基于掺铁铌酸锂的体全息相关识别系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
信息技术和计算机技术的高速发展对信息存储技术提出了更高的要求。体全息存储技术以其存储密度高、存储容量大、数据传输速率高、数据搜索时间短等优势成为一种颇具潜力的海量信息存储技术。而基于体全息的相关识别技术是一种新兴的光学模式识别技术。它通过角度复用光学体全息存储技术将图像库存储在光折变晶体中,建立识别模板库。当输入载有待识别图像信息的物光时,产生一系列与模板库对应的相关峰,各个相关峰强度正比于待识别图像与相应模板的相似度。传统的目标识别方式受限于数字计算机的串行依次处理,其识别时间与模板库的大小成正比,尤其是对海量模板的匹配,其时间开销是巨大的。而体全息相关识别技术是一种并行处理技术,待识别目标只需经过一次并行处理就能完成与模板库中所有模板的匹配处理,其识别时间与模板库大小无关。
     本论文主要以掺铁铌酸锂晶体为存储介质,进行基于光折变体全息的相关识别系统的研究。在传统热固定技术的基础上,综合考虑动态范围和热固定效率对存储过程的影响,对各种参数进行了优化处理。当存储介质同一体积内存储的全息图数量很大时,在采用顺序曝光时序进行存储的过程中,最早存储全息图的曝光时间较长,光致散射比较严重,不利于识别准确率的提高。为了解决这个问题,并得到更理想的热固定效率,本论文还介绍了分批热固定理论,研究了批间光擦除时间常数对存储过程的影响,最终实现了分批热固定后衍射效率的均匀化。
     以薄晶体为存储介质,根据离焦相关识别系统的位移不变性,论文进行了以人耳为识别目标的实时图像识别。在存在一定程度平移、变形或旋转等畸变的情况下,准确实现了同一类别图像不同模板的归类识别。对于非实时图像,我们以厚晶体为存储介质,利用其大的动态范围,大大提高了同一体积内可以存储的识别模板的数量。在不考虑图像畸变的情况下,论文第四章采用相关系数模板的识别算法,实现了1000幅图像分批热固定后的并行识别。
     为了提高识别系统的实用化,我们在第五章进行了可携式识别系统的研究。采用反射式光路,用会聚的参考光进行存储,将参考光光路去除后,保留激光光源和物光光路进行单独的设计和包装,得到尺寸为350×200×70mm3的可携式相关识别系统。
     我们还在第五章对相关识别系统进行了一些改进。首先,提出了分维角度-空间复用的存储方法。在相关识别系统中,这种复用方法可以有效的提高存储密度,更充分地利用晶体的动态范围。其次,为进一步提高体全息相关识别系统的识别速率,我们以端面为正方形的长条状Zn:Fe:Mn:LiNbO3晶体为存储介质,在物光固定不动的情况下实现了多个空间位置处的分维角度复用存储。在识别时,输入图像可以与晶体内多个位置处存储的7500幅图像同时进行相关识别,得到了更高的识别速率。
With the developing of information and computer technology, the new storage system is needed urgently. Volume storage has become a potential storage means for the merits of high package density, high storage capacity, fast data gransfer rates and short access time. Accordingly, the correlator based on volume hologram is a rising optical pattern recognition technology. Fistly, images for recognition need to be storaged into the refractive crystal with angular multiplexing. All these images serve as template during the later recognition process. Then with the incidence of object light loading the image to be recognized, a sequence of correlation peaks is diffracted, which respond to the image stored. The strength of the correlation peak is proportion to the similarity of image input and that stored. Relative to the conventional target recognition by couputer, the processing progress is parrelelling and time needed has nothing with the number of templates.
     In our dissertation, hologams are stored in doped LiNbO3. To solve the erasure problem of optical grating stored during the correlation process, we adopt the technology of thermal fixing. Combining the influence of dynamic range and the eficency of thermal fixing, we optimized all the relative parameters and obtain better diffraction efficiency. When the number of images stored as templates is very large, the hologram firstly stored needs a rather long exposure time during the sequential exposure recording. This leads serious light-induced scattering which does great harm to recognition. We introduce batch thermal fixing and study the infulence of inter-batch optical erasure time constant.
