轿车行驶平顺性的混合传递路径分析方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着国民经济的快速发展和人们生活水平的不断提高,人们在不断追求汽车安全、节能和环保性能的同时,对汽车行驶平顺性的要求也越来越高,汽车的行驶平顺性已经成为自主品牌轿车在市场竞争中取得优势的重要指标之一。在汽车新产品开发和量产车型平顺性改进中,都需要对影响整车行驶平顺性的主要传递路径进行识别、分析与评价,并据此提出行之有效的减振措施,来提高整车行驶平顺性,使其满足设计目标要求,这是提高汽车产品市场竞争力中不可缺少的重要环节。但是物理样车传递路径分析试验周期长、成本高,需要在物理样机研制出来之后才能进行。如何在产品设计阶段就能对影响轿车行驶平顺性的主要传递路径进行准确地分析和识别,从而对整车行驶平顺性进行预测和评价,缩短产品研发周期、降低研发成本,已成为我国自主品牌轿车在市场竞争中取胜的关键。
     本文的研究结合产学研合作项目《轿车中低频舒适性研究开发》,对轿车行驶平顺性的传递路径分析方法进行了系统、深入研究,并通过主要传递路径减振性能优化来改善轿车的行驶平顺性。
     本文根据所研究车型的特点,建立了以动力总成、前悬架、后悬架到驾驶员座椅地板的整车振动传递路径分析模型。在B级路面上进行了实车道路试验,分析了该车的行驶平顺性。结果表明,该车驾驶员座椅地板处的三向与总加权加速度均方根值随车速提高而逐渐增加。以50km/h、80km/h和120km/h三种典型车速为例,进行了该车平顺性的试验传递路径分析(Test TPA)方法研究。对驾驶员座椅地板垂直振动加速度频谱的峰值频率进行了TPA计算,得到整车各传递路径对目标点的振动贡献量。为了避免只考虑幅值大小而错误降低了对目标点振动有抵消作用的传递路径幅值,本文提出了一种综合考虑幅值与相位的评价传递路径贡献量的方法。结果表明,在三种典型车速下,该车各传递路径对驾驶员座椅地板Z向的振动中,动力总成右悬置Z向与X向的振动贡献量最大,其次是前悬架下控制臂前点Z向振动,再次就是后悬架下控制臂支臂Z向以及后悬架纵臂Y向。
     为了克服试验TPA中试验工作量大、个别路径频响函数因结构限制而难以敲击或激振、以及无法在产品研发初级阶段物理样机研制出来以前进行传递路径分析的不足,本文提出了一种平顺性的虚拟传递路径分析(Virtual TPA)方法。利用有限元和虚拟样机技术建立了整车刚弹耦合模型,在B级路面上进行了行驶平顺性仿真分析,并与实车试验结果进行了对比,验证了整车虚拟样机模型的正确性。采用与试验TPA同样的方法,完成了虚拟传递路径分析,综合考虑幅值与相位后识别出主要的振动传递路径。将试验TPA与虚拟TPA的结果在传递路径总贡献量以及传递路径识别结果两方面进行对比。结果表明,得到的主要传递路径识别结果一致,动力总成、前后悬架各传递路径总贡献量峰值频率和幅值的最大相对误差在13%以内,验证了所提出虚拟TPA方法的有效性。
     为了解决由于试验条件有限或者轿车本身结构限制而导致的传递路径丢失问题,避免拆卸发动机等复杂的试验工作,本文又提出了混合传递路径分析(Hybrid TPA)方法。该方法将所缺失的传递路径数据利用虚拟样机分析数据进行补充,建立完整的整车混合传递路径分析模型,进而将混合TPA与试验TPA的传递路径识别结果进行对比。结果表明,除了由于试验限制而缺失的前悬架上控制臂后点Z向,利用混合TPA得到的结果是对目标点的振动起加强作用外,其余各主要传递路径的识别结果是一致的。
     为了消除路面随机振动对前后悬架的相干影响,对悬架总成进行主分量分析后再进行了混合传递路径分析。将悬架总成利用混合TPA与试验TPA中前悬架、后悬架单独分析两种方法获得的结果相比较,说明对驾驶员座椅地板振动的主要路径识别结果是一致的,进一步说明了前悬架上控制臂后点Z向对目标点的振动贡献量是不可忽视的。
     针对识别出来的问题路径,进行动力总成悬置隔振率和悬架衬套传递特性分析,确定动力总成右悬置的隔振率较差,应针对右悬置的隔振特性进行优化;前悬架弹簧上点Z向、后悬架纵臂Y向对目标点的振动受其与目标点之间的频响函数影响较大,应该针对车身结构进行优化;前悬架上控制臂后点Z向、前悬架下控制臂前点Z向、后悬架下控制臂支臂Z向对目标点的振动主要是由路径点的工作载荷引起,应针对衬套传递特性进行优化,以达到提高整车平顺性的目的。
     最后,针对前文中传递路径分析识别出问题路径上减振元件的动力学参数,进行基于TPA方法的平顺性优化分析。以驾驶员座椅地板的垂直振动加速度最小为优化目标,以悬置和衬套的刚度为设计变量,进行整车环境下的传递路径优化,最后利用优化后的悬置和衬套的刚度,进行整车行驶平顺性仿真分析。结果表明,优化后整车平顺性有所改善,验证了优化结果的有效性。
With the rapid development of the national economy and the people's living standards,while automotive safety, energy saving and environment protection are pursued constantly,the requirements on the vehicle driving performance are also getting higher, vehicle drivingperformance has become an important indicator of the advantages of local brands cars inthe market competition. During the new model development and the driving performanceimprovement of the vehicles which is already in mass production, the identification, analysisand evaluation of the main transfer path which affect the car’s driving performance shouldbe accomplished, and accordingly the effective vibration reduction measures can beproposed to improve driving performance and meet the design requirements, that’s one of thekey factors to improve the vehicle capability for market competition. However, the testing oftransfer path analysis has long cycles and high costs, and only after the prototype car isavailable, the tests can be performed. Therefore, how to analyze and exactly identify themain transfer path which affects the driving performance during the vehicle design stage,and then the driving performance can be predicted, to shorten the optimization duration andreduce development cost, it has become an important key to succeed on the market for eachOEMs.
