室温下工作的非易失性分子级存储单元的操作设计与分子动力学模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
半导体工业目前正面临着两大严峻的挑战:一方面是半导体集成电路的线宽尺寸将很快走向物理极限;另一方面是还没有可行性的半导体存储技术能够用于制造超高速的非易失性随机存储器(RAM)。在本文中,我们将提出两种碳纳米管分子级存储单元,来解决上述问题。碳纳米管分子级存储单元的读写操作主要通过脉冲电场(压)控制内管的往复振荡运动来实现。我们采用分子动力学模拟研究存储单元的工作性能,并发现我们提出的第二种存储单元,在室温下具有最可靠的超高速的非易失性工作特性。
     封闭型双层碳纳米管存储单元是我们提出的第一种非易失性分子级存储单元,由一个两端封闭的外管和一个两端封闭的内管组成。范德华势能的分子静力学计算结果表明,这种封闭双层碳纳米管具有双稳态结构,可以定义为“0”、“1”两个逻辑状态用于读写操作。逻辑状态问的开关电场要求达到1.5V/nm,用于驱动内管在状态点问的往复运动。为了实现非易失性的写入操作,本文提出了两种脉冲控制电场的加载方式,一种为初始激励型(short duration),另一种为过程保持型(10ng duration)。研究发现,尽管初始激励型控制方式具有较小的功耗,但对于外界的扰动影响比较敏感,而过程保持型具有比较可靠的写操作能力。为了研究封闭型存储单元在室温环境下的工作性能,本文分别用了Langevin、Gunsteren-Berendsen和Guo-Berendsen三种等温分子动力学方法对存储单元在室温下的工作特性进行模拟比较,结果发现,只有在Langevin等温模拟中,封闭型碳纳米管存储单元在室温下才表现出非易失性的存储功能,频率可以达到4GHz,而在其他两种方法的等温分子动力学模拟中,却没有实现高速非易失性存储的功能。
     本文提出的第二种设计,是由一个中间割断、两端开口的外管和一个两端封闭的内管以及两侧的读写电极组成,文中称为两段式开口型双层碳纳米管存储单元。把外管割成两段,是为了使存储单元具有比普通的开口型碳纳米管存储单元更深更宽的双稳态势阱;并且可以对两段外管问的间隔距离以及电极的沉积位置等结构尺寸参数进行优化,来改善存储单元的工作的稳定性和非易失性。根据对碳纳米管层问的范德华势能、碳管与金属电极问的结合能的叠加结果分析以及分子静力学计算发现,本文提出的两段式开口型存储单元具有较为宽深的双稳态势阱用于定义“0”、“1”状态,而且7.0V的开关电压可以充分驱动内管在状态点之间的运动。同样,我们研究了初始激励型(short duration)和过程保持型(10ngduration)两种电压脉冲控制方式来实现状态的准确转变。在Langevin分子动力学模拟中,两种控制方式对应的状态转变时间分别为50ps和40ps,我们采用过程保持型控制方式,由于它具有更可靠的写操作特性。与第一种设计的研究相同,我们也分别采用了另外两种等温控制方法来模拟两段式开口型双层碳纳米管存储单元的工作性能。结果发现,第二种存储单元设计能够在所有的三种等温分子动力学模拟中,在室温环境下均表现出稳定、可靠的非易失性存储功能,并且写操作频率可以高达16.6GHz,是目前主流的非易失性存储器闪存的100倍以上。因此,两段式开口型双层碳纳米管存储单元显然优于第一种设计的封闭型存储单元,更有希望发展成为未来的新型存储器,既可以作为大容量永久性存储设备,也可以应用到超高速的随机存储。另外,由于这种分子级存储单元是基于“Bottom—Up”的研究思路和制造技术,因此也可以解决目前传统半导体技术遇到集成芯片的线宽极限问题。
The semiconductor industry is confronted with 2 significant challenges; the fast approaching miniaturization limits in memory technologies and the lack of a viable technology for introducing operational non-volatility in the random access memory (RAM) of a computer. In this dissertation we proposed 2 conceptual designs of a carbon nanotube (CNT)-based molecular memory cell, each of which is able to fully address both issues. The read-write operations of the memory cell are accomplished by the back-and-forth oscillations of the inner tube that is driven by a controlled electrostatic field impulse. To study its performance characteristics we employed molecular dynamics (MD) simulation that takes into account the main environmental forces such as those arising from the interactions between carbon-carbon atoms, and from the energies of the CNT-electrode binding and the external capacitive source. From the isothermal MD studies, we determined that our second design is most reliable in preserving the non-volatility at room temperatures.
