一体化生物加工过程进行大肠杆菌的半纤维素琥珀酸生产
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
复杂的结构及解聚所需的高成本是阻碍半纤维素作为底物进行生物燃料和生物化学品生产的主要障碍。一体化生物加工过程(Consolidated Bioprocessing,CBP)通过利用一种微生物同时行使水解酶的生产,生物质原料的降解以及生物产品的转化这三大功能,能够显著降低木质纤维素原料包括半纤维素利用过程的成本。在本文中,通过借鉴代谢工程与合成生物学的基本原理与思想,改造大肠杆菌使其表达分泌三种半纤维素酶,实现了直接以山毛榉木聚糖为底物进行琥珀酸生产的生物转化过程。
     木聚糖酶的胞外分泌是通过与OsmY蛋白的融合实现的。将十二个不同来源的并与OsmY融合的木聚糖内切酶-木糖苷酶组合进行酶学表征,选择出一组具有最优酶学特性的木聚糖酶组合,即来自于Fibrobacter succinogenes S85的木聚糖内切酶XynC-A以及来自于Fusarium graminearum的木糖苷酶XyloA。在该菌株中,木聚糖酶诱导表达8h时,即可向胞外分泌0.18±0.01g/l的蛋白质,木聚糖内切酶活性为12.14±0.34U/mg,木糖苷酶活性为92±3mU/mg。
     随后通过一系列措施来进一步优化木聚糖酶的表达分泌,以提高其水解效率,更好的满足CBP生产的需要,包括敲除大肠杆菌Braun’s lipoprotein的编码基因lpp;过表达催化二硫键形成的氧化还原酶编码基因dsbA;优化木聚糖酶表达载体的表达水平;通过Blc蛋白于外膜表面展示木糖苷酶;过表达来自于枯草芽孢杆菌168的阿拉伯糖苷酶编码基因abf2等。
     将半纤维素水解能力与一株琥珀酸高产菌进行整合,实现了在没有提供外部木聚糖水解酶及任何有机组分的情况下直接以木聚糖为底物进行琥珀酸的生产。由此构建的大肠杆菌菌株Z6373在厌氧条件下以木聚糖为底物,可以得到0.37g/g的琥珀酸,转化率达到了以木聚糖酸水解液为底物时的76%。
     本文通过表达和分泌三种半纤维素酶成功的建立起一个大肠杆菌以木聚糖为底物进行琥珀酸生产的CBP系统。本文结果表明了通过CBP进行半纤维素到琥珀酸转化的可行性,为其进一步改良及木质纤维素材料向其他化学品的转化上奠定了一定基础。
The recalcitrant nature of hemicellulosic materials and the high cost indepolymerization are the primary obstacles preventing the use of xylan as feedstockfor fuel and chemical production. Consolidated bioprocessing (CBP), incorporatingenzyme-generating, biomass-degrading and bioproduct-producing capabilities into asingle microorganism, could potentially avoid the cost of the dedicated enzymegeneration in the process of xylan utilization. In this study, drawing on the basicprinciples of metabolic engineering and synthetic biology, we engineered Escherichiacoli strains capable of exporting three hemicellulases to the broth for the succinateproduction directly from beechwood xylan.
     Xylanases were extracellular environment-directed by fusing with OsmY.Subsequently, twelve variant OsmY fused endoxylanase-xylosidase combinationswere characterized and tested. The combination of XynC-A from Fibrobactersuccinogenes S85and XyloA from Fusarium graminearum which appeared to haveoptimal enzymatic properties was identified as the best choice for xylan hydrolysis(0.18±0.01g/l protein in the broth with endoxylanase activity of12.14±0.34U/mgprotein and xylosidase activity of92±3mU/mg protein at8h after induction).
     To improve the hydrolysis efficiency and for better meet the needs of the CBPproduction, further improvements of hemicellulases secretion were investigated bylpp deletion, dsbA overexpression, blc surface displaying and expression leveloptimization. With co-expression of α-arabinofuranosidase, the engineered E. colicould hydrolyze beechwood xylan to pentose monosaccharides.
     The hemicellulolytic capacity was further integrated with a succinate-producing strainto demonstrate the production of succinate directly from xylan without externallysupplied hydrolases and any other organic nutrient. The resulting E. coli Z6373wasable to produce0.37g/g succinate from xylan anaerobically equivalent to76%of thatfrom xylan acid hydrolysates.