     This research is completed based on“The research and development of vehicle drivingcomfort in low frequency”, which is a project of industry-university joint research. Thepaper aims to analyze the method of transfer pass analysis on vehicle driving performancesystematically and deeply, and then the vibration reduction performances of the maintransfer path are optimized to ameliorate vehicle’s driving comfort.
     According to characteristics of the car analyzed in this paper, all TPA models of wholecar, from powertrain, front suspension and rear suspension to driver's floor are built. Thevehicle test on B lever road is performed to study the car’s driving performance. The results show that, with the speed increase, the three dimensional and overall weighted accelerationRMS values of the driver’s floor increased gradually. Take speeds of50km/h、80km/h and120km/h for examples, the methods of test transfer paths analysis (test TPA) on drivingperformance is researched. Under three typical conditions, TPA calculation that based onpeaks frequency of the spectrum of driver's floor is finished and each total contributionwhich originated from all transfer paths to target is obtained. A comprehensive method,considering both the amplitude and phase, is proposed for evaluating path contribution. Theresults show that, under the condition of these three typical speeds, the Z-direction andX-direction vibrations of the powertrain right mount has the greatest contribution to thez-direction vibration of the driver’s floor in all of the transfer paths, followed by theZ-direction vibration of the front point of the front suspension lower control arm, theZ-direction and Y-direction vibrations of the rear suspension lower control arm.
     Based on the following issues, the virtual transfer path analysis (Virtual TPA) method ofdriving comfort is presented to overcome these issues: firstly, heavy testing workload of thetest TPA; secondly, it is hard to get frequency response functions of some individual pathsdue to structural constraints which is difficult to knock and excitation; third, the transfer pathanalysis cannot be developed in the product development stage. To utilize finite elementmethod and virtual prototype technology, the rigid-flexible coupling model is set up. Thendriving comfort simulation on B-lever road is analyzed, and compared with the results of thetesting, to verify the correctness of the vehicle virtual prototype model. Using the sameanalysis method with test TPA, the virtual TPA is completed,and considering both theamplitude and phase, the main transfer paths which impact driving performance areidentified. According to the total path contribution and transfer path recognition results,results of test TPA and virtual TPA are compared. The results show that, consequences ofdriving performance transfer path analysis result obtained by these two analysis methods isthe same, and the maximum relative error of peak frequency and amplitude, which is aboutthe total contribution of the powertrain, front and rear suspension, is less than13%Then,the validity of the virtual TPA method is verified.