     Our first design is a double-wall CNT-based memory cell made up of a fully-capped outer-tube and a fully-capped inner-tube or core. The molecular static calculations of the van der Waals potential indicate that the design is bistable with 2 well-defined logical states "0" and "1" for the read-write operations. The design requires an external electrostatic field of 1.5 V/nm to effect a switch between the 2 logical states. For the write operation, 2 types of external electrical field: a short-duration and a long-duration trapezoidal impulse were used. Although the former consumes less power, it is more sensitive to environmental disturbances. The latter on the other hand, uses more power but yields a better write reliability. To assess its performance at the room temperature 300K an isothermal MD simulation with the following 3 thermostat models applied in-turns: Langevin, Gunsteren-Berendsen and Guo-Berendsen was conducted. The Langevin MD study indicates that the fully-capped, double-wall CNT design behaves as a nonvolatile memory cell at room temperature with operating frequencies of up to 4 GHz. However, when replaced by either of the 2 remaining thermostat models, the fully-capped design is not only not able to function as a nonvolatile memory cell, it is also unable to perform the write operations at room temperature.
     The second design is an opened, center-split double-wall CNT-based memory cell with platinum electrodes placed at two extremities. The outer-tube is opened at both ends but the inner-tube remains fully-capped. To produce deeper and wider potential wells in the system energetics, we center-split the outer-tube into 2 sections. This design has the 2 structural parameters that need to be optimized: the split gap and the electrode gaps that determine the positioning of the 2 platinum electrodes. From a superposition of molecular static calculations of the van der Waals potential for each of the cell configuration, we showed that the design possesses bistable characteristics with 2 well-defined logical states "0" and "1". A switching voltage of 7.0 V is found to be sufficient to drive the core between the 2 logical states. Also, the same 2 external fields: a short-duration and a long-duration trapezoidal impulse were employed to realize the states transition. The Langevin MD results show that, the transition times of about 50ps and 40ps correspond to the short-duration and long-duration writing operations, respectively. Also, we adopted the long-duration impulse excitation in order to produce a more reliable write operation. As with the first design, an isothermal MD simulation at 300K with the same 3 thermostat models applied in-turns was conducted to assess the performance of the memory cell. The MD study showed that the opened, center-split memory cell produces stable, reliable and nonvolatile room-temperature operations for all 3 thermostat models. It is able to operate at frequencies of up to 16.6 GHz, which is at least 100 times faster than the flash memory. Therefore, the second design is clearly superior to the first proposal. We recommend the opened, center-split double-wall CNT memory cell as the more promising candidate for the further development of a novel memory device that can act both as a permanent terabit solid-state storage and a nonvolatile RAM. Additionally, it is molecular in scale based on the bottoms-up technology and hence, should not be handicapped by miniaturization limits in the foreseeable future.
引文
[1]朱静.纳米材料和器件[M].清华大学出版社,2003.
    [2]Binnig G,Rohrer H.Scanning Tunneling Microscopy[J].Helvetica Physica Acta.1982,55(6):726-735.
    [3]Hornbeck L J.From Cathode Rays to Digital Micromirrors:A History of Electronic Projection Display Technology[J].Texas Instruments Technical Journal.1998,15(3):7-46.
    [4]Dokmeci M R,Bakshi S,Waelti M,et al.Bulk Micromachined Electrostatic Beam Steering Micromirror Array[C].2002.
    [5]周兆英,王中林,林立伟.微系统和纳米技术[M].科学出版社,2007.
    [6]Eddy D S,Sparks D R.Application of Mems Technology in Automotive Sensors and Actuators[J].Proceedings of the Ieee.1998,86(8):1747-1755.
    [7]Takeda M.Applications of Mems to Industrial Inspection[C].2001.
    [8]Bryzek J.Impact of Mems Technology On Society[J].1996,56(1-2):1-9.
    [9]Schulz M.The End of Road for Silicon[J].Nature.1999,399:729-730.
    [10]Service R F.Is Silicon'S Reign Nearing its End?[J].Science.2009,323(5917):1000-1002.
    [11]Lu L,Sui M L,Lu K.Superplastic Extensibility of Nanocrystalline Copper at Room Temperature[J].Science.2000,287(5457):1463-1466.
    [12]Qian D,Dickey E C,Andrews R,et al.Load Transfer and Deformation Mechanisms in Carbon Nanotube-Polystyrene Composites[J].Applied Physics Letters.2000,76(20):2868-2870.
    [13]Chen C Q,Shi Y,Zhang Y S,et al.Size Dependence of Young'S Modulus in Zno Nanowires[J].Physical Review Letters.2006,96(7):-.
    [14]Kulkarni A J,Zhou M.Surface-Effects-Dominated Thermal and Mechanical Responses of Zinc Oxide Nanobelts[J].Acta Mechanica Sinica.2006,22(3):217-224.
    [15]Israelachvili J N.Intermolecular and Surface Force[J].Academic Press.1992.
    [16]Han J,Globus A I,Jaffe R,et al.Molecular Dynamics Simulation of Carbon Nanotube-Based Gears[J].Nanotechnology.1997,8:95-102.
