光折变晶体中高密度全息存储热固定技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
信息科学技术的高速发展对信息存储技术提出了更高的要求。体全息存储是一种适合高密度数据存储的光学存储技术,它同时具有存储密度高、数据传输率高、数据搜索时间短等优势。近年来,在提高数据存储密度、存取速度以及存储器性能等方面,已经取得了重大的研究进展。光折变晶体中的非易失性存储(长期保存和无损读出)问题,已成为高密度全息存储技术能否实用化的关键问题之一。本论文工作目的是研究光折变晶体中高密度全息存储的分批热固定技术及系统。
     本论文分析比较了同时记录补偿和记录后补偿这两种基本热固定方法各自的特点,并且依据所在研究组独立提出的分批热固定的概念,研究了高密度全息存储的分批热固定方法及其流程。
     本论文深入研究了分批存储定影过程中电子和离子在光照和高温作用下的动态特点,全面描述了全息图写入过程中的两种光擦除作用以及高温热定影过程中的补偿和平滑机制。依据Yariv的理论分析方法,理论描述了记录光对已定影的全息图的部分显影作用,据此首次提出用于量度离子补偿后的电子光栅光擦除效应的批间光擦除时间常数τF,并设计实验测得了批间光擦除时间常数τF。实验测出的多重全息光栅的各批间光擦除时间常数τF远大于每批内光栅间的擦除时间常数τE,与理论预期一致。并且依据上述两种光擦除时间常数,为分批存储热固定多重全息图的等衍射效率记录设计了曝光时序。
     为了定量描述多重全息存储的分批热固定方法在提高存储容量上的优势,针对分批存储热固定技术,定义了光折变晶体的最大分批动态范围参量M _(max batch)~#,并且提出以有效动态范围参量M_(eff)~#评价系统存储能力。对不同分批存储固定的有效动态范围进行了计算比较。结果表明,采用多重全息存储的单次热固定技术,在实现非易失性多重全息存储同时,不可避免地降低了系统存储能力;而采用适当分批存储热固定技术,可以在实现非易失性存储的前提下提高原存储系统的存储能力。并且依据此研究结果进一步研究了最优分批方案问题。
    
     北京工业大学理学博士学位论文
    一
     计算比较了以不同分批数存储热固定的多重全息图的衍射效率。结果表明,
    采用分批存储热固定技术,所分的批次数越多,经等衍射效率曝光时序记录后的
    全息图最终达到的等衍射效率值越高,并且所有全息图的写入曝光时间值越接
    近。由于采用分批存储热固定技术,适当均化了所有全息图的曝光时间并缩短了
    总曝光时间,从而可以降低噪声强度并提高全息图存储容量。
     研制了包括在线与离线小型精密温控加热装置、晶体夹持器和角度——分维复
    用光学读写系统等主要部分的高密度全息存储的热固定系统,该系统操作灵活并
    具有实用性,其存储能力不少于 10000幅全息图。
     在 Icm3晶体中完成了单点分批存储热固定 1000幅全息图与单点单次热固定
    1000幅全息图的比较实验,并且采用信噪比损失系数 LSNR描述不同次数热定影
    对图像质量的影响。实验结果表明,与单次存储热固定结果比较,分批存储热固
    定的多重全息图具有显著增高的衍射效率和图像保真度。证实了分批存储热固定
    是实现高衍射效率和高图像质量的高密度全息存储的优选方案。
     本论文综合研究结果表明,采用分批存储热固定技术固定存储的多重全息图
    具有较高的衍射效率、良好的图像质量、较长的寿命,可以无破坏性读出。采用
    分批热固定技术可以充分利用光折变晶体材料的存储潜力,更适合于大规模全息
    图的存储固定。
The high demand is placed on data storage technology as the information science and technology has been developed more and more rapidly in the last decade years. The holographic storage is one of the most promising optical storage technologies for high-density dada storage. The ability to store multiple holograms within a small volume of a storage material and to retrieve data pages with thousands of bits in parallel provides an attractive combination of high density and fast speed. While many parts of this technology have made good progress (such as increasing data storage density, reducing access time, improving performances of photorefractive memories, and the like), the volatility of the stored data in photorefractive materials has become serious obstacle to the practical realization of photorefractive holographic memories.