     So in order to solve the problems of transfer path lost caused by testing conditionlimitations and vehicle structure limitations, and to avoid some complex test work likedisassemble engine,a new hybrid transfer path analysis method is presented. Using the dataobtained from the virtual prototype analysis, the data of missed transfer path is supplied, andthe complete vehicle model of hybrid transfer path analysis is established, furthermore,results of test TPA and hybrid TPA are compared according the results of transfer pathidentification. Except for the transfer path, front suspension up control arm Z-direction,which didn’t get in test TPA due to the structure limitation, it has a lager contribution totarget; meanwhile, other main transfer paths are the same by means of these two methods.
     So as to eliminate the coherent effects between front and rear suspension because ofroad random vibration, the hybrid TPA result of suspension is calculated after principalcomponents analysis. The results of suspension assembly, which is from the method ofhybrid TPA and test TPA, are compared. It explains that the recognition result of maintransfer path is consistent, and the result shows again that the importance of the path, frontsuspension up control arm Z direction can not be ignored.
     According to problem paths obtained from hybrid TPA, characteristics of enginemountings and suspension bushings were analyzed. The results show that, to improve thedriving perferfomance, some measures should be implemented. First one is, the vibrationisolation ratio of powertrain right mount is bad and its characteristic should be making better.Second one, the frequency response functions, which are between the target and frontsuspension spring Z-direction, rear suspension trailing arm Z-direction, have influences totarget, so the structure of body should be optimized. Last is, the vibration of target is causedby the operation force of the rear point of front suspension upper control arm Z-direction, thefront point of front suspension lower control arm Z-direction, and the rear suspension lateralZ-direction, so the suspension bushing characteristic should be meliorate.
     For vehicle dynamic parameters of the vibration damping components, which areidentified in transfer path analysis, the optimization analysis of driving performance basedon TPA method is processed. Taking the driver's floor vertical vibration acceleration minimum as optimization objective, and the stiffness of mount and bushing as designvariables, the optimization analysis of transfer path based on vehicle is processed. Finally,using the optimized stiffness of mount and bushing, the driving performance simulation testsare verified. The results show that, with the improved parameters, this vehicle’s drivingperformance is significantly improved, and the optimization results are also verified.
引文
[1]余志生主编.汽车理论〔第三版〕.北京:机械工业出版社.2000.1.
    [2]张永林,钟毅芳.车辆路面不平度输入的随机激励时域模型.农业机械学报,2004,3:9-12.
    [3]杜子学.基于乘用车型平顺性分析的新指标——汽车综合振动舒适度C_(gv)[J].西南交通大学学报(自然科学版),2000,2:152-154.
    [4]董英娟.汽车平顺性仿真分析与悬架参数优化[D].重庆交通大学,2008.
    [5]胡学兆.轻型载货汽车行驶平顺性分析及优化[D].吉林大学,2004.
    [6]乐巍,张孝祖,陈士安.汽车四自由度半主动悬架阻尼模糊控制的方法[J].江苏大学学报(自然科学版),2003,1:55-59.
    [7] Robson J D. Road surface description and vehicle response[J]. International Journal ofVehicle Design.1979,9:25-35.
    [8] Yang J,Sunmatsu Y,Kand Z. Two degree of freedom controller to reduce the vibration ofvehicle engine-body system [J]. IEEE Transactions on Control Technology,2010,(9):295-317.
    [9] Williams R A. Automotive active suspension.Part I: basic principles, Proceeding ofInstitute of Mechanical Engineers,211,1997[C]:415-426.
    [10] Zhu Q, Ishitobi M. Chaos and bifuracations in a nonlinear vehicle model [J]. Journal ofSound and Vibration,2004,(5):1136-1146.
    [11] Yamashita M, Fujimori K, Hayakawa K, et al. Application ofH∞control to activesuspension system [J]. Automatica.1994,30(11):1717-1729.
    [12] Hayakawa K, Matsumoto K, Yamashita M, et al. RobustH∞output feedback controlof decoupled automobile active suspension system [J]. IEEE Transactions onAutomatic Control,1999,44(2):392-396.
    [13]王连明.汽车平顺性建模及其仿真研究[J].哈尔滨工业大学学报.1998,10:80-84
    [14]孙建成.车辆行驶平顺性的预测及研究[J].轿车研究与开发.1998,01:28-32
    [15]乔明侠.基于多体动力学的汽车平顺性仿真分析即悬架参数优化[D].合肥工业大学,2005.
    [16]黄承修.基于虚拟样机技术的汽车行驶平顺性仿真研究[D].浙江大学,2006.
    [17]陈宪忠.时域内轿车行驶平顺性建模及仿真研究[D].吉林大学,2003.
    [18]姜斌.8X8轮式越野车独立悬架和整车性能仿真分析与优化[D].吉林大学,2005.