    [17]Legoas S B,Coluci V R,Braga S F,et al.Molecular-dynamics simulations of carbon nanotubes as gigahertz oscillators[J].Physical Review Letters.2003,90:55504.
    [18]Shah B,Cho K.Ab Initio Study of Schottky Barriers at MetaI-Nanotube Contacts[J].Physical Review B.2004,70(23):233405.
    [19]Kang J W,Hwang H J.An Atomistic Simulation Study of Carbon Nanotube Electromechanical Memory[J].Journal of Computational and Theoretical Nanoscience.2005,2(3):348-353.
    [20]Binnig G,Quate C F,Gerber C.Atomic Force Microscope[J].Physical Review Letters.1986,56(9):930-933.
    [21]Luo G,Xie G Y,Zhang Y Y,et al.Scanning Probe Lithography for Nanoimprinting Mould Fabrication[J].Nanotechnology.2006,17(12):3018-3022.
    [22]Ravindran S,Bozhilov K N,Ozkan C S.Self Assembly of Ordered Artificial Solids of Semiconducting Zns Capped Cdse Nanoparticles at Carbon Nanotube Ends[J].Carbon.2004,42(8-9):1537-1542.
    [23]Rao S G,Huang L,Setyawan W,et al.Large-Scale Assembly of Carbon Nanotubes[J].Nature.2003,425:36.
    [24] Monthioux M. Filling Single-Wall Carbon Nanotubes[J]. Carbon. 2002,40(10): 1809-1823.
    [25] Kroto H W, Heath J R, Obrien S C, et al. C-60 - Buckminsterfullerene[J]. Nature. 1985, 318(6042): 162-163.
    [26] Hare J P, Kroto H W, Taylor R. Preparation and Uv Visible Spectra of Fullerenes C60 and C70[J]. Chemical Physics Letters. 1991, 177(4-5): 394-398.
    [27] Iijima S. Helical Microtubules of Graphitic Carbon[J]. Nature. 1991, 354: 56-58.
    [28] Luzzi D E, Smith B W. Carbon Cage Structures in Single Wall Carbon Nanotubes: A New Class of Materials[J]. Carbon. 2000, 38(11-12): 1751-1756.
    [29] 成会明.纳米碳管制备、结构、物性及应用][M].北京:化学工业出版社,2002.
    [30] Bai H Y, Xu F, Anjia L, et al. Low Temperature Synthesis of Zno Nanowires by Using a Genetically-Modified Collagen-Like Triple Helix as a Catalytic Template[J]. Soft Matter. 2009, 5(5): 966-969.
    [31] Koo T W, Whang D. Growth of High Quality Zinc Oxide Nanowires by Simple Oxidation of Zinc Powder in Air[J]. Nano. 2008, 3(6): 477-482.
    [32] Du S F, Liu H D, Chen Y F. Large-Scale Preparation of Porous Ultrathin Ga-Doped Zno Nanoneedles From 3D Basic Zinc Carbonate Superstructures[J]. Nanotechnology. 2009, 20(8): -.
    [33] Stankovich S, Dikin D A, Piner R D, et al. Synthesis of Graphene-Based Nanosheets Via Chemical Reduction of Exfoliated Graphite Oxide[J]. Carbon. 2007, 45(7): 1558-1565.
    [34] Zhu J. Graphene Production: New Solutions to a New Problem[J]. Nature Nanotechnology. 2008, 3(9): 528-529.
    [35] Wei Z Q, Barlow D E, Sheehan P E. The Assembly of Single-Layer Graphene Oxide and Graphene Using Molecular Templates[J]. Nano Letters. 2008, 8(10): 3141-3145.
    [36] Virojanadara C, Syvajarvi M, Yakimova R, et al. Homogeneous Large-Area Graphene Layer Growth On 6H-Sic(0001)[J]. Physical Review B. 2008, 78(24): -.
    [37] Coraux J, N'Diaye A T, Engler M, et al. Growth of Graphene On Ir(111)[J]. New Journal of Physics. 2009, 11:-.
    [38] Anon. Novel Method Can Mass Produce Graphene[J]. International Journal of Materials Research. 2009, 100(2): 262-263.
    [39] Tarakanov Y A, Kinaret J M. A Carbon Nanotube Field Effect Transistor with a Suspended Nanotube Gate[J]. Nano Letters. 2007, 7(8): 2291-2294.
    [40] Tans S J, Verschueren A R M, Dekker C. Room-Temperature Transistor Based On a Single Carbon Nanotube[J]. Nature. 1998, 393(6680): 49-52.
    [41] Mattel R, Schmidt T, Shea H R, et al. Single- And Multi-Wall Carbon Nanotube Field-Effect Transistors[J]. Applied Physics Letters. 1998, 73(17): 2447-2449.
    [42] Wind S J, Appenzeller J, Mattel R, et al. Vertical Scaling of Carbon Nanotube Field-Effect Transistors Using Top Gate Electrodes[J]. Applied Physics Letters. 2002, 80(20): 3817-3819.