     This report represents a promising step towards the goal of hemicellulosic chemicalproduction. This engineered E. coli expressing and secreting three hemicellulasesdemonstrated a considerable succinate production on the released monosaccharidesfrom xylan. The ability to use lower-cost crude feedstock will make biological succinate production more economically attractive.
引文
[1] Zeikus JG, Jain MK, Elankovan P: Biotechnology of succinic acid production and marketsfor derived industrial products. Applied Microbiology and Biotechnology1999,51(5):545-552.
    [2] Willke T, Vorlop KD: Industrial bioconversion of renewable resources as an alternative toconventional chemistry. Applied Microbiology and Biotechnology2004,66(2):131-142.
    [3] Rudner MS, Jeremic S, Petterson KA et al: Intramolecular hydrogen bonding indisubstituted ethanes. A comparison of NH...O-and OH...O-Hydrogen bondingthrough conformational analysis of4-amino-4-oxobutanoate (succinamate) andmonohydrogen1,4-butanoate (monohydrogen succinate) anions. The Journal ofPhysical Chemistry A2005,109(40):9076-9082.
    [4] Baum P, Engelmann J: Applied macromolecular chemistry. Nachrichten aus der Chemie2001,49:368-373.
    [5] Lee PC, Lee SY, Chang HN: Succinic acid production by Anaerobiospirillumsucciniciproducens ATCC29305growing on galactose, galactose/glucose, andgalactose/lactose. Journal of Microbiology and Biotechnology2008,18(11):1792-1796.
    [6] Bretz K, Kabasci S: Feed-control development for succinic acid production withAnaerobiospirillum succiniciproducens. Biotechnology and Bioengineering2012,109(5):1187-1192.
    [7] Urbance SE, Pometto AL, Dispirito AA et al: Evaluation of succinic acid continuous andrepeat-batch biofilm fermentation by Actinobacillus succinogenes using plasticcomposite support bioreactors. Applied Microbiology and Biotechnology2004,65(6):664-670.
    [8] Zou W, Zhu LW, Li HM et al: Significance of CO2donor on the production of succinicacid by Actinobacillus succinogenes ATCC55618. Microbial Cell Factories2011,10:87.
    [9] Oh YH, Oh IJ, Jung C et al: The effect of protectants and pH changes on the cellulargrowth and succinic acid yield of Mannheimia succiniciproducens LPK7. Journal ofMicrobiology and Biotechnology2010,20(12):1677-1680.
    [10] Lee SY, Kim JM, Song H et al: From genome sequence to integrated bioprocess forsuccinic acid production by Mannheimia succiniciproducens. Applied Microbiologyand Biotechnology2008,79(1):11-22.
    [11] Litsanov B, Brocker M, Bott M: Towards homosuccinate fermentation: metabolicengineering of Corynebacterium glutamicum for anaerobic succinate production fromglucose and formate. Applied and Environmental Microbiology2012,78(9):3325-3337.
    [12] Jiang M, Liu SW, Ma JF et al: Effect of growth phase feeding strategies on succinateproduction by metabolically engineered Escherichia coli. Applied and EnvironmentalMicrobiology2010,76(4):1298-1300.
    [13] Zhang XL, Shanmugam KT, Ingram LO: Fermentation of glycerol to succinate bymetabolically engineered strains of Escherichia coli. Applied and EnvironmentalMicrobiology2010,76(8):2397-2401.
    [14] Zhang X, Jantama K, Shanmugam KT et al: Reengineering Escherichia coli forsuccinate production in mineral salts medium. Applied and EnvironmentalMicrobiology2009,75(24):7807-7813.
    [15] Jantama K, Zhang X, Moore JC et al: Eliminating side products and increasing succinateyields in engineered strains of Escherichia coli C. Biotechnology and Bioengineering2008,101(5):881-893.
    [16] Jantama K, Haupt MJ, Svoronos SA et al: Combining metabolic engineering andmetabolic evolution to develop nonrecombinant strains of Escherichia coli C thatproduce succinate and malate. Biotechnology and Bioengineering2008,99(5):1140-1153.
    [17] Blankschien MD, Clomburg JM, Gonzalez R: Metabolic engineering of Escherichia colifor the production of succinate from glycerol. Metabolic Engineering2010,12(5):409-419.
    [18] Gill RT, Singh A, Lynch MD: Genes restoring redox balance in fermentation-deficient E.coli NZN111. Metabolic Engineering2009,11(6):347-354.
    [19] Singh A, Cher Soh K, Hatzimanikatis V et al: Manipulating redox and ATP balancing forimproved production of succinate in E. coli. Metabolic Engineering2011,13(1):76-81.