    [19] John Josephson, Mark Carroll. Design Optimization of Heavy Vehicles by DynamicSimulation [C]. SAE:2002-01-3061.
    [20]国际标准ISO8606-1995Mechanical vibration-Road surfaceprofiles-Reporting of measured data.
    [21] GB/T7031-2005《机械振动道路路面谱测量数据报告》.
    [22] Rus L. Response of the vehicle nonlinear model to the random excitation [J]. VehicleSystem Dynamics,1989,18(suppl):461-473.
    [23]张湘伟,何正友.二维泊松过程的数值模拟及其在道路模型中的应用[J].重庆大学学报(自然科学版),1994,17(4):12-16.
    [24]唐光武,贺学锋,颜永福.路面不平度的数字模型及计算机模拟研究[J].中国公路学报,2000,13(1):113-117.
    [25] Liu Wei, T.F.Fwa, Zhao Zhe. Wavelet Analysis and Interpretation of RoadRoughness[J]. Journal of transportation Engineering.2005,131(2):120-130.
    [26]谭英.路面平整度定量控制的研究[D].长安大学,2005.
    [27]周晓青,孙立军.国际平整度指数与行驶车速的关系[J].同济大学学报(自然科学版),2005,33(9):1323-1327.
    [28]刘献栋,邓志党,高峰.公路路面不平度的数值模拟方法研究[J].北京航天航空大学学报,2003,29(9):843-846.
    [29]金睿臣,宋健.路面不平度的模拟与汽车非线性随机振动的研究[J].清华大学学报(自然科学版),1999,39(8):76-79.
    [30]王国权.车辆平顺性虚拟试验技术的研究[D].中国农业大学,2002.
    [31]商俊敏.基于虚拟现实与虚拟样机的汽车平顺性研究[D].浙江大学,2005.
    [32]王国权.车辆平顺性的虚拟现实仿真技术[J].计算机仿真,2004,21(7):155-189.
    [33]陈克,高洁,吕周泉.基于虚拟试验场技术的汽车平顺性仿真分析[J].中国工程机械学报,2010,8(2):208-212.
    [34] Yuan Zhang, Arthur Tang, Tim Palmer,Curt Hazard. Virtual Proving Ground-anintegrated technology for vehicle analysis and simulation [J]. VehicleDesign,Vol.21,No.4/5(Special Issue),1999:451-457.
    [35]雷良育.基于虚拟现实的汽车平顺性仿真试验系统及其关键技术研究[D].浙江大学,2005.
    [36]宋传学,蔡章林,安晓鹃.车辆平顺性的虚拟仿真及试验[J].吉林大学学报(工学版)2007,3:259-262.
    [37] GB/T4970-2009《汽车平顺性试验方法》.
    [38] GB4970/T-1996《汽车平顺性随机输入行驶试验方法》.
    [39] GB/T5902-1986《汽车平顺性脉冲输入行驶试验方法》.
    [40] ISO2631《人承受振动的评价指南》.
    [41] GB/T13442《人体全身振动暴露的舒适性降低界限和评价标准》.
    [42]郭孔辉,刘青.稳态条件下用于车辆动力学分析的轮胎模型[J].汽车工程,1998,3:129-134.
    [43]章新杰.平面的UniTire耐久性模型的完善及其在CarSim中的实现[D].吉林大学,2008.
    [44]顾林,朱思洪.基于SWIFT轮胎模型的车辆行驶平顺性仿真[J].机械设计与研究,2010,5:126-129.
    [45]吴海东.不平路面中频激励轮胎动态特性研究[D].吉林大学,2007.
    [46]徐中明,黄勤练.汽车座椅系统的动力分析[J].重型轿车,1994(5):11-13.
    [47]丁玉庆.汽车悬架及司机座椅动态参数化[J].振动与冲击,2003,22(2):57-59.
    [48]林逸,吴海波.汽车座椅计算机幅值设计方法探讨[J].轿车技术,1997(3):12-17.
    [49]郭立群,王登峰,秦民等.商用车汽车座椅振动传递特性研究[J].噪声与振动,2009,4:94-98.
    [50]秦民.汽车驾驶室平顺性优化设计[J].计算机辅助工程2006.9161-162.
    [51]邬勇民.基于虚拟样机技术的悬架优化及汽车平顺性仿真[D].南京航天航空大学,2007.
    [52]董英娟.汽车平顺性仿真分析与悬架参数优化[D].重庆交通大学,2008.