    [43] Ahlskog M, Tarkiainen R, Roschier L, et al. Single-Electron Transistor Made of Two Crossing Multiwalled Carbon Nanotubes and its Noise Properties[J]. Applied Physics Letters. 2000, 77(24):4037-4039.
    [44] Liang X, Fu Z, Chou S Y. Graphene Transistors Fabricated Via Transfer-Printing in Device Active-Areas On Large Wafer[J]. Nano Letters. 2007, 7(12): 3840-3844.
    [45] Fennimore A M, Yuzvinsky T D, Han W Q, et al. Rotational Actuators Based On Carbon Nanotubes[J]. Nature. 2003, 424(6947): 408-410.
    [46] Jensen K, Weldon J, Garcia H, et al. Nanotube Radio[J]. Nano Letters. 2007, 7(11): 3508-3511.
    [47] Rutherglen C, Burke P. Carbon Nanotube Radio[J]. Nano Letters. 2007, 7(11): 3296-3299.
    [48] Dragoman D, Dragoman M. Tunneling Nanotube Radio[J]. Journal of Applied Physics. 2008, 104(7):-.
    [49] Yang R S, Qin Y, Dai L M, et al. Power Generation with Laterally Packaged Piezoelectric Fine Wires[J]. Nature Nanotechnology. 2009, 4(1): 34-39.
    [50] Wang X D, Liu J, Song J H, et al. Integrated Nanogenerators in Biofluid[J]. Nano Letters. 2007, 7(8): 2475-2479.
    [51] Wang Z L. Towards Self-Powered Nanosystems: From Nanogenerators to Nanopiezotronics[J]. Advanced Functional Materials. 2008, 18(22): 3553-3567.
    [52] Anon. Ultrasound Drives Nanogenerator[J]. Transactions of the Indian Ceramic Society. 2008, 67(1): 46.
    [53] Liu J, Fei P, Zhou J, et al. Toward High Output-Power Nanogenerator[J]. Applied Physics Letters. 2008, 92(17):-.
    [54] Lin Y F, Song J, Ding Y, et al. Piezoelectric Nanogenerator Using Cds Nanowires[J]. Applied Physics Letters. 2008, 92(2): -.
    [55] Liu J, Fei P, Song J H, et al. Carrier Density and Schottky Barrier On the Performance of Dc Nanogenerator[J]. Nano Letters. 2008, 8(1): 328-332.
    [56] Lu M P, Song J, Lu M Y, et al. Piezoelectric Nanogenerator Using P-Type Zno Nanowire Arrays[J]. Nano Letters. 2009, 9(3): 1223-1227.
    [57] Meijer G 1. Materials Science: Who Wins the Nonvolatile Memory Race?[J]. Science. 2008, 319(5870): 1625-1626.
    [58] Allan A, Edenfeld D, Joyner W H, et al. 2001 Technology Roadmap for Semiconductors[J]. Computer. 2002, 35(1): 42.
    [59] Zeitzoff P M. 2007 International Technology Roadmap: Mosfet Scaling Challenges[J]. Solid State Technology. 2008, 51(2): 35-37.
    [60] Wong H. Beyond the Conventional Transistor[J]. Solid-State Electronics. 2005,49(5): 755-762.
    [61] Boudenot J C. From Transistor to Nanotube[J]. Comptes Rendus Physique. 2008, 9(1): 41-52.
    [62] Yu B, Meyyappan M. Nanotechnology: Role in Emerging Nanoelectronics[J]. Solid-State Electronics. 2006, 50(4): 536-544.
    [63] Falvo M R, Clary G J, Taylor R M, et al. Bending and Buckling of Carbon Nanotubes Under Large StrainfJ]. Nature. 1997, 389(6651): 582-584.
    [64] Lu J P. Elastic Properties of Single and Multilayered Nanotubes[J]. Journal of Physics and Chemistry of Solids. 1997,58(11): 1649-1652.
    [65] Comwell C F, Wille L T. Elastic Properties of Single-Walled Carbon Nanotubes in Compression[J]. Solid State Communications. 1997, 101(8): 555-558.
    [66] Wong E W, Sheehan P E, Lieber C M. Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes[J]. Science. 1997, 277(5334): 1971-1975.
    [67] Salvetat J, Briggs G A D, Bonard J, et al. Elastic and Sheer Moduli of Single-Walled Carbon Nanotube Ropes[J]. Physical Review Letters. 1999, 82: 944-947.
    [68] Saito R, Dresselhaus G, Dresselhaus M S. Physical Properties of Carbon Nanotubes[M]. London: Imperial College Press, 1998.
    [69] Botti S. Physical Properties of Carbon Nanotubes[M]. Trivandrum, Kerala: Transworld Research Network, 2007.
    [70] Hall A R, An L. Liu J, et al. Experimental Measurement of Single-Wall Carbon Nanotube Torsional Properties[J]. Physical Review Letters. 2006, 96(25): -.