    In the thesis, the technical process of batch thermal fixing for high-density holographic storage in photorefractive materials has been proposed based on the comparison between the two basic schemes of thermal fixing, post-recording fixing and fixing while recording. The dynamic behaviors of both electrons and irons in the case of light illumination and elevated temperature are analyzed, and hereby the optical erasure effect of subsequent recording light on fixed electronic gratings and the thermal erasure effect of subsequent heating on revealed ionic gratings are presented. According to theoretical model given by A. Yariv, the partial revealing effect of subsequent recording light on fixed holograms has been described, and accordingly inter-batch optical erasure time constant, F, is proposed to evaluate the optical erasure to electronic gratings compensated by ions. The special experiment for measuring the parameter F is designed and performed. The experimental result shows that inter-batch optical erasure time constant, F, is much longer than intra-batch optical erasure time constant, E, which agrees well with the theoretical prediction. Furthermore, the exposure schedule for recording holograms with equalized diffraction efficiency is designed based on the above-mentioned optical erasure time constants.
    The parameter M#max_balch termed as dynamic range with maximum number of
    batches, is defined for quantitatively characterizing the enhancement in storage
    
    
    
    capacity of batch thermal-fixing scheme for multiple holographic storage. Another parameter, M#ejf, termed as effective dynamic range is proposed to evaluate system's
    storage ability, and hereby the effective dynamic range values corresponding to the number of batches are calculated and compared. The calculation result shows that, by using single fixing for multiple storage, the storage capability declines inevitably as nonvolatile storage has been realized. However, enhancing nonvolatile storage capability of a given storage system is possible by using batch thermal fixing scheme with a proper number of batches. And then, the method for determining the optimum number of batches for fixing a given number of holograms is present based on above research.
    The diffraction efficiencies of multiple holograms recorded and fixed in different number of batches are calculated and analyzed. If a special exposure schedules calculated based on the characteristic time constants of batch fixing scheme is incorporated for equalized diffraction efficiency, the greater the number of batches is, the higher the equalized diffraction efficiency of fixed holograms. Owing to the batch-fixing scheme, the exposure time for recording individual hologram is more uniform and the total exposure time is short than that by using single-fixing scheme. Therefore, the noise such as crystal scattering due to long exposure time can be suppressed, and storage capability and fidelity can be improved.
    The high-density holographic storage system, including on-line and off-line heating units, has been designed and implemented for our experiments. This system can be used to store no less than 10000 holograms, and it is flexible and practical to operate.
引文
[1] O. Ollikainen, A. Rebane, and K. K.Rebane. Error-Corrective Optical Neural Networks Modeled by Persistent Spectral Hole-Burning. Opt. & Quan. Electro. 1993, 25:569~585.
    [2] H. Ueki, Y. Kawata, and S. Kawata. Three-Dimensional Optical Bit-Memory Recording and Reading with a Photorefractive Crystal: Analysis and Experiment. Appl. Opt. 1996, 35(14): 2457~2465.
    [3] S. Hunter, et al. Potentials of Two-Photon Based 3-D Optical Memories for High Performance Computing. Appl. Opt. 1990, 29(14): 2058~2066.
    [4] J.H. Strickler, and W. W. Webb. Three Dimensional Optical Data Storage in Refractive Media by Two-Photon Point Excitation. Opt. Lett. 1991, 16(22): 1780~1782.
    [5] P.J. Van Heerden. Theory of Optical Information Storage in Solid. Appl. Opt. 1963, 2:393.
    [6] L. D'Auria, J. P. Huignard, C. Slezak, and E. Spitz. Experimental Holographic Read-Write Memory Using 3-D Storage. Appl. Opt. 1974, 13 (4): 808~818.
    [7] 陶世荃、王大勇、江竹青、袁泉,光全息存储,北京工业大学出版社,1998:35.