    [53]李贝贝.轻型载货汽车行驶平顺性建模仿真及试验研究[D].山东大学,2008.
    [54]杜翔,袁明,管西强等.轿车乘坐舒适性及悬架系统匹配与优化[J].机械设计与制造,2007(11):1-3.
    [55]陈黎卿.基于ADAMS的悬架优化及控制研究[D].合肥工业大学,2005.
    [56]胡春林.基于减振目标的动力总成悬置系统振动特性与控制研究[D].天津大学,2008.
    [57] Sui.J.Shane,Hoppe Clarence,Hirshey John. Powertrain Mounting Design Principlesto Achieve Optimum Vibration Isolation with Demonstration Tool[C]. SAE:2003-01-1476.
    [58] Jun Hwa Lee, Rajendra Singh. Critical analysis of analogous mechanical models usedto describe hydraulic engine mounts [J]. Journal of Sound and Vibration,2008(311):1457-1464.
    [59]吕振华,上官文斌.基于液-固耦合有限元仿真的液阻悬置集总参数模型动特性分析[J].机械强度,2004,26(1):29-37.
    [60]史文库,洪哲浩,赵涛.汽车动力总成悬置系统多目标优化设计及软件开发[J].吉林大学学报(工学版),2006,36(9):654-658.
    [61]庞剑,谌刚,何华.汽车噪声与振动-理论与应用[M].北京:北京理工大学出版社,2006.
    [62] Dubbaka K R,Zweng F J,Haq S U. Application of Noise Path Target Setting UsingThe Technique of Transfer Path Analysis[C].SAE:2003-01-1402.
    [63] Bradley D,Duncan,Raja Sengupta. Numerical Simulation and Spectral Analysis ofPressure Fluctuations in Vehicle Aerodynamic Noise Generation[C]. SAE:2003-01-0597.
    [64] Koners G. Panel noise contribution analysis: An Experimental Method forDetermining the Noise Contributions of Panels to Interior Noise[C]. SAE:2003-01-1410.
    [65] Sakai T,Terada M,Ono S,Kamimura N,Gielen L. Development Procedure forInterior Noise Performance by Virtual Vehicle Refinement,Combining Experimentaland Numerical Component Models[C]. SAE:2001-01-1538.
    [66] Singh V K,Wani N,Monkaba V D,Bloughand J R,Gwaltney G. Powertrain TransferPath Analysis of A Truck[C]. SAE:2001-01-2817.
    [67] Lei Liu. A Frequency Response Function-based Inverse Sub-structuring Approach forAnalyzing Vehicle System NVH Response [D]. Ph.D. Dissertation,the University ofAlabama,2002.
    [68] James F.,Unruh,Paul D. Till. Interior Noise Source Path Identification Technology
    [C]. SAE:2000-01-1709.
    [69] K.Wyckaert, M.Brughmans. Hybrid Sub-structuring for Vibro-acousticalOptimization Application to Suspension-Car Body Interaction [C]. SAE:971944.
    [70] Vander Linden P.J.G,Fun J.K. Using Mechanical-acoustic Reciprocity for Diagnosisof Structure Borne Sound in Vehicles [C]. SAE: Technical Paper Series,PaperNumber931340.USA,Michigan:1993.
    [71] Vander Linden P.J.G,Varet Ph. Experimental Determination of Low FrequencyNoise Contribution of Interior Vehicle Body Panels in Normal Operation [C]. SAE:Technical Paper Series,Paper Number:960194.USA,Michigan:1996.
    [72] K.Genuit,J. Poggenburg. The Design of Vehicle Interior Noise Using BinauralTransfer Path Analysis [C]. SAE: Technical Paper Series, Paper Number:1999-01-1808. USA,Michigan:1993.
    [73] Chris V K,Chuck Van K,William R K. Application of Indirect Force EstimationTechniques to the Automotive Transfer Case [C]. SAE Technical Paper Series,PaperNumber:1999-01-1764,USA,Michigan:1999.
    [74] Sang-kwon Lee,Ki-Sung Park. Vibration Power Flow and Its Application to aPassenger Car for Identification of Vibration Transmission Path [C]. SAE:2001-01-1451.
    [75] Gregor K. Panel. Noise Contribution Analysis: An Experimental Method forDetermining the Noise Contributions of Panels to an Interior Noise [C]. SAE TechnicalPaper Series,Paper Number:2003-01-1410, USA,Michigan:2003.