    [71] Ebbesen T W, Lezec H J, Hiura H, et al. Electrical Conductivity of Individual Carbon Nanotubes[J]. Nature. 1996,382: 54-56.
    [72] Zhu W, Bower C, Zhou O, et al. Large Current Density From Carbon Nanotube Field Emitters[J]. Applied Physics Letters. 1999, 75(6): 873-875.
    [73] Dai H J. Probing Electrical Transport in Nanomaterials: Conductivity of Individual Carbon Nanotubes (Vol 272, Pg 523, 1996)[J]. Science. 1996, 272(5270): 1861.
    [74] Zhang Y, lijima S. Elastic Response of Carbon Nanotube Bundles to Visible Light[J]. Physical Review Letters. 1999, 82(17): 3472-3475.
    [75] Prilutski Y I, Durov S S, Nazarenko A V. Study of Electronic and Optical Properties of Fullerene Nanotube Under High Pressure[J]. Physica Status Solidi B-Basic Research. 1999,211(1): 213-215.
    [76] Kataura H, Kumazawa Y, Maniwa Y, et al. Optical Properties of Single-Wall Carbon Nanotubes[J]. 1999, 103(1-3): 2555-2558.
    [77] Choi W B, Chung D S, Kang J H, et al. Fully Sealed, High-Brightness Carbon-Nanotube Field-Emission Display[J]. Applied Physics Letters. 1999, 75(20): 3129-3131.
    [78] Yang D J, Wang S G, Zhang Q, et al. Thermal and Electrical Transport in Multi-Walled Carbon Nanotubes[J]. Physics Letters a. 2004, 329(3): 207-213.
    [79] Hone J, Llaguno M C, Nemes N M, et al. Electrical and Thermal Transport Properties of Magnetically Aligned Single Wall Carbon Nanotube Films[J]. Applied Physics Letters. 2000, 77(5): 666-668.
    [80] Appenzeller J. Carbon Nanotubes for High-Performance Electronics - Progress and Prospect[J]. Proceedings of the Ieee. 2008, 96(2): 201-211.
    [81] Yousif M, Lundgren P, Ghavanini F, et al. Cmos Considerations in Nanoelectromechanical Carbon Nanotube-Based Switches[J]. Nanotechnology. 2008, 19(28): 1-7.
    [82] Baughman R H, Zakhidov A A, De Heer W A. Carbon Nanotubes-The Route Toward Applications[J]. Science. 2002, 297(5582): 787-792.
    [83] Dai H J. Carbon Nanotubes: Opportunities and Challenges[J]. Surface Science. 2002, 500(1-3): 218-241.
    [84] Bachtold A, Hadley P, Nakanishi T, et al. Logic Circuits with Carbon Nanotube Transistors[J]. Science. 2001, 294(5545): 1317-1320.
    [85] Fuhrer M S, Kim B M, Durkop T, et al. High-Mobility Nanotube Transistor Memory[J]. Nano Letters. 2002, 2(7): 755-759.
    [86] Javey A, Guo J, Wang Q, et al. Ballistic Carbon Nanotube Field-Effect Transistors[J]. Nature. 2003, 424(6949): 654-657.
    [87] Pesetski A A, Baumgardner J E, Krishnaswamy S V, et al. A 500 Mhz Carbon Nanotube Transistor Oscillator[J]. Applied Physics Letters. 2008, 93(12): -.
    [88] Li S D, Yu Z, Yen S F, et al. Carbon Nanotube Transistor Operation at 2.6 Ghz[J]. Nano Letters. 2004, 4(4): 753-756.
    [89] Burke P J. Ac Performance of Nanoelectronics: Towards a Ballistic Thz Nanotube Transistor[J]. Solid-State Electronics. 2004, 48(10-11): 1981-1986.
    [90] Avouris P, Appenzeller J, Mattel R, et al. Carbon Nanotube Electronics[J]. Proceedings of the Ieee. 2003,91(11): 1772-1784.
    [91] Rueckes T, Kim K, Joselevich E, et al. Carbon Nanotube-Based Nonvolatile Random Access Memory for Molecular Computing[J]. Science. 2000, 289(5476): 94-97.
    [92] Kang J W, Lee J H, Lee H J, et al. Electromechanical Modeling and Simulations of Nanobridge Memory Device[J]. Physica E-Low-Dimensional Systems & Nanostructures. 2005, 28(3): 273-280.
    [93] Kang J W, Lee J H, Lee H J, et al. A Study On Carbon Nanotube Bridge as a Electromechanical Memory Device[J]. Physica E-Low-Dimensional Systems & Nanostructures. 2005, 27(3): 332-340.
    [94] Kang J W, Hwang H J. A Study On Electromechanical Carbon Nanotube Memory Devices[J]. Journal of the Korean Physical Society. 2005, 46(4): 875-882.