    [20] Wang J, Zhu JF, Bennett GN et al: Succinate production from different carbon sourcesunder anaerobic conditions by metabolic engineered Escherichia coli strains. MetabolicEngineering2011,13(3):328-335.
    [21] Zhang XL, Jantama K, Moore JC et al: Metabolic evolution of energy-conservingpathways for succinate production in Escherichia coli. Proceedings of the NationalAcademy of Sciences of the United States of America2009,106(48):20180-20185.
    [22] Clark DP: The fermentation pathways of Escherichia coli. Fems Microbiology Reviews1989,5(3):223-234.
    [23] Hong S, Moon S, Lee S: Prediction of maximum yields of metabolites and optimalpathways for their production by metabolic flux analysis. Journal of Microbiology andBiotechnology2003,13(4):571-577.
    [24] McKinlay JB, Vieille C, Zeikus JG: Prospects for a bio-based succinate industry. AppliedMicrobiology and Biotechnology2007,76(4):727-740.
    [25] Stols L, Donnelly MI: Production of succinic acid through overexpression ofNAD(+)-dependent malic enzyme in an Escherichia coli mutant. Applied andEnvironmental Microbiology1997,63(7):2695-2701.
    [26] Eiteman MA, Lu SY, Altman E: pH and base counterion affect succinate production indual-phase Escherichia coli fermentations. Journal of Industrial Microbiology&Biotechnology2009,36(8):1101-1109.
    [27] Andersson C, Hodge D, Berglund KA et al: Effect of different carbon sources on theproduction of succinic acid using metabolically engineered Escherichia coli.Biotechnology Progress2007,23(2):381-388.
    [28] Sanchez AM, Bennett GN, San KY: Batch culture characterization and metabolic fluxanalysis of succinate-producing Escherichia coli strains. Metabolic Engineering2006,8(3):209-226.
    [29] Cox SJ, Shalel Levanon S, Sanchez A et al: Development of a metabolic network designand optimization framework incorporating implementation constraints: a succinateproduction case study. Metabolic Engineering2006,8(1):46-57.
    [30] Sánchez AM, Bennett GN, San KY: Efficient succinic acid production from glucosethrough overexpression of pyruvate carboxylase in an Escherichia coli alcoholdehydrogenase and lactate dehydrogenase mutant. Biotechnology Progress2005,21(2):358-365.
    [31] Lin H, Bennett GN, San KY: Metabolic engineering of aerobic succinate productionsystems in Escherichia coli to improve process productivity and achieve the maximumtheoretical succinate yield. Metabolic Engineering2005,7(2):116-127.
    [32] Chan S, Kanchanatawee S, Jantama K: Production of succinic acid from sucrose andsugarcane molasses by metabolically engineered Escherichia coli. BioresourceTechnology2012,103(1):329-336.
    [33] Yazdani SS, Gonzalez R: Anaerobic fermentation of glycerol: a path to economicviability for the biofuels industry. Current Opinion in Biotechnology2007,18(3):213-219.
    [34] Dharmadi Y, Murarka A, Gonzalez R: Anaerobic fermentation of glycerol by Escherichiacoli: a new platform for metabolic engineering. Biotechnology and Bioengineering2006,94(5):821-829.
    [35] Kang Z, Du LL, Kang JH et al: Production of succinate and polyhydroxyalkanoate fromsubstrate mixture by metabolically engineered Escherichia coli. BioresourceTechnology2011,102(11):6600-6604.
    [36] Mosier N, Wyman C, Dale B et al: Features of promising technologies for pretreatmentof lignocellulosic biomass. Bioresource Technology2005,96(6):673-686.
    [37] Deutscher J, Francke C, Postma PW: How phosphotransferase system-related proteinphosphorylation regulates carbohydrate metabolism in bacteria. Microbiology andMolecular Biology Reviews2006,70(4):939-1031.
    [38] Zhang ML, Fan YT, Xing Y et al: Enhanced biohydrogen production from cornstalkwastes with acidification pretreatment by mixed anaerobic cultures. Biomass andBioenergy2007,31(4):250-254.
    [39] Fan YT, Zhang YH, Zhang SF et al: Efficient conversion of wheat straw wastes intobiohydrogen gas by cow dung compost. Bioresource Technology2006,97(3):500-505.
    [40] Wang D, Li QA, Yang MH et al: Efficient production of succinic acid from corn stalkhydrolysates by a recombinant Escherichia coli with ptsG mutation. ProcessBiochemistry2011,46(1):365-371.