    [76] Lei Liu, Teik.C.Lim. An Experimental Study of the Chassis VibrationTransmissibility Applying A Spectral-based Inverse Sub-structuring Technique [C].SAE:2005-01-2470.
    [77] Seungbo K,Akira I,Rajendra S. Experimental Study of Structure-Borne NoiseTransfer Paths Over the Mid-Frequency Regime [C]. SAE Technical Paper Series:2005-01-2338. USA,Michigan:2005.
    [78] Oliver W,Roland S. Panel ContributionAnalysis andAlternative Window Method [C].SAE Technical Paper Series,Paper Number:2005-01-2274,USA,Michigan:2005.
    [79] David Bogema,Andreas Schuhmacher. Comparison of Time and Frequency DomainSource Path Contribution Analysis for Engine Noise Using a Noise and VibrationEngine Simulator [C]. SAE:2008-36-0509.
    [80] Eduardo Bauzer Medeiros,Gustavo Paulinelli Guimaraes. The Use of ExperimentalTransfer Path Analysis in a Road Vehicle Prototype Having Independent Sources [C].SAE:2008-36-0555.
    [81] Renata Guedes,Paulo J.P.Goncalves. Investigation of Sub-system Contribution to aPickup Truck Boom Noise Using a Hybrid Method Based on Noise Path Analysis toSimulate Interior Noise [C]. SAE:2003-01-3677.
    [82] Krishna R.Dubbaka,Frederick J.Zweng,Shan U.Haq. Application of Noise PathTarget Setting Using the Technique of Transfer Path Analysis [C]. SAE:2003-01-1402.
    [83] Scott Amman,Perry GU,Tim Mouch. Sound and Vibration Contribution to thePerception of Impact Harshness [C]. SAE:2005-01-1499.
    [84] Ichiro kido,Sagiri Ueyama. Coupled Vibration Analysis of Tire and Wheel for RoadNoise Iimprovement [C]. SAE:2005-01-2525.
    [85] Masato Hashioka,Ichiro Kido.An application Technique of Transfer PathAnalysis forAutomotive Body Vibration [C]. SAE:2007-01-2334.
    [86] Juha Plunt. Examples of Using Transfer Path Analysis (TPA) Together withCAE-models to Diagnose and Find Solutions for NVH Problems Late in the VehicleDevelopment Process [C]. SAE:2005-01-2508.
    [87] Mark A. Gehringer. Application of Experimental Transfer Path Analysis and HybridFRF-Based Sub-Structuring Model to SUV Axle Noise [C]. SAE:2005-01-1833.
    [88] Smita Shivel,Gyan Arora. Methodology of Road Noise Analysis and ImprovementStrategy for Passenger Cars [C]. SAE:2006-01-1094.
    [89] Alexander Kruse. NVH Improvement of Car Suspension Using Transfer Path andRunning Mode Analysis [C]. SAE:2006-01-0485.
    [90] Luca Mozzarella,Philippe Godano,Jan Horak. Reciprocal Powertrain Structure-borneTransfer Functions Synthesis for Vehicle Benchmarking [C]. SAE:2007-01-2354.
    [91] Daniel Riemann,Roland Sottek. InteractiveAuralization of Powertrain Sounds UsingMeasured and Simulated Excitation [C]. SAE:2007-01-2214.
    [92] Andrew S. Waisanen,Jason R.Blough. Road Noise TPASimplification for ImprovingVehicle Sensitivity to Tire Cavity Resonance Using Helium Gas[C]. SAE:2009-01-2092.
    [93] Gregor Koners,Ralf Lehmann. Investigation of Tire Road Noise with SpecialConsideration of Airborne Noise Transmission [C]. SAE:2009-01-2109.
    [94]陈光治,蒋伟康.一种分析车内声传递性的实验方法[J].汽车工程,2000,20(5):313-315+309.
    [95]张立军,周鋐,余卓平.发动机振动引起的车内噪声控制研究[J].振动测试与诊断,2001,21(1):59-64.
    [96]张立军,靳晓雄,余卓平.轿车车内噪声控制方法研究[J].汽车工程,2002,24(1):15-19.
    [97]郭荣,万钢等.车内噪声传递路径分析方法探讨[J].振动、测试与诊断,2007,27(3):199-203.
    [98]郭荣,万钢,左曙光.燃料电池轿车车内噪声传递路径分析研究[J].汽车工程,2007,29(8):635-641.
    [99]陈剑,万鹏程,李传斌.统计频率的传递路径分析在客车降噪中的应用[J].江苏大学学报(自然科学版),2006,27(5):413-416.