     For real-time recognition with ears of human being as the targets, we take thin crystal as the recording medium. According to the shfiting invariance of defocus volume holographic correlator, we realize the exact subsumption of the inputting real-time image. For the nonreal-time image, we take thick cryastal as the recording medium. Due to the large dymanic range, the number of template stored can be rather large. Without the considering of abberration of image, taking correlation coefficient match plate as the recognition algorithm, 1000 templates were recognized accurately and rapidly in the fourth chapter.
     For the practicality of volume holographic correlator, we complete a portable correlator system in Chapter 5. In this system, the reference light is convergent beam and reflecitve geometry is adopted. Removing reference light path, we package the laser and information light path and the dimension is about 350×200×70mm3.
     Furtherly, fractal/space multiplexing is put forward in the fifth chapter. To the voluem holographic correlator, it could improve the storage density and make use of the dynamic range more efficiencly. At last, taking Zn:Fe:Mn:LiNbO3 bar as the recording medium, we store hologarm in a few space with angular multiplexing withour information light path fixed. Thus, with the incidence of information light to be recognized, the parallel correlation with 7500 templates sotred in all the space is realized.
引文
1. 陈家璧, 苏显渝, 朱伟利, 孙雨南, 陶世荃. 光学信息技术原理及应用. 高等教育出版社, 2002:208-209
    2. 徐端颐. 高密度光盘数据存储. 清华大学出版社, 2003:2-3
    3. T. D. Milster. Horizons for Optical Data Storage. Optics and Photonics News. 2005, 16(3):2833-2839
    4. A.Sinha, G.Barbastathis, W.H.Liu and D.Psaltis. Imaging using volume holograms. Opt.Eng. 2004, 43:1959-1972
    5. H. Shin and M. Lee. Holographic angle multiplexing combined with peristrophic multiplexing in a photorefractive LiNbO3 crystal. Optics Communications. 2007, 269(2):299-303
    6. G. Burr, F. Mok and D. Psaltis. Angle and space multiplexed holographic storage using the 90-detree geometry. Opt.Comm. 1995, 117:49-55
    7. X. An, D. Psaltis and G. Burr. Thermal fixing of 10,000 holograms in Fe:LiNbO3. Appl.Opt. 1999, 38:386-393
    8. D. Wang and Y. Yang. A method of making a true color stereoscopic hologram Optics Communications. Optics Communication. 2006, 267(1):79-82
    9. 赵业权, 杨春辉, 徐悟生. In:Fe:LiNbO3晶体的全息存储性能的研究. 光学学报. 1999, 19(8):1070-1073
    10. A. Ashkin, G. D. Bord and J. M. dziedzie. Optically-induced refractive index inhomogeneities in LiNbO3. Appl.Phys.Lett. 1996, 9(1):72-74
    11. R. Ince, H. Yükselici and A. T. ?nce. Crystal diffraction grating in LiNbO3:Fe derived from interferometric volume holography. Optics and Lasers in Engineering. 2006, 44(6):509-519
    12. P. J. VanHeerden. Theory of optical information storage in solid. Appl.Opt. 1963, 2:393-395
    13. P. B. Berra, A. Ghafoor, P. Mitkas, S. Arcinkowski and M. Guizani. The impact of optics in data and knowledge base systems. IEEE Trans.Knowl.Data.Eng. 1989, 1:111-131
    14. D. Psaltis. High order associative memories and their optical implementations. Neural Networks. 1988, 1:149-163