    [41] Donnelly MI, Sanville-Millard CY, Nghiem NP: Method to produce succinic acid fromraw hydrolysates. US Patent2004:6743610.
    [42] Hodge DB, Andersson C, Berglund KA et al: Detoxification requirements forbioconversion of softwood dilute acid hydrolyzates to succinic acid. Enzyme andMicrobial Technology2009,44(5):309-316.
    [43] You C, Zhang X-Z, Sathitsuksanoh N et al: Enhanced microbial cellulose utilization ofrecalcitrant cellulose by an ex vivo cellulosome-microbe complex. Applied andEnvironmental Microbiology2012,78(5):1437-1444.
    [44] Scheller HV, Ulvskov P: Hemicelluloses. Annual Review of Plant Biology2010,61:263-289.
    [45] Shin HD, McClendon S, Vo T et al: Escherichia coli binary culture engineered for directfermentation of hemicellulose to a biofuel. Applied and Environmental Microbiology2010,76(24):8150-8159.
    [46] Ebringerova A, Hromadkova Z, Heinze T: Hemicellulose. Advances in Polymer Science2005,186:1-67.
    [47] Girio FM, Fonseca C, Carvalheiro F et al: Hemicelluloses for fuel ethanol: A review.Bioresource Technology2010,101(13):4775-4800.
    [48] Shallom D, Shoham Y: Microbial hemicellulases. Current Opinion in Microbiology2003,6(3):219-228.
    [49] Sun J, Wen F, Si T et al: Direct conversion of xylan to ethanol by recombinantSaccharomyces cerevisiae strains displaying an engineered mini-hemicellulosome.Applied and Environmental Microbiology2012,78(11):3837-3845.
    [50] Polizeli ML, Rizzatti AC, Monti R et al: Xylanases from fungi: properties and industrialapplications. Applied Microbiology and Biotechnology2005,67(5):577-591.
    [51] Liab K, Azadi P, Collins R et al: Relationships between activities of xylanases and xylanstructures. Enzyme and Microbial Technology2000,27(1):89-94.
    [52] Kulkarni N, Shendye A, Rao M: Molecular and biotechnological aspects of xylanases.FEMS Microbiology Reviews1999,23(4):411-456.
    [53] Schwalbach MS, Keating DH, Tremaine M et al: Complex physiology and compoundstress responses during fermentation of alkaline-pretreated corn stover hydrolysate byan Escherichia coli ethanologen. Applied and Environmental Microbiology2012,78(9):3442-3457.
    [54] Saha BC, Cotta MA: Enzymatic saccharification and fermentation of alkaline peroxidepretreated rice hulls to ethanol. Enzyme and Microbial Technology2007,41(4):528-532.
    [55] Saha BC, Cotta MA: Lime pretreatment, enzymatic saccharification and fermentation ofrice hulls to ethanol. Biomass&Bioenergy2008,32(10):971-977.
    [56] Cheng KK, Zhang JA, Chavez E et al: Integrated production of xylitol and ethanol usingcorncob. Applied Microbiology and Biotechnology2010,87(2):411-417.
    [57] Lee H, Biely P, Latta RK et al: Utilization of xylan by yeasts and Its conversion toethanol by Pichia stipitis strains. Applied and Environmental Microbiology1986,52(2):320-324.
    [58] Klein-Marcuschamer D, Oleskowicz-Popiel P, Simmons BA et al: The challenge ofenzyme cost in the production of lignocellulosic biofuels. Biotechnology andBioengineering2012,109(4):1083-1087.
    [59] Marques S, Alves L, Roseiro J et al: Conversion of recycled paper sludge to ethanol bySHF and SSF using Pichia stipitis. Biomass and Bioenergy2008,32(5):400-406.
    [60] Lynd LR, Weimer PJ, van Zyl WH et al: Microbial cellulose utilization: Fundamentalsand biotechnology. Microbiology and Molecular Biology Reviews2002,66(3):506-577.
    [61] Lynd LR, Elamder RT, Wyman CE: Likely features and costs of mature biomass ethanoltechnology. Applied Biochemistry and Biotechnology1996,57(1):741-761.
    [62] Goyal G, Tsai SL, Madan B et al: Simultaneous cell growth and ethanol production fromcellulose by an engineered yeast consortium displaying a functional mini-cellulosome.Microbial Cell Factories2011,10:89.
    [63] Lynd LR, van Zyl WH, McBride JE et al: Consolidated bioprocessing of cellulosicbiomass: an update. Current Opinion in Biotechnology2005,16(5):577-583.