    [100]张义民.频域内振动传递路径的传递度排序[J].自然科学进展,2007,17(3):410-414.
    [101]张义民.时域内振动与噪声传递路径系统的路径传递度探索[J].航空学报,2007,28(4):971-974.
    [102]张义民.振动系统随机传递路径响应分析[J].工程力学,2008,25(1):133-136.
    [103]张义民,李鹤,闻邦椿等.基于灵敏度的振动传递路径的参数贡献度分析[J].机械工程学报,2008,44(10):168-171.
    [104]张义民,贺向东,李鹤等.具有随机路径的振动传递路径系统的随机响应分析[J].计算力学报,2008,25(4):523-524+624+724.
    [105]赵群,张义民,振动系统随机传递路径功率流分析[J].机械设计与制造,2009.6:104-108
    [106]宋传学,赵彤航.轿车车内噪声测量分析及控制方法[J].吉林大学学报(工学版),2007,37(5):1000-1004.
    [107]李未,王登峰,陈书明等.路面激励对汽车行驶平顺性影响的传递路径分析[J].吉林大学学报(工学版),2011,5:1193-1198.
    [108]王登峰,李未,陈书明等.动力总成振动对整车行驶平顺性的传递路径分析[J].吉林大学学报(工学版),2011,9(suppl):92-97.
    [109]龙岩,范让林,史文库等.提高传递路径分析速度和精度的方法[J].吉林大学学报(工学报),2009,3(suppl):78-82.
    [110]龙岩,史文库,梁天也等.基于改进传递路径分析方法的动力总成悬置系统优化及评价[J].汽车工程,2009,Vol.31,No.10:957-926+985.
    [111]龙岩,史文库,梁天也等.基于传递路径的动力总成悬置系统优化及评价[J].北京工业大学学报,2009,11:1448-1453.
    [112] H. Van derAuweraer,P. Mas,S. Dom,A. Vecchio. Transfer PathAnalysis in theCritical Path of Vehicle Refinement: The Role of Fast,Hybrid and Operational PathAnalysis [C]. SAE:2007-01-2352.
    [113] Plunt J. Finding and Fixing Vehicle NVH with Transfer path Analysis. JournalSound and Vibration,2005, v39(11):12-16.
    [114] M. Janssens, A. Vecchio, H. Van de Ponseele. Sound Quality Equivalent Modelingfor Virtual Car Sound Synthesis [C]. SAE:2001-01-1540.
    [115] W. Halvorsen. Noise Source Identification Using Coherent Output Power Spectra [J].Sound and Vibration,Aug,1975:17-24.
    [116] D. Ewins,W. Liu. Transmissibility Properties of MDOF Systems [C]. Proc.16thIMAC,Santa Barbara (CA):847-854,California,1998.
    [117] P. Varoto,K. McConnell,Single Point vs. Multi PointAcceleration TransmissibilityConcepts in Vibration Testing [C]. Proc.16th IMAC,Santa Barbara (CA):83-90,1998.
    [118] N.M.M. Maia,J.M.M. Silva,A.M.R. Ribeiro. The Transmissibility Concept inMulti-degree-of-freedom Systems [J]. Mechanical Systems&Signal Processing,15(1):129-137. January2001.
    [119] A.M.R. Ribeiro,J.M.M. Silva,N.M.M.,Maia,M. Fontul. TransmissibilityMatrix in Harmonic and Random Processes [J]. Shock and Vibration,2004,11(5-6):563-571.
    [120]刘东明,项党,罗清.传递路径分析技术在车内噪声与振动研究与分析中的应[J].噪声与振动控制,2007,4:73-77.
    [121] Bradley Duncan, Raja Sengupta. Numerical Simulation and Spectral Analysis ofPressure Fluctuations in Vehicle Aerodynamic Noise Generation [C]. SAE:2002-01-0597.
    [122] Sakai T,Terada M,Ono S,Kamimura N,Gielen L. Development Procedure forInterior Noise Performance by Virtual Vehicle Refinement,Combining Experimentaland Numerical Component Models [C]. SAE:2001-01-1538.
    [123] Singh V K,Wani N,Monkaba V D,Bloughand J R,Gwaltney G. Powertrain TransferPath Analysis of a Truck [C]. SAE:2001-01-2817.
    [124]W.Biermayer,F.Brandl,R.Hoeldrich,et cl.Sound engingeering based on sourcecontribution an transfer path results [C]. SAE:20075399.
    [125]C.Devriendt, P.Guillaume. Identification of modal parameters from transmissibilitymeasurements [J]. Sound and Vibration,2008,314(1-3):343-356.