    15. D. Psaltis. Holography in artificial neural networks. Nature. 1990, 343:325-330
    16. S. Wu and Q. Song. Reconfigurable interconnections using photorefractive holograms. Appl.Opt. 1990, 29(8):1118-1125
    17. W. C. Su and C. C. Su. Optical pattern interconnections using random phase encoding in volume holograms. Optics Communications. 2002, 213:259-265
    18. A. Kerbaschi, O. Momtahan, A. Adibi and B. Javidi. Optical correlation using gated localized holography. Opt.Eng. 2005, 44:085802(8)
    19. F. H. Mok, D. Psalts and G. Burr. Spatially- and angle-multiplexed holographic random access memory. SPIE. 1992, 1773:334-345
    20. G. Burr, S. Kobras and H. Coufal. Storage of 10,000 holograms in LiNbO3:Fe. Conference on Lasers and Electro-Optics(CLEO), Anaheim, CA. 1994
    21. I. McMichael, W. Christian, D. Pletcher, T. Y. Chang and J. H. Hong. Compact holographic storage demonstrator with rapid access. Appl.Opt. 1996, 35(14):2375-2379
    22. G. W. Burr, C. Jefferson, H. Coufal, M. Jurich, J. Hoffnagle, R. Macfarlane and R. Shelby. Volume holographic data storage at an area density of 250 gigepixeds/in. Opt.Lett. 2001, 26(7):444-446
    23. S. S. Orlov, W. Phillips, E. Bjornson, L. Hesselink and R. Okas. High data rate(10Gbit/sec) demonstration in holographic disk digital data storage system. Pacific Rim Conference On Lasers And Electro-Optics, CLEO-Technical Digest. 2002:70-70
    24. Y. Wan, S. Tao, D. Wang, W. Yuan, G. Liu, X. Ding, Z. Jiang and C. Liu. Holographic disk data storage at a high area density of 33.7bits/um2. Optical Data Storage Topical Meeting, Vancouver, Canada. 2003:11-14
    25. 谭小地, 撅米秀嘉. 同轴式光全息存储技术及其系统. 光学学报. 2006, 26(6):827-830
    26. Inphase Technologies. Inphase Technologies Introduces the World’s First Holographic Drive Prototype. 2005, www.inphase-tecb.com
    27. X. F. Meng, L. Z. Cai, M. Z. He, G. Y. Dong and X. X. Shen. Cross-talk free image encryption and watermarking by digital holography and random composition. Optics Communications. 2007, 269(1):47-52
    28. X. H. Zhen, W. S. Xu, C. Z. Zhao, L. C. Zhao and Y. H. Xu. Structure and photo-damage resistance of Li-rich LiNbO3 crystals co-doped with Zn2+/Er3+. Crystal Research Technology. 2002, 37(9):976-982
    29. D. Li, Y. B. Yan, Q. Z. Xue and G. F. Jin. Wavelet packet compression for volumeholographic image recognition. Optics Communications. 2003, 216:105-113 1998
    30. D. S. Zhu, J. J. Xu, H. J. Qiao, Y. L. Shi, F. Gao, W. Li, B. Fu, G. Q. Zhang and K. Zheng. Ultraviolet photorefractive effect in Mg-doped near-stoichiometric LiNbO3. Optics Communications. 2006, 266(2):582-585
    31. 谢敬辉, 张泽明, 周元林, 孙萍, 何庆生, 邬敏贤, 金国藩. Fe:LiNbO3全息图热定影及H+浓度的影响. 光子学报. 2003, 32(3):344-347
    32. H. T. Li, Z. J. Sun, S. J. Ye, W. Cai and L. C. Zhao. The influences of ZnO doping concentration on structure and photorefractive properties of Zn:Fe:LiNbO3 crystals grown by TSSG method. Journal of Physics and Chemistry of Solids. 2005, 66(6):990-993
    33. 王德龙, 韩尧. 生长超长LiNbO3晶体的温场设计. 人工晶体学报. 1994, 23:112-116
    34. R. S. Weis and T. K. Gaylord. Appl.Phys.A. 1985, 37:203-206