    [95] Kang J, Kong S C, Hwang J. Electromechanical analysis of suspended carbon nanotubes for memory applications[J]. Nanotechnology. 2006, 17(9): 2127-2134.
    [96] Hwang H J, Kang J W. Carbon-Nanotube-Based Nano Electromechanical Switch[J]. Physica E-Low-Dimensional Systems & Nanostructures. 2005, 27(1-2): 163-175.
    [97] Kwon Y K, Tomanek D, Iijima S. "Bucky Shuttle" Memory Device: Synthetic Approach and Molecular Dynamics Simulations[J]. Physical Review Letters. 1999, 82(7): 1470-1473.
    [98] Kang J W, Hwang H J. 'Carbon nanotube shuttle' memory device[J]. CARBON. 2004, 42(14): 3018-3021.
    [99] Kang J W, Hwang H J. Carbon nanotube shuttle memory device based on singlewall-to-doublewall carbon nanotube transition[J]. COMPUTATIONAL MATERIALS SCIENCE.2005, 33(1-3): 338-345.
    [100] Kang J W, Hwang H J. Schematics and Simulations of Nanomemory Device Based On Nanopeapods[J]. Materials Science & Engineering C-Biomimetic and Supramolecular Systems. 2005, 25(5-8): 843-847.
    [101] Lee J, Kim H, Kahng S J, et al. Bandgap Modulation of Carbon Nanotubes by Encapsulated Metallofullerenes[J]. Nature. 2002, 415(6875): 1005-1008.
    [102] Ostling D, Tomanek D, Rosen A. Electronic Structure of Single-Wall, Multiwall, and Filled Carbon Nanotubes[J]. Physical Review B. 1997, 55(20): 13980-13988.
    [103] Okada S, Saito S, Oshiyama A. Energetics and Electronic Structures of Encapsulated C-60 in a Carbon Nanotube[J]. Physical Review Letters. 2001, 86(17): 3835-3838.
    [104] Okada S, Otani M, Oshiyama A. Electron-State Control of Carbon Nanotubes by Space and Encapsulated Fullerenes[J]. Physical Review B. 2003, 67(20): -.
    [105] Kolmogorov A N, Crespi V H. Smoothest Bearings: Interlayer Sliding in Multiwalled Carbon Nanotubes[J]. Physical Review Letters. 2000, 85(22): 4727.
    [106] Cumings J, Zettl A. Low-Friction Nanoscale Linear Bearing Realized From Multiwall Carbon Nanotubes[J]. Science. 2000, 289(5479): 602-604.
    [107] Zheng Q S, Liu J Z, Jiang Q. Excess Van Der Waals Interaction Energy of a Multiwalled Carbon Nanotube with an Extruded Core and the Induced Core Oscillation[J]. Physical Review B. 2002, 65(24):
    [108] Zheng Q S, Jiang Q. Multiwalled Carbon Nanotubes as Gigahertz OscilIators[J]. Physical Review Letters. 2002, 88(4): -.
    [109] Guo W L, Guo Y F, Gao H J, et al. Energy Dissipation in Gigahertz Oscillators From Multiwalled Carbon Nanotubes[J]. Physical Review Letters. 2003, 91(12): -.
    [110] Zhao Y, Ma C C, Chen G H, et al. Energy Dissipation Mechanisms in Carbon Nanotube Oscillators[J]. Physical Review Letters. 2003, 91(17): -.
    [111] Guo W, Guo Y, Gao H, et al. Energy Dissipation in Gigahertz Oscillators From Multiwalled Carbon Nanotubes[J]. Physical Review Letters. 2003, 91: 125501.
    [112] Servantie J, Gaspard P. Methods of Calculation of a Friction Coefficient: Application to Nanotubes[J].Physical Review Letters.2003,91(18):-.
    [113]Tangney P,Louie S G,Cohen M L.Dynamic Sliding Friction Between Concentric Carbon Nanotubes[J].Physical Review Letters.2004,93(6):-.
    [114]Maslov L.Concept of Nonvolatile Memory Based On Multiwall Carbon Nanotubes[J].Nanotechnology.2006,17:2475-2482.
    [115]Kang J W,Jiang Q.Electrostatically Telescoping Nanotube Nonvolatile Memory Device[J].Nanotechnology.2007,18:95705.
    [116]Raabe D.计算材料学(项金钟,吴兴惠译)[M].化学工业出版社,2002.
    [117]Smit F &.分子模拟——从算法到应用(汪文川等译)[M].北京:化学工业出版社,2002.
    [118]Metropolis N,Rosenbluth A W,Rosenbluth M N,et al.Equation of State Calculations by Fast Computing Machines[J].Joumal of Chemical Physics.1953,21(6):1087-1092.
    [119]Heermann D W.Computer Simulation Methods in Theoretical Physics[M].Berlin;New York:Springer-Verlag,1986.