    [64] Lynd LR, Laser MS, Bransby D et al: How biotech can transform biofuels. NatureBiotechnology2008,26(2):169-172.
    [65] Margeot A, Hahn-Hagerdal B, Edlund M et al: New improvements for lignocellulosicethanol. Current Opinion in Biotechnology2009,20(3):372-380.
    [66] Sonderegger M, Schumperli M, Sauer U: Metabolic engineering of a phosphoketolasepathway for pentose catabolism in Saccharomyces cerevisiae. Applied andEnvironmental Microbiology2004,70(5):2892-2897.
    [67] Wisselink HW, Toirkens MJ, Wu Q et al: Novel evolutionary engineering approach foraccelerated utilization of glucose, xylose, and arabinose mixtures by engineeredSaccharomyces cerevisiae strains. Applied and Environmental Microbiology2009,75(4):907-914.
    [68] Kuyper M, Toirkens MJ, Diderich JA et al: Evolutionary engineering of mixed‐sugarutilization by a xylose‐fermenting Saccharomyces cerevisiae strain. FEMS YeastResearch2005,5(10):925-934.
    [69] Olson DG, McBride JE, Joe Shaw A et al: Recent progress in consolidated bioprocessing.Current Opinion In Biotechnology2011.
    [70] Argyros DA, Tripathi SA, Barrett TF et al: High Ethanol Titers from Cellulose usingMetabolically Engineered Thermophilic, Anaerobic Microbes. Applied andEnvironmental Microbiology2011,77(23):8288-8294.
    [71] Shaw AJ, Podkaminer KK, Desai SG et al: Metabolic engineering of a thermophilicbacterium to produce ethanol at high yield. Proceedings of the National Academy ofSciences of the United States of America2008,105(37):13769.
    [72] Steen EJ, Kang YS, Bokinsky G et al: Microbial production of fatty-acid-derived fuelsand chemicals from plant biomass. Nature2010,463(7280):559-562.
    [73] Bokinsky G, Peralta-Yahya PP, George A et al: Synthesis of three advanced biofuels fromionic liquid-pretreated switchgrass using engineered Escherichia coli. Proceedings ofthe National Academy of Sciences of the United States of America2011,108(50):19949-19954.
    [74] Den Haan R, Rose SH, Lynd LR et al: Hydrolysis and fermentation of amorphouscellulose by recombinant Saccharomyces cerevisiae. Metabolic Engineering2007,9(1):87-94.
    [75] Wen F, Sun J, Zhao H: Yeast surface display of trifunctional minicellulosomes forsimultaneous saccharification and fermentation of cellulose to ethanol. Applied andEnvironmental Microbiology2010,76(4):1251-1260.
    [76] Zhang XZ, Sathitsuksanoh N, Zhu ZG et al: One-step production of lactate fromcellulose as the sole carbon source without any other organic nutrient by recombinantcellulolytic Bacillus subtilis. Metabolic Engineering2011,13(4):364-372.
    [77] Seras-Franzoso J, Affentranger R, Ferrer-Navarro M et al: Disulfide bond formation andactivation of Escherichia coli β-galactosidase under oxidizing conditions. Applied andEnvironmental Microbiology2012,78(7):2376-2385.
    [78] Pugsley AP: The complete general secretory pathway in gram-negative bacteria.Microbiological Reviews1993,57(1):50-108.
    [79] Angkawidjaja C, Kuwahara K, Omori K et al: Extracellular secretion of Escherichia colialkaline phosphatase with a C-terminal tag by type I secretion system: purification andbiochemical characterization. Protein Engineering Design and Selection2006,19(7):337-343.
    [80] Francetic O, Belin D, Badaut C et al: Expression of the endogenous type II secretionpathway in Escherichia coli leads to chitinase secretion. The EMBO Journal2000,19(24):6697-6703.
    [81] Majander K, Anton L, Antikainen J et al: Extracellular secretion of polypeptides using amodified Escherichia coli flagellar secretion apparatus. Nature Biotechnology2005,23(4):475-481.
    [82] Mergulhao FJ, Summers DK, Monteiro GA: Recombinant protein secretion inEscherichia coli. Biotechnology Advances2005,23(3):177-202.
    [83] Kujau MJ, Hoischen C, Riesenberg D et al: Expression and secretion of functionalminiantibodies McPC603scFvDhlx in cell-wall-less L-form strains of Proteus mirabilisand Escherichia coli: a comparison of the synthesis capacities of L-form strains with anE. coli producer strain. Applied Microbiology and Biotechnology1998,49(1):51-58.