    [8] P.B. Berra, A. Ghafoor, P. Mitkas, S. arcinkowski, and M. Guizani, The Impact of Optics on Data and Knowledge Base Systems. IEEE Trans. Knowl.Data Eng. 1989, 1:111~131.
    [9] A. Louri, and J. Hatch. Optical Content-Addressable Parallel Processor for High-Speed Database Processing. Appl. Opt. 1994, 33:8135~8163.
    [10] D. Psaltis, et al. Adaptive Optical Networks Using Photorefractive Crystals. Appl. Opt. 1988, 27:1752~1759.
    [11] D. Psaltis, et al. High Order Associative Memories and Their Optical Implementations. Neural Networks. 1988, 1:149~163.
    [12] D. Psaltis, et al. Holography in Artificial Neural Networks. Nature. 1990, 343: 325~330.
    [13] D.Z. Anderson, and D. M. Lininger. Dynamic Optical Interconnects: Volume Holograms as Two-Port Operators. Appl. Opt. 1987, 26:5031~5038.
    [14] S. Wu, Q. Song, et al. Reconfigurable Interconnections Using Photorefractive Holograms. Appl. Opt. 1990, 29(8): 1118~1125.
    [15] D. Psaltis, et al. Fractal Sampling Grids for Holographic Interconnections. SPIE, Optical Computing, 1988, 963:468~474.
    [16] F.H. Mok, et al. Holographic Inner-Product Processor for Pattern Recognition. SPIE. 1992, Optical Pattern Recognition Ⅲ, Orlando'92, Apr. 1992, Orland, Florida, USA, 1701:312~322.
    
    
    [17] L. Hesselink, and M. C. Bashaw. Optical Memories Implemented With Photorefractive Media. Opt. and Quan. Electronics. 1993, 25(9): 611~661.
    [18] R.G. Zech. Volume Hologram Optical Memories, Mass Storage Future Perfect. Opt.& Photonics News. 1992, August: 16~25.
    [19] N.N. Vyukhina, I. S. Ginbin, V. A. Dombrovsky, S. A. Dombrovsky, B. N. Pankov, E. F. Pen. A Review of Aspects Relating to the Improvement of Holographic Memory Technology. Opt. & Laser Tech., 1996, 28(4): 269~276.
    [20] L. Hesselink. Digital Holographic Data Storage Looks Ahead. Photonics Spectra. 1996:44~45.
    [21] F.H. Mok, et al. Storage of 500 High-Resolution Holograms in A LiNbO_3 Crystal. Opt. Lett. 1991, 16(8): 605~607.
    [22] F. H. Mok, D. Psaltis, and G. Burr. Spatially- and Angle-Multiplexed Holographic Random Access Memory. SPIE. 1992, 1773:334~345.
    [23] G.W. Burr, et al. Storage of 10,000 Holograms in LiNbO_3: Fe. Conf. on Lasers and Electro-Optics (CLEO), Anaheim, CA. 1994.
    [24] J.F. Heanue, M. C. Bashaw, and L. Hesselink. Volume Holographic Storage and Retrieval of Digital Data. Science. 1994, 265(5): 749~752.
    [25] I. Mcmichael, et al. Compact Holographic Storage Demonstrator With Rapid Access. Appl. Opt. 1996, 35(14): 2375~2379.
    [26] G.W. Burr, et al. Volume Holographic Data Storage at an Areal Density of 250 Gigepixels/in~(2,), Opt. Lett. 2001, 26(7): 444~446.
    [27] S.S. Orlov, W. Phillips, E. Bjornson, L. Hesselink, and R. Okas. High Data Rate (10 Gbit/Sec) Demonstration in Holographic Disk Digital Data Storage System, Pacific Rim Conference On Lasers And Electro-Optics, CLEO- Technical Digest. 2002:70~71.
    [28] Y. Wan, S. Tao, D. Wang, W. Yuan, G. Liu, X. Ding, Z. Jiang, and C. Liu. Holographic Disk Data Storage at a High Areal Density of 33.7 bits/μm~2, Accepted by Optical Data Storage Topical Meeting.11-14 May 2003, Vancouver, Canada.