    [120]Allen M P,Tildesley D J.Computer Simulation of Liquids[M].Oxford[England];New York:Clarendon Press;Oxford University Press,1989.
    [121]Leach A R.Molecular Modelling:Principles and Applications[M].Harlow,England;New York:Prentice Hall,2001.
    [122]张田忠,郭万林.纳米力学的数值模拟方法[J].力学进展.2002(02).
    [123]Jones J E.On the Determination of Molecular Fields.I.From the Variation of the Viscosity of a Gas with Temperature[J].Proceedings of the Royal Society of London.1924,106.
    [124]Agrawal P M,Rice B M,Thompson D L.Predicting Trends in Rate Parameters for Self-Diffusion On Fcc Metal Surfaces[J].Surface Science.2002,515(1):21-35.
    [125]Girifalco L A,Hodak M,Lee R S.Carbon Nanotubes,Buckyballs,Ropes,and a Universal Graphitic Potential[J].Physical Review B.2000,62(19):13104-13110.
    [126]Ulbricht H,Moos G,Hertel T.Interaction of C-60 with Carbon Nanotubes and Graphite[J].Physical Review Letters.2003,90(9):-.
    [127]Maiti A,Ricca A.Metal-Nanotube Interactions - Binding Energies and Wetting Properties[J].Chemical Physics Letters.2004,395(1-3):7-11.
    [128]Abell G C.Empirical Chemical Pseudopotential Theory of Molecular and Metallic Bonding[J].Physical Review B.1985,31(10):6184-6196.
    [129]Tersoff J.New Empirical-Model for the Structural-Properties of Silicon[J].Physical Review Letters.1986,56(6):632-635.
    [130]Tersoff J.Empirical Interatomic Potential for Carbon,with Applications to Amorphous-Carbon[J].Physical Review Letters.1988,61(25):2879-2882.
    [131]Tersoff J.Empirical Interatomic Potential for Silicon with Improved Elastic Properties[J].Physical Review B.1988,38(14):9902.
    [132]Tersoff J.Modeling Solid-State Chemistry - Interatomic Potentials for Multicomponent Systems[J].Physical Review B.1989,39(8):5566-5568.
    [133]Brenner D W.Empirical Potential for Hydrocarbons for Use in Simulating the Chemical Vapor-Deposition of Diamond Films[J].Physical Review B.1990,42(15):9458-9471.
    [134]Brenner D W,Shenderova O A,Harrison J A,et al.A Second-Generation Reactive Empirical Bond Order(Rebo) Potential Energy Expression for Hydrocarbons[J].Journal of Physics.2002,14:783-802.
    [135]Brenner D W,Shenderova O A,Harrison J A,et al.A Second-Generation Reactive Empirical Bond Order(Rebo) Potential Energy Expression for Hydrocarbons[J].Journal of Physics-Condensed Matter.2002,14(4):783-802.
    [136]Doyama M,Kogure Y.Embedded Atom Potentials in Fcc and Bcc Metals[J].Computational Materials Science.1999,14(1-4):80-83.
    [137]Daw M S,Baskes M 1.Semiempirical,Quantum-Mechanical Calculation of Hydrogen Embrittlement in Metals[J].Physical Review Letters.1983,50(17):1285-1288.
    [138]张晨利.碳纳米管的等效弹性参量和屈曲行为分子动力学模拟研究[D].上海交通大学;,2007.
    [139]Guo W,Zhu C.Isothermal Atomistic Simulations of Nano-Electromechanical Systems[J].Nanotechnology.2006,17.
    [140]Hu Y H,Sinnott S B.Constant Temperature Molecular Dynamics Simulations of Energetic Particle-Solid Collisions:Comparison of Temperature Control Methods[J].Journal of Computational Physics.2004,200(1):251-266.
    [141]Doll J D,Dion D R.Generalized Langevin Equation Approach for Atom-Solid-Surface Scattering- Numerical Techniques for Gaussian Generalized Langevin Dynamics[J].Journal of Chemical Physics.1976,65(9):3762-3766.
    [142]Adelman S A,Doll J D.Generalized Langevin Equation Approach for Atom-Solid-Surface Scattering - General Formulation for Classical Scattering Off Harmonic Solids[J].Journal of Chemical Physics.1976,64(6):2375-2388.
    [143]Berendsen H,Postma J,Vangunsteren W F,et al.Molecular-Dynamics with Coupling to an External Bath[J].Journal of Chemical Physics.1984,81(8):3684-3690.
    [144]Nose S.A Unified Formulation of the Constant Temperature Molecular-Dynamics Methods[J].Journal of Chemical Physics.1984,81(1):511-519.
    [145]Nose S.A Molecular-Dynamics Method for Simulations in the Canonical Ensemble[J].Molecular Physics.1984,52(2):255-268.
    [146]Hoover W G.Canonical Dynamics - Equilibrium Phase-Space Distributions[J].Physical Review a.1985,31(3):1695-1697.