    35. G. I. Malovichko, V. G. Grachev, L. P. Yurchemko, V. Y. Proshko, E. P. Kokanyan, V. T. Grbrielyan. Improvement of LiNbO3 Microstructure by Crystal Growth with Postassium. Phys. Stat. Sol(a). 1992, 133:k29-k32
    36. 王忠敏. 铌酸锂晶体的发展简况. 人工晶体学报. 2002, 31(2):173-175
    37. K. Kitamura, Y. Furukawa, Y. Ji, M. Zgoik, C. Medrano, G. Montemezzani and P. Guenter. Photorefractive Effect in LiNbO3 Crystals Enhanced by Stoichiometry Control. J. Appl. Phys. 1997, 82:1006-1009
    38. S. C. Abrahams and P. Marsh. Defect Structure Dependence on Composition in Lithium Niobate. Acta Crystallorgr.Sect.B. 1986, 42: 61-65
    39. J. Blumel, E. Born and T. Metzger. Solid State NMR Study Supporting the Lithium Vacancy Defect Model in Congruent Lithium Niobate. J.Phys.Chem.Solids. 1994, 55:589-593
    40. S. Kojima. Composition Variation of Optical Phonon Damping in Lithium Niobate Crystals. Jpn.Appl.Phys. 1993, 32:4373-4378
    41. A. P. Wilkinson, A. K. Cheetham and R. H. Jarman. The Defect Structure of Congruently Melting Lithium Niobate. J.Appl.Phys. 1993, 74(5):3080-3086
    42. N. Zotov, H. Boysen, F. Frey, T. Metzger and E. Born. Substitution Models of Congruent LiNbO3 Investigated by X-ray and Neutron Powder Diffraction. J. Phys. Chem. Solids. 1994, 55:145-153
    43. O. F. Schirmer, O. Thiemann and M. Wohleche. Defects in LiNbO3-I. Experimental Aspects. J.Phys.Chem.Solids. 1991, 52(1):185-196
    44. J. C. Bi, B. Liu and W. Zheng. Study of photodamage of Mg:Er:LiNbO3 waveguide substrate. Pro.SPIE. 2005, 5636:400-404
    45. L. S. Shi, S. Q. Fang, W. S. Xu, B. Wang and Y. H. Xu. Growth and holographic storage properties of Mg:Mn:Fe:LiNbO3 crystals. Pro.SPIE. 2003, 5060:183-186
    46. Y. H. Xu, W. S. Xu, C. X. Liu and R. Wang. Preparation of a new type type of storage material Mn:Cu:LiNbO3. Pro.SPIE. 2002, 4930:406-410
    47. B. H. Kang, B. K. Rhee, G. T. Joo, S. K. Lee and K. S. Lim. Measurements of photovolataic constant and photoconductivity in Ce,Mn:LiNbO3 crystal. Optics Communications. 2006, 266(1):203-206
    48. Y. J. Guo, L. R. Liu, D. A. Liu, Z. F. Chai and R. Zhu. Effect of wavelength of sensitizing light on holographic storage properties in LiNbO3:Fe:Ni crystal. Optik. 2006, 117(9):431-436.
    49. D. R. Evans, J. L. Carns, S. A. Basun, M. A. Saleh and G. Cook. Understanding and eliminating photovoltaic induced instabilities in contra-directional two-beam coupling in photorefractive LiNbO3:Fe. Optical Materials. 2005, 27(11):1730-1732
    50. J. J. Amodei, D. L. Staebler and A. N. Stephaphens. Holographic Pattern Fixing in ElectroopticCrystals. Appl. Phys. Lett. 1971, 18(12):540-542
    51. W. Philliphs, J. J. Amodei and D. L. Staebler. Optical and Holographic Storage Properties of Transition Metal Doped Lithium Niobate. RCA Review. 1972, 33:94-109
    52. I. Oliveira, J. Frejlich, L. Arizmendi and M. Carrascosa. Self-stabilized holographic recording in reduced and oxidized lithium niobate crystals. Optics Communications. 2004, 229:371-380
    53. J. G. Zhong, J. Jin and Z. K. Wu. Measurement of Optically Induced Refractive-Index Damage of Lithium Niobate Doped with Different Concentrateion of MgO. 11th International Quantum Electronics Conference, New York, IEEE Catalog. No. 80, CH 1561-0, 1980:631