    [84] Miksch G, Kleist S, Friehs K et al: Overexpression of the phytase from Escherichia coliand its extracellular production in bioreactors. Applied Microbiology andBiotechnology2002,59(6):685-694.
    [85] Shin HD, Chen RR: Extracellular recombinant protein production from an Escherichiacoli lpp deletion mutant. Biotechnology and Bioengineering2008,101(6):1288-1296.
    [86] Zhang G, Brokx S, Weiner JH: Extracellular accumulation of recombinant proteins fusedto the carrier protein YebF in Escherichia coli. Nature Biotechnology2006,24(1):100-104.
    [87] Jeong KJ, Lee SY: Excretion of human beta-endorphin into culture medium by usingouter membrane protein F as a fusion partner in recombinant Escherichia coli. Appliedand Environmental Microbiology2002,68(10):4979-4985.
    [88] Qian ZG, Xia XX, Choi JH et al: Proteome-based identification of fusion partner forhigh-level extracellular production of recombinant proteins in Escherichia coli.Biotechnology and Bioengineering2008,101(3):587-601.
    [89] van Bloois E, Winter RT, Kolmar H et al: Decorating microbes: surface display ofproteins on Escherichia coli. Trends In Biotechnology2011,29(2):79-86.
    [90] Wu CH, Mulchandani A, Chen W: Versatile microbial surface-display for environmentalremediation and biofuels production. Trends in Microbiology2008,16(4):181-188.
    [91] Ko H-J, Park E, Song J et al: Functional cell surface display and controlled secretion ofdiverse agarolytic enzymes in Escherichia coli with a novel ligation independentcloning vector based on the autotransporter YfaL. Applied and EnvironmentalMicrobiology2012,78(9):3051-3058.
    [92] Daugherty PS: Protein engineering with bacterial display. Current Opinion in StructuralBiology2007,17(4):474-480.
    [93] Varadarajan N, Cantor JR, Georgiou G et al: Construction and flow cytometric screeningof targeted enzyme libraries. Nature Protocols2009,4(6):893-901.
    [94] Lee SY, Choi JH, Xu Z: Microbial cell-surface display. Trends in Biotechnology2003,21(1):45-52.
    [95] Samuelson P, Gunneriusson E, Nygren PA et al: Display of proteins on bacteria. Journalof Biotechnology2002,96(2):129-154.
    [96] Jose J, Meyer TF: The autodisplay story, from discovery to biotechnical and biomedicalapplications. Microbiology and Molecular Biology Reviews2007,71(4):600-619.
    [97] Tanaka T, Kawabata H, Ogino C et al: Creation of a cellooligosaccharide-assimilatingEscherichia coli strain by displaying active beta-glucosidase on the cell surface via anovel anchor protein. Applied and Environmental Microbiology2011,77(17):6265-6270.
    [98] Wong WKR, Ali AB, Ma MC: Cloning, expression, and characterization of diuretichormone Manduca diuresin from Manduca sexta in Escherichia coli. ProteinExpression and Purification2003,29(1):51-57.
    [99] Jeong KJ, Lee SY: Secretory production of human leptin in Escherichia coli.Biotechnology and Bioengineering2000,67(4):398-407.
    [100] Qiu J, Swartz JR, Georgiou G: Expression of active human tissue-type plasminogenactivator in Escherichia coli. Applied and Environmental Microbiology1998,64(12):4891-4896.
    [101] Adelsberger H, Hertel C, Glawischnig E et al: Enzyme system of Clostridiumstercorarium for hydrolysis of arabinoxylan: reconstitution of the in vivo system fromrecombinant enzymes. Microbiology-sgm2004,150:2257-2266.
    [102] Carapito R, Carapito C, Jeltsch JM et al: Efficient hydrolysis of hemicellulose by aFusarium graminearum xylanase blend produced at high levels in Escherichia coli.Bioresource Technology2009,100(2):845-850.
    [103] Marrone L, McAllister KA, Clarke AJ: Characterization of function and activity ofdomains A, B and C of xylanase C from Fibrobacter succinogenes S85. ProteinEngineering2000,13(8):593-601.
    [104] Whitehead TR, Hespell RB: The genes for three xylan-degrading activities fromBacteroides ovatus are clustered in a3.8-kilobase region. Journal of Bacteriology1990,172(5):2408-2412.
    [105] Whitehead TR, Cotta MA: Identification of a broad-specificity xylosidase/arabinosidaseimportant for xylooligosaccharide fermentation by the ruminal anaerobe Selenomonasruminantium GA192. Current Microbiology2001,43(4):293-298.