    [126] W.Biermayer, F.Brandl, R.Hoeldrich, et al. Efficient transfer path analysis forvehicle sound engineering [C]. SAE:20085030.
    [127] I Bruant, L.Gallimard, S.Nikoukar. Optimal piezoelectric actuator and sensorlocation fort active vibration control [J].Sound and Vibration,2010,329(10):1615-1635.
    [128] N.J.kessissoglou, P.Ragnarsson, A. Lofgren. An analutical and experimentalcomparison of optimal actuator and error sensor location for cibration attenuation [J].Sound and Vibration,2003,260(4):671-691.
    [129]邵慧萍.求解动力系统响应使用的改进模态叠加算法[J].南京理工大学学报,2006,8:454-457.
    [130]李德葆.实验模态分析及其应用[M].北京:科学出版社,2001.
    [131]赵彤航.基于传递路径分析的汽车车内噪声识别与控制[D].吉林大学,2008.
    [132]龙岩.基于改进传递路径分析方法的动力总成悬置系统优化设计[D].吉林大学,2010.
    [133] P. Vander Linden, T.Keppens, J.Raff. Determination of the noise contributions ofengine surfaces [C].SAE:2001-01-1482.
    [134] Mike Croker,Matt Maunder. Reducing crank rumble using transfer path analysis toassess engine modification. SAE:2003-01-1428.
    [135] Seungbo Kim. Experimental study of structure-borne noise transfer paths over themid-frequency regime. SAE:2005-01-2338.
    [136] Michael Browne. Statistical identification and analysis of vehicle noise transfer paths.SAE:2005-01-2511.
    [137] Koners G. Panel noise contribution analysis: An experimental method fordetermining the noise contributions of panels to interior noise. SAE:2003-01-1410.
    [138] Karl janssens, Peter Gajdatsy, Ludo Gielen. A new transfer path analysis methodbased on parametric load models. Mechanical Systems and Signal Processing.2011(25):1321-1338.
    [139]朱建平.应用多元统计分析[M].北京:科学出版社,2006.8.
    [140]周杰.矩阵分析及应用[M].成都:四川大学设版社,2007.2.
    [141]陈理君,李晓辉,杨立,等.轮胎花纹噪声及其降噪方法[J].噪声与振动控制,2004,1:10-13.
    [142]朱兴元.轮胎花纹块撞击路面的噪声研究[J].橡胶工业,2003,9:526-528.
    [143]蒋国平,王国林,陈步达,等.车辆动力传动系振动研究述评[J].江苏理工大学学报(自然科学版),2005,21(3):22-26.
    [144]梁天也,史文库,唐明祥.发动机悬置研究综述[J].噪声与振动控制,2007,2:6-10.
    [145]孙经来.重型商用车操纵稳定性分析及参数匹配[D].吉林大学2010.
    [146]马天飞,王登峰,梁和平.利用MSC ADAMS/car建立轿车的刚弹耦合模型[J].计算机辅助工程,2006,9:238-240.
    [147]梁和平.基于刚弹耦合系统的汽车平顺性仿真分析[D].硕士论文,吉林大学,2007.
    [147]丁海涛.轮胎附着极限下轿车稳定性控制的仿真研究[D].吉林大学,2003.
    [148] Yokohama.H., Randall, R. Investigation of Road Surface Roughness Effect onTread Rubber Friction with FEA [C]. SAE:2009-01-0067.
    [149] Charles Gagliano, Matt Tondra. Development of an Experimentally Derived Tire andRoad Surface Model for Vehicle Interior Noise Prediction [C].SAE:2009-01-0068.
    [150]李莉.基于ADAMS/Car的某轿车平顺性仿真分析与改进[D].吉林大学,2007.
    [151]张永林.用谐波叠加法重构随机道路不平顺高程的时域模型[J].农业工程学报,2003,19(6):32-35.
    [152]程超,王登峰,李承德. ADAMS中三维虚拟路面的实现[J].汽车工程,2006,28(2):163-165.
    [153] Lu Sun, Zhanming Zhang, Jessica Ruth. Modeling Indirect Statistics of SurfaceRoughness [J].Journal of Transportation Engineering,2001,127(2):105-111.
    [154] Imine. H, M.Sirdi.N, Delanne.Y. Adaptive Observers and Estimation of the RoadProfile [C]. SAE:2003-01-1282
    [155] GB7031—86《汽车振动输入—路面不平度表示方法》.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700