    [147]Kang J,Kong S C,Hwang J.Electromechanical Analysis of Suspended Carbon Nanotubes for Memory Applications[J].Nanotechnology.2006,17(9):2127-2134.
    [148]Kang J W,Hwang H J.Carbon Nanotube Shuttle Memory Device Based On Singlewall-to-Doublewall Carbon Nanotube Transition[J].Computational Materials Science.2005,33(1-3):338-345.
    [149]Dai Y,Tang C,Guo W.Simulation Studies of a "Nanogun" Based On Carbon Nanotubes[J].Nano Research.2008,1(2):176-183.
    [150]Kang J W,Jiang Q.Electrostatically Telescoping Nanotube Nonvolatile Memory Device[J].Nanotechnology.2007,18(9):-.
    [151]Hudlet S,Jean M S,Guthmann C,et al.Evaluation of the Capacitive Force Between an Atomic Force Microscopy Tip and a Metallic Surface[J].The European Physical Journal.B,Condensed Matter Physics.1998,2(1):5-10.
    [152]Deshpande V V,Chiu H Y,Postma H W C,et al.Carbon Nanotube Linear Bearing Nanoswitches[J].Nano Letters.2006,6(6):1092-1095.
    [153]Cumings J,Collins P G,Zettl A.Materials - Peeling and Sharpening Multiwall Nanotubes[J].Nature.2000,406(6796):586.
    [154]Legoas S B,Coluci V R,Braga S F,et al.Molecular-Dynamics Simulations of Carbon Nanotubes as Gigahertz Oscillators[J]. Physical Review Letters. 2003, 90(5): -.
    [155] Liu P, Zhang Y W, Lu C. Oscillatory Behavior of C60-Nanotube Oscillators: A Molecular-Dynamics Study[J]. Journal of Applied Physics. 2005, 97(9): -.
    [156] Ye S B, Han R, Wang L H. Oscillatory Response of a Capped Double-Walled Carbon Nanotube[J]. International Journal of Nonlinear Sciences and Numerical Simulation. 2008, 9(4): 339-346.
    [157] Cumings J, Zettl A. Low-Friction Nanoscale Linear Bearing Realized From Multiwall Carbon Nanotubes[J]. Science. 2000, 289(5479): 602-604.
    [158] Kang J W, Hwang H J. Carbon Nanotube Shuttle Memory Device Based On Singlewall-to-Doublewall Carbon Nanotube Transition[J]. Computational Material Science. 2005, 33: 338-345.
    [159] Lewis T. Structural Analysis of Double-Walled Carbon Nanotubes Using Fluorescence Spectroscopy[D]. Iowa City: University of Iowa, 2008.
    [160] Kang J W, Hwang H J. 'Carbon Nanotube Shuttle' Memory Device[J]. Carbon. 2004, 42(14): 3018-3021.
    [161] Lee Y H L, Gon Kim S, Tomanek D. Field-Induced Unraveling of Carbon Nanotubes[J]. Chemical Physics Letters. 1997, 265(6): 667-672.
    [162] Kim S G, Lee Y H, Nordlander P, et al. Disintegration of Finite Carbon Chains in Electric Fields[J]. Chemical Physics Letters. 1997, 264(3-4): 345-350.
    [163] Kis A, Jensen K, Aloni S, et al. Interlayer Forces and Ultralow Sliding Friction in Multiwalled Carbon Nanotubes[J]. Physical Review Letters. 2006, 97(2): -.
    [164] Ustunel H, Roundy D, Arias T A. Modeling a Suspended Nanotube Oscillator[J]. Nano Letters. 2005, 5(3): 523-526.
    [165] Kinaret J M, Nord T, Viefers S. A Carbon-Nanotube-Based Nanorelay[J]. Applied Physics Letters. 2003, 82(8): 1287-1289.
    [166] Lee S W, Lee D S, Morjan R E, et al. A Three-Terminal Carbon Nanorelay[J]. Nano Letters. 2004, 4(10): 2027-2030.
    [167] Dequesnes M, Rotkin S V, Aluru N R. Calculation of Pull-in Voltages for Carbon-Nanotube-Based Nanoelectromechanical Switches[J]. Nanotechnology. 2002, 13: 120-131.
    [168] Kang J W, Lee J H, Lee H J, et al. Electromechanical Modeling and Simulations of Nanobridge Memory Device[J]. Physica E: Low-Dimensional Systems and Nanostructures. 2005, 28(3): 273-280.
    [169] Cha S N, Jang J E, Choi Y, et al. Fabrication of a Nanoelectromechanical Switch Using a Suspended Carbon Nanotube[J]. Applied Physics Letters. 2005, 86(8): 83105.
    [170] Jang J E, Cha S N, Choi Y, et al. Nanoelectromechanical Switches with Vertically Aligned Carbon Nanotubes[J]. Applied Physics Letters. 2005, 87(16): 163114.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700