    [106] Xu WZ, Shima Y, Negoro S et al: Sequence and properties of beta-xylosidase fromBacillus pumilus IPO. Contradiction of the previous nucleotide sequence. EuropeanJournal of Biochemistry1991,202(3):1197-1203.
    [107] Koffas M, Roberge C, Lee K et al: Metabolic engineering. Annual Review ofBiomedical Engineering1999,1:535-557.
    [108] Bailey JE: Toward a science of metabolic engineering. Science1991,252(5013):1668-1675.
    [109] Alper H, Stephanopoulos G: Engineering for biofuels: exploiting innate microbialcapacity or importing biosynthetic potential? Nature Reviews Microbiology2009,7(10):715-723.
    [110] Keasling JD: Synthetic biology for synthetic chemistry. ACS Chemical Biology2008,3(1):64-76.
    [111] Keasling JD: Manufacturing molecules through metabolic engineering. Science2010,330(6009):1355-1358.
    [112] Stephanopoulos G: Challenges in engineering microbes for biofuels production. Science2007,315(5813):801-804.
    [113] Park JH, Lee SY: Towards systems metabolic engineering of microorganisms for aminoacid production. Current Opinion in Biotechnology2008,19(5):454-460.
    [114] Stafford DE, Stephanopoulos G: Metabolic engineering as an integrating platform forstrain development. Current Opinion in Microbiology2001,4(3):336-340.
    [115] Stephanopoulos G, Alper H, Moxley J: Exploiting biological complexity for strainimprovement through systems biology. Nature Biotechnology2004,22(10):1261-1267.
    [116] Tyo KE, Alper HS, Stephanopoulos GN: Expanding the metabolic engineering toolbox:more options to engineer cells. Trends in Biotechnology2007,25(3):132-137.
    [117] Tyo KE, Kocharin K, Nielsen J: Toward design-based engineering of industrialmicrobes. Current Opinion in Microbiology2010,13(3):255-262.
    [118] Merryman C, Gibson DG: Methods and applications for assembling large DNAconstructs. Metabolic Engineering2012,14(3):196-204.
    [119] Keasling JD: Synthetic biology and the development of tools for metabolic engineering.Metabolic Engineering2012,14(3):189-195.
    [120] Greenwood J: Focus on Synthetic Biology: What's in a name? Nature Biotechnology2009,27(12):1071-1073.
    [121] Boyle PM, Silver PA: Parts plus pipes: Synthetic biology approaches to metabolicengineering. Metabolic Engineering2012,14(3):223-232.
    [122] Gibson DG, Glass JI, Lartigue C et al: Creation of a bacterial cell controlled by achemically synthesized genome. Science2010,329(5987):52-56.
    [123] Gibson DG, Benders GA, Andrews-Pfannkoch C et al: Complete chemical synthesis,assembly, and cloning of a Mycoplasma genitalium genome. Science2008,319(5867):1215-1220.
    [124] Czar MJ, Anderson JC, Bader JS et al: Gene synthesis demystified. Trends inBiotechnology2009,27(2):63-72.
    [125] Anderson JC, Dueber JE, Leguia M et al: BglBricks: A flexible standard for biologicalpart assembly. Journal of Biological Engineering2010,4(1):1.
    [126] Evers TH, Van Dongen EMWM, Faesen AC et al: Quantitative understanding of theenergy transfer between fluorescent proteins connected via flexible peptide linkers.Biochemistry2006,45(44):13183-13192.
    [127] Yadav VG, De Mey M, Giaw Lim C et al: The future of metabolic engineering andsynthetic biology: Towards a systematic practice. Metabolic Engineering2012,14(3):233-241.
    [128] Ajikumar PK, Xiao WH, Tyo KEJ et al: Isoprenoid Pathway Optimization for TaxolPrecursor Overproduction in Escherichia coli. Science2010,330(6000):70-74.
    [129] Tsuruta H, Paddon CJ, Eng D et al: High-level production of amorpha-4,11-diene, aprecursor of the antimalarial agent artemisinin, in Escherichia coli. PLoS One2009,4(2):4489.
    [130] Salis HM, Mirsky EA, Voigt CA: Automated design of synthetic ribosome binding sitesto control protein expression. Nature Biotechnology2009,27(10):946-950.
    [131] Juminaga D, Baidoo EEK, Redding-Johanson AM et al: Modular engineering ofl-tyrosine production in Escherichia coli. Applied and Environmental Microbiology2012,78(1):89-98.