    [29] J. H. Hong et al. Volume Holographic Memory Systems: Techniques and Architectures. Opt. Eng. 1995, 34(8): 2193~2203.
    [30] M.P. Bernal, H. Coufal, R. K. Grygier, J. A. Hoffnagle, C. M. Jefferson, et al. "A Precision Tester for Studies of Holographic Optical Storage Materials and Recording Physics. Appl. Opt. 1996, 35(14): 2360~2374.
    [31] N. V. Kukhtarev, et al. Holographic Storage in Electrooptic Crystals. Ferroelectrics, 1979, 22: 949.
    [32] J.M. Heaton, et al. Diffraction Efficiency and Angular Selectivity of Volume Phase Holograms Recorded in Photorefractive Materials, Optica Acta. 1984, 31(8): 885.
    
    
    [33] P. Yeh. Two-Wave Mixing in Nonlinear Media. IEEE J. Q-E.1989, 25(3): 484.
    [34] L.Z. Cai, P. Yeh, and H. K. Liu. Mean Fringe Contrast Optimum Beam Ratio and Maximum Diffraction Efficiency for Volume Gratings Written by Coupled Waves. Opt. Comm. 1996, 132: 48~54.
    [35] J.R. Wullert, and Y. Lu. Limits of the Capacity and Density of Holographic Storage. Appt. Opt. 1994, 33(11): 2192.
    [36] E.C. Maniloff, and K. M. Johnson. Maximized Photorefractive Holographic Storage. J. Appl. Phys. 1991, 70(9): 4702.
    [37] K. Blotekjaer. Limitations on Holographic Storage Capacity of Photochromic and Photoregractive Medi. Appl. Opt. 1979, 18(1): 57.
    [38] H. Zhou, F. Zhao, and Francis T. S.Yu. Angle-Depeendent Diffraction Efficiecy in Athick Photorefractive Hologram. Appl. Opt. 1995, 34(8): 1303.
    [39] F. Vachss, and L. Hesselink, Holographic Beam Coupling in Anisotropic Photorefractive Media, J. Opt. Soc. Am. A4(2):325
    [40] A. Marrakchi, R. V. Johnson, and Jr. A. R. Tanguay, Polarization Properties of Photorefractive Diffraction in Electrooptic and Optically Active Sillenite Crystal, J. Opt. Soc. Am. 1986, B3 (2): 321.
    [41] T. G. Pencheva, M. P. Petrov, and S. I. Stepanov. Selective Properties of Volume Phase Holograms in Photorefractive Crystals. Opt. Comm. 1982, 40(3): 175.
    [42] S. Tao, Z. H. Song, and D. R. Selviah. Bragg-Shift of Holographic Gratings in Photorefractive Fe: LiNbO_3 Crystals. Opt. Commun. 1994, 108: 144.
    [43] X. An, and D. Psaltis. Experimental Characterization of an Angle-Multiplexed Holographic Memory. Opt. Lett. 1995, 20(18): 1913~1915.
    [44] F.H. Mok, Angle-Multiplexed Storage of 5000 Holograms in Lithium Niobate, Opt. Lett. 1993, 18(11): 915~917.
    [45] C. Denz, et al. Potentialities and Limitations of Hologram Multiplexing by Using the Phase-Encoding Technique. Appl. Opt. 1992, 1: 5700~5705.
    [46] C. Alves, G. Pauliat, and G. Roosen. Dynamic Phase-Encoding Storage of 64 Images in a BaTiO_3 Photorefractive Crystal. Opt. Lett. 1994, 19(22): 1894~1896.
    [47] G.A. Rakuljik, and V. Leyva, et al. Optical Data Storage by Using Orthogonal Wavelength-Multiplexed Volume Holograms. Opt. Lett. 1992, 17(20): 1471.
    [48] F. Zhao, H. Zhou, S. Yin, and F. T. S. Yu. Wavelength-Multiplexed Holographic Storage by Using the Minimum Wavelength Channel Separation in a Photorefractive Crystal Fiber, Opt. Commun. 1993, 103: 59~62.
