王宏峰等.自由空间光通信现状与发展趋势.中国数据通信,2004,12:78-82
    [217] J. C. Ricklin, F. M. Davidson. Bit error rate in a free-space laser communication system with a partially coherent signal beam. SPIE, 2003, 4884: 95-102
    [218] S. S. Muhammad, B. Flecker, E. Leitgeb etal. Characterization of fog attenuation in terrestrial free space optical links. Optical Engineering, 2007, 46(6): 066001-1-066001-10
    [219] I. I. Kim, E. Woodbridge, V. Chanetal. Scintillation measurements performed during the limited-visibility lasercom experiment. SPIE, 1998, 3266: 209-220
    [220] 谢雪康,吴健,胡渝.大气闪烁对激光信号检测的影响.电子科技大学学报,1998,27(5):537-540
    [221] E. Leitgeb, M. Gebhart, P. Fasseretal. Impact of atmospheric effects in free-space optics transmission systems. SPIE, 2003, 4976: 86-97
    [222] A. K. Majumdar, J. C. Ricklin. Effects of the atmospheric channel on free-space laser communications. SPIE, 2005, 5892: 58920K-1-58920K-16
    [223] M. Abtahi, P. Lemieux, W. Mathlouthi, L. A. Rusch. Suppression of Turbulence-Induced Scintillation in Free-Space Optical Communication Systems Using Saturated Optical Amplifiers. Journal of Lightwave Technology, 2006, 24(12): 4966-4973
    [224] M. Uysal, J. Li, M. Yu. Error rate performance analysis of coded free-space optical links over gamma-gamma atmospheric turbulence channels. IEEE Transactions on Wireless Communications, 2006, 5(6): 1229-1233
    [225] I. B. Djordjevic, B. Vasic, M. A. Neifeld. Multilevel coding in free-space optical MIMO transmission with Q-ary PPM over the atmospheric turbulence channel. IEEE Photonics Technology Letters, 2006, 18(14): 1491-1493
    [226] D. N. Tse. Optimal power allocation over parallel Gaussian broadcast channels. 1997 IEEE International Symposium on Information Theory, Vol. 1: 27-27
    [227] I. I. Kim, H. Hakakha etal. Scintillation reduction using multiple transmitters. SPIE, 1997, 2990: 102-113
    [228] H. Weingarten, Y. Steinberg, S. S. Shamai. The capacity region of the Gaussian multiple-Input multiple-output broadcast channel. IEEE Transactions on Information Theory, 2006, 52(9): 3936-3964
    [229] Q. H. Spencer, A. L. Swindlehurst, M. Haardt. Zero-forcing methods for downlink spatial multiplexing in multiuser MIMO channels. IEEE Transactions on Signal Processing, 2004, 52(2): 461-471
    [230] T. Yoo, A. Goldsmith. Optimality of zero-forcing beamforming with multiuser diversity. 2005 IEEE International Conference on Communications, Vol. 1: 542-546
    [231] U. C. Lai, R. D. Murch. A transmit preprocessing technique for multiuser MIMO systems using a decomposition approach. IEEE Transactions on Wireless Communications, 2004, 3 (1): 20-24
    [232] Z. D. Zhou, B. Vucetic, M. Dohler et al. MIMO systems with adaptive modulation. IEEE Transactions on Vehicular Technology, 2005, 54(5): 1828-1842
    [233] G. Reimann, Compact adaptive optical compensation systems using continuous silicon deformable mirrors. SPIE, 2002, 4493: 35-40
    [234] 周仁忠.自适应光学.北京:国防工业出版社,1996
    [235] J. B. Daniel, O. Bengt-Erik, R. Giammarco etal. All-optical label swapping networks and technologies. Journal of Lightwave Technology, 2000, 18(12): 2058-2075
    [236] S. Verma, H. Chaskar, R. Ravikanth. Optical Bust Switching: A Viable Solution for Terabit IP Backbone. IEEE Network, 2000, 14(6): 48-53
    [237] 罗斐琼,李旋飞,纪越峰.LOBS技术研究.现代有线传输,2005,2:42-46
    [238] 隋志成,姜希军,吴志坚.LOBS交换光网络.电信快报,2002,6:32-35
    [239] 隋志成,姜希军,吴志坚.未来光网络中的LOBS技术.现代有线传输.2001,2:43-49
    [240] 陈轩,何对燕,李洪涛.基于MPLS的光突发交换技术.光通信技术,2004,8:22-25
    [241] 于金辉,范戈.光标签突发包交换技术.光纤与电缆及其应用技术,2003,3:37-40

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700