    [132] Pfleger BF, Pitera DJ, Smolke CD et al: Combinatorial engineering of intergenicregions in operons tunes expression of multiple genes. Nature Biotechnology2006,24(8):1027-1032.
    [133] Dueber JE, Wu GC, Malmirchegini GR et al: Synthetic protein scaffolds providemodular control over metabolic flux. Nature Biotechnology2009,27(8):753-759.
    [134] Atsumi S, Higashide W, Liao JC: Direct photosynthetic recycling of carbon dioxide toisobutyraldehyde. Nature Biotechnology2009,27(12):1177-1180.
    [135] Martin VJ, Pitera DJ, Withers ST et al: Engineering a mevalonate pathway inEscherichia coli for production of terpenoids. Nature Biotechnology2003,21(7):796-802.
    [136] Yim H, Haselbeck R, Niu W et al: Metabolic engineering of Escherichia coli for directproduction of1,4-butanediol. Nature Chemical Biology2011,7(7):445-452.
    [137] Atsumi S, Hanai T, Liao JC: Non-fermentative pathways for synthesis ofbranched-chain higher alcohols as biofuels. Nature2008,451(7174):86-89.
    [138] Saha BC: Hemicellulose bioconversion. Journal of Industrial Microbiology&Biotechnology2003,30(5):279-291.
    [139] Burchhardt G, Ingram LO: Conversion of xylan to ethanol by ethanologenic strains ofEscherichia coli and Klebsiella oxytoca. Applied and Environmental Microbiology1992,58(4):1128-1133.
    [140] Waters DM, Murray PG, Miki Y et al: Cloning, Overexpression in Escherichia coli, andCharacterization of a Thermostable Fungal Acetylxylan Esterase from Talaromycesemersonii. Applied and Environmental Microbiology2012,78(10):3759-3762.
    [141] Sambrook J, Russell DW: Molecular cloning: a laboratory manual, vol.2. New York:CSHL press;2001.
    [142] Chaplin MF: Monosaccharides. In: Carbohydrate analysis: a practical approach. Editedby Chaplin MF, Kennedy JF. Washington: IRL Press;1986:1-36.
    [143] Bradford MM: A rapid and sensitive method for the quantitation of microgramquantities of protein utilizing the principle of protein-dye binding. AnalyticalBiochemistry1976,72(1):248-254.
    [144] Biely P, Mislovicova D, Toman R: Soluble chromogenic substrates for the assay ofendo-1,4-beta-xylanases and endo-1,4-beta-glucanases. Analytical Biochemistry1985,144(1):142-146.
    [145] Bayer TS, Widmaier DM, Temme K et al: Synthesis of methyl halides from biomassusing engineered microbes. Journal of The American Chemical Society2009,131(18):6508-6515.
    [146] Wanner BL, Datsenko KA: One-step inactivation of chromosomal genes in Escherichiacoli K-12using PCR products. Proceedings of the National Academy of Sciences of theUnited States of America2000,97(12):6640-6645.
    [147] Laemmli UK: Cleavage of structural proteins during the assembly of the head ofbacteriophage T4. Nature1970,227(5259):680-685.
    [148] Pazur JH: Neutral polysaccharides. In: Carbohydrate analysis: a practical approach.Edited by Chaplin MF, Kennedy JF. Washington: IRL Press;1986:55-96.
    [149] Yem DW, Wu HC: Physiological characterization of an Escherichia coli mutant alteredin the structure of murein lipoprotein. Journal of Bacteriology1978,133(3):1419-1426.
    [150] Goff SA, Goldberg AL: Production of abnormal proteins in E. coli stimulatestranscription of lon and other heat shock genes. Cell1985,41(2):587-595.
    [151] Thakker C, Zhu JF, San KY et al: Heterologous pyc gene expression under variousnatural and engineered promoters in Escherichia coli for improved succinate production.Journal of Biotechnology2011,155(2):236-243.
    [152] Chang AC, Cohen SN: Construction and characterization of amplifiable multicopyDNA cloning vehicles derived from the P15A cryptic miniplasmid. Journal ofBacteriology1978,134(3):1141-1156.
    [153] Kormelink FJM, Voragen AGJ: Degradation of different [(glucurono)arabino]xylans bya combination of purified xylan-degrading enzymes. Applied Microbiology andBiotechnology1993,38(5):688-695.
    [154] Inacio JM, Correia IL, de Sa-Nogueiral I: Two distinct arabinofuranosidases contributeto arabino-oligosaccharide degradation in Bacillus subtilis. Microbiology-sgm2008,154:2719-2729.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700