    [49] C. Scott, and Y. Pochi. Sparse-Wavelength Angle-Multiplexed Volume Holographic Memory System: Analysis and Advances. Appl. Opt. 1996, 35(14): 2380~2388.
    
    
    [50] S. Tao, et al. Spatioangular Multiplexed Storage of 750 Holograms in an Fe: LiNbO_3 Crystal. Opt. Lett. 1993, 18(11): 912~914.
    [51] K. Curis, A. Pu, and D. Psaltis. Method for Holographic Storage Using Peristrophic Multiplexing. Opt. Lett. 1994, 19: 993~994.
    [52] D. Psaltis, et al. Holographic Storage Using Shift Multiplexing. Opt. Lett. 1995, 20: 782~784.
    [53] J. Amodei, and D. L. Staebler. Holographic Pattern Fixing in Electro-Optic Crystals. Appl. Phys. Lett. 1971, 18: 540~542.
    [54] D.L. Staebler, W. J. Burke, W. Phillips, and Amodei. Multiple Storage and Erasure of Fixed Holograms in Fe-Doped LiNbO_3 Appl. Phys. Lett. 1975, 26(4): 182~184.
    [55] A. Yariv, Sergei S. Orlov, and George A. Rakuljic. Holographic Storage Dynamics in Lithium Niobate: Theory and Experiment. J. Opt. Soc. Am. 1996, B13 (11): 2513~2523.
    [56] X. An, D. Psaltis, and G. Burr. Thermal Fixing of 10000 Holograms in LiNbO_3: Fe. Appl. Opt. 1999, 38 (2): 86~393.
    [57] F. Micheron, et al. Electrical Control in Photorefractive Materials for Optical Storage. Appl. Opt. 1974, 13(4): 784~787.
    [58] J. Ma, et al. Electrical Fixing of 1000 Angle-Multiplexed Holograms in SBN. Opt. Lett. 1997, 22(14): 1116~1118.
    [59] D. Lande. Digital Holographic Storage System Incorporating Optical Fixing. Opt. Lett. 1997, 22 (22): 1722~1724.
    [60] A. Adibi, K. Buse, and D. Psaltis. Multiplexing Holograms in LiNbO_3: Fe: Mn Crystals. Opt. Lett. 1999, 24 (10): 653~655.
    [61] M. Lee, et al. Photoinduced Charge Transfer in Near-Stoichiometric LiNbO_3. J. of Appl. Phys. 2000, 87 (3): 1291~1294.
    [62] Y. Liu, et al. Theoretical Investigation of Nonvolatile Holographic Storage in Doubly Doped Lithium Niobate Crystals. J. Opt. Soc. Am. 2002, B19 (10): 2413~2422.
    [63] K. Kitamura, et al. Intensity Dependence of Two-Color Holography Performance in Tb-Doped Near-Stoichiometric LiNbO_3. Proceedings of SPIE. 2002, 4930: 38-342.
    [64] Y. Liu, et al. Two-Color Photorefractive Holography in Mn-Doped Near-Stoichiometric Lithium Niobate Crystals. Proceedings of SPIE. 2002, 4930: 333-337.
    [65] H. Vormann, G. Weber, S. Kapphan, and E. Kratzig. Hydrogen as Origin of Thermal Fixing in LiNbO_3: Fe. Solid State Communications. 1981, 40: 543-545.
    [66] G. Montemezzani, M. Zgonik, and P. Gunter. Photorefractive Charge Compensation at Elevated Temperature and Application to KNbO_3 Crystals. J.
    
    Opt. Soc. Am. 1990, B10:171-185.
    [67] Ammon Yariv, Sergei Orlov, George Rakuljic, And Victor Leyva, "Holographic Fixing, Readout, And Storage Dynamics In Photorefractive Materials", Opt. Lett., 1995, 20 (11), 1334-1336.
    [68] S. Orlov, and D. Psaltis. Dynamic Electronic Compensation of Fixed Gratings in Photorefractive Media. Appl. Phys. Lett. 1993, 63 (18): 2466-2468.
    [69] R. Matull, and R. A. Rupp. Macrophotometric Investigation of Fixed Holograms. J. Phys. 1988, D 21:1556-1565.
    [70] P. Hertel, K. H. Ringhofer, and R. Sommerfeldt. Theory of Thermal Hologram Fixing and Application to LiNbO_3:Cu. Phys. Status Solidi. 1987, A104: 855-862.
    [71] M. Carrascosa, and F. Agullo-Lopez. Theoretical Modeling of the Fixing and Developing of Holographic Gratings in LiNbO_3. J. Opt. Soc. Am. 1990, B7 (12): 2317-2322.
    [72] M. Carrascosa, and F. Agullo-Lopez. Optimization of the Developing Stage for Fixed Gratings in LiNbO_3. Opt. Commun. 1996, 126: 240-246.
    [73] M. G. Clark, F. J. Disalvo, A. M. Glass, and G. E. Peterson. Electronic Structure and Optical Index Damage of Iron-Doped Lithium Niobate. J. Chem. Phys. 1973, 59:6209-6219.
    [74] A. Zylberstein. Thermally Activated Trapping in Fe-Doped LiNbO_3. Appl. Phys. 1976, 29:778-780.
    [75] B. Liu, L. Liu, and L. Xu. Characteristics of Recording and Thermal Fixing in Lithium Niobate. Appl. Opt. 1998, 37 (11): 2170-2176.
    [76] C.R. Hsieh, S. H. Lin, K. Y. Hsu, A. Chiou, and J. Hong. Optimal Condition for Thermal Fixing of Volume Holograms in Fe: LiNbO_3 Crystals. Appl. Opt. 1999, 38 (29): 6141-6151.
    [77] L. Arizmendi. Thermal Fixing of Holographic Gratings in Bi_(12)SiO_(20). J. Appl. Phys. 1989, 65: 423-427.
    [78] G. Montemezzani And P. Gunter, "Thermal Hologram Fixing In Pure And Doped Knbo_3 Crystals," J. Opt. Soc. Am. B, 1990, 7 (12): 2323-2328.
    [79] L. Arizmendi, P. D. Townnsendt, M. Carrascosa, J. Baquedano, and J.M. Cabrera. Photorefractive Fixing and Related Thermal Effects in LiNbO_3. J. Phys.: Condens. Matter, 1991, 3:5399-5406.
    [80] R. Muller, L. Arizmendi, M. Carrascosa, and J. M. Cabrera. Determination of H Concentration in LiNbO_3 by Photorefractive Fixing. Appl. Phys. Lett. 1992, 60 (26): 3212-3214.
    [81] M. Carrascosa, and L. Arizmendi. High-Temperature Photorefractive Effects in LiNbO_3: Fe. J. Appl. Phys. 1993, 73 (6): 2709-2713.
    [82] S. Breer, K. Buse, and F. Rickermann. Improved Development of Thermally
    
    Fixed Holograms in Photorefractive LiNbO_3. Opt. Lett. 1998, 23 (1): 73-75.
    [83] G. A. Rakuljic. Prescription for Long-Lifetime, High-Diffraction-Efficiency Fixed Holograms in Fe-Doped LiNbO_3. Opt. Lett. 1997, 22 (11): 825-827.
    [84] L. Arizmendi, A. Mendez, and J. V. Alvarez-Bravo. Stability of Fixed Holograms in LiNbO_3. Appl. Phys. Lett. 1997, 70 (5): 571-573.
    [85] L. Arizmendi, E. M. De Miguel-Sanz, and M. Carrascosa. Lifetimes of Thermally Fixed Holograms in LiNbO_3: Fe Crystals. Opt. Lett. 1998, 23 (12): 960-962.
    [86] B. Liu, L. Liu, L. Xu, Jian Ma, and H. Lee. Local Thermal Fixing of a Photorefractive LiNbO_3 Hologram by Use of a CO_2 Laser. Appl. Opt. 1998, 37(8): 1342-1349.
    [87] M. Jeganathan, and L. Hesselink. Diffraction from Thermally Fixed Gratings in a Photorefractive Medium: Steady-State and Transient Analysis. J. Opt. Soc. Am. 1994, B11 (9): 1791-1799.
    [88] L. Arizmendi. Thermal Fixing of Holographic Gratings in Bi_(12)SiO_(20). J. Appl. Phys. 1989, 65:423-427.
    [89] A.Y. Liu, M. C. Bahaw, And L. Hesselink, "Observation And Thermal Fixing Of Holographic Gratings In Lead Barium Niobate Crystal", Opt. Lett., 1997, 22 (3): 187-189.
    [90] J.F. Heanue, M. C. Bashaw, A. J. Daiber, R. Snyder, and L. Hesselink. Digital Holographic Storage System Incorporating Thermal Fixing in Lithium Niobate. Opt. Lett. 1996, 21 (19):1615-1617.
    [91] L. Solymar, and D. J. Cooke. Volume Holography and Volume Gratings. Academic Press. 1981.
    [92] H. Kogelink. Coupled Wave Theory for Thick Holograms Gratings. The Bell System Technical Journal. 1969, 48:2909-2946.
    [93] H. Zhao, F. Zhao, and F. T. S. Yu. Diffraction Properties of a Reflection Photorefractive Hologram. Appl. Opt. 1994, 33(20):4345~4352.
    [94] J.W. Goodman. Introduction to Fourier Optics. Mcgraw-Hill, New York, 1968.
    [95] H.J.考尔菲尔德.光全息手册.科学出版社.1988.
    [96] M. Born, and E. Wolf. Principles of Optics. Seventh Edition. The Press Syndicate of the University of Cambridge. 1999.
    [97] S. Tao, and D. R. Selviah, et al. Angular Selectivity of Holographic Gratings in BSO. Topical Meeting on Photorefractive Materials, Effects, and Devices 1991, Technical Digest Series. 1991, 14: Paper MD5.
    [98] X. An, and D. Psaltis. Experimental Characterization of an Angle-Multiplexed Holographic Memory. Opt. Lett. 1995, 20(18): 1913~1915.
    [99] Jiang Zhuqing, Yuan Quan, and Tao Shiquan. Optimization Of Diffraction Performances Of Reflection Holograms in Photorefractive LiNbO_3: Fe.
    
    Proceedings of SPIE. 1998, 3554: 20-25.
    [100] 陶世荃,杨兴昌,袁泉,江竹青,徐敏.光折变体全息时间常数的实验确定.南昌航空工业学院学报,1996,增刊:59~61.
    [101] F. H. Mok, G. W. Burr, and D. Psaltis. System Metric for Holographic Memory Systems. Optic Lett. 1996, 21 (12): 896
    [102] J. Joseph, K. C. Pillai, and K. Singh. A Novel Way of Noise Reduction in Image Amplification by Two-Beam Coupling in Photorefractive BaTiO_3 Crystal. Opt. Comm. 1990, 80(1):84.
    [103] W. S. Rabinovich, and B. J. Feldman,. Suppression of Photofractive Beam Fanning Using Achromatic Gratings. Opt. Lett. 1991, 16 (15): 1147.
    [104] Q. Byron He, and P. Yeh. Fanning Noise Reduction in Photorefractive Amplifiers Using Incoherent Erasures. Appl. Opt. 1994, 33(2): 283.
    [105] 覃鸣燕.视频图像的全息存储.北京工业大学硕士论文.2001.
    [106] M. C. Bashaw, and J. F. Heanue. Ouasi-Stabilized Ionic Gratings in Photorefractive Media for Multiplex Holography. J. Opt. Soc. Am. 1997, B14 (8): 2024-2042.
    [107] 宋雪华.光折变晶体中全息图的热固定.北京工业大学硕士论文.1999.
    [108] 万玉红,袁韦,刘国庆,陶世荃,赵业权.光折变晶体全息存储中散射噪声特性的研究.中国激光.2003.待发表.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700