    54. T. R. Volk, V. I. Pryalkin and N. M. Rubinina. Optical-Damage-Resistant LiNbO3:Zn Crystal. Opt. Lett. 1990, 15(18):996-998
    55. Y. F. Kong, J. K. Wen and H. F. Wang. New Doped Lithium Niobate Crystal with High Resistance to Photorefraction-LiNbO3:In. Appl.Phys.Lett. 1995, 66(3):280-281
    56. S. Q. Li, S. G. Liu, Y. F. Kong, J. J. Xu and G. Y. Zhang. Enhanced photorefractive properties of LiNbO3 :Fe crystals by HfO2 codoping. Appl.Phys.Lett. 2006, 89:101-126
    57. S. Q. Li, S. G. Liu, Y. F. Kong, D. L. Deng, G. G. Gao, Y. B. Li, H. C. Gao, L. Zhang, Z.H. Hang, S. L. Chen and J. G. Xu. The optical damage resistance and absorption spectra of LiNbO3:Hf crystals. J. Phys.:Condens.Matter. 2006, 18:3527–3534
    58. 李树奇, 刘士国, 孔勇发, 阎文博, 刘宏德, 邓东灵, 高光宇, 李彦波, 高宏臣,许京军. 四价掺杂铌酸锂晶体抗光折变性能研究. 人工晶体学报. 2006, 35:474-477
    59. H. F. Wang, G. T. Shi and Z. K. Wu. Photovoltaic Effect in LiNbO3:Mg. Phys.Stat.Solidi. 1985, 89:k211-k214
    60. G. W. Burr, D. Psaltis. Effects of the oxidation state of LiNbO3:Fe on the diffraction efficiency of multiple holograms. Opt.Lett. 1996, 21(12):893-895
    61. F. D. Heiman, A. R. Tanguay and R. Hellwarth. Photorefractive effects and light-induced charge migration in barium titanate. J.Appl.Phys. 1980, 51(3):1297-1282
    62. N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin and V. L. Vinetskii. Holographic storage in electrooptic crystals. Ferroelectrics. 1979, 22(4): 949-953
    63. 石顺祥, 陈国夫, 赵卫, 刘继芳. 非线性光学. 西安电子科技大学出版社, 2003:323-335
    64. H. Kogelink. Coupled wave theory for thick holograms gratings. The Bell System Technical Journal. 1969, 48:2909-2946
    65. Z. Q. Zhang, Q. Yuan and S. Q. Tao. Optimization of diffraction performances of reflection holograms in photorefractive LiNbO3:Fe crystals. Proceedings of SPIE. 1998, 3554:20-25
    66. J. M. Heaton. Diffraction efficiency and angular selectivity of volume phase holograms recorded in photorefractive materials. Optica Acta. 1984, 31(8):885
    67. 孙骞. 光折变三维存储器中的若干问题的研究. 南开大学博士论文. 1997
    68. J. J. Amodei, D. L. Staebler, W. Stephens. Holographic Storage in Doped-Barium Sodium Niobate. Appl.Phys.Lett. 1971, 18:507-509
    69. D. L. Staebler, W. J. Burke, W. Phillips and J. J. Amodei. Multiple Storage and Erasure of Fixed Holograms in Fe-doped LiNbO3. Appl.Phys.Lett. 1975, 26:182-184
    70. J. Ma, T. Chang, J. Hong and R. Neurgaonkar. Electrical fixing of 1000 angle-multiplexing holograms in SBN. Opt.Lett. 1997, 22(14):1116-1118
    71. L. Hesselink, S. S. Oriov, A. Liu, A. Akella, D. Lande and R. R. Neurgaonkar. Photorefractive Materials for Nonvolatile Volume Holographic Data Storage. Science. 1998, 282:1089-1094
    72. K. Buse, A. Adibi, D. Psaltis. Non-volatile holographic storage in doubly doped lithium niobate crystals. Nature. 1998, 393:665-668
    73. D. Liu, L. Liu, Y. Liu, C. Zhou, L. Xu. Self-enhanced nonvolatile holographic storage in LiNbO3:Fe:Mn crystals. Appl.Phys.Lett. 2000, 77:2964-2966
    74. Y. Liu, L. Liu. Theoretical investigation of nonvolatile holographic storage in doubly doped lithium niobate crystals. J.Opt.Soc.Am.B. 2002, 19:2413-2422
    75. 陶世荃. 光全息存储. 北京工业大学出版社. 1998
    76. 金国藩, 张培馄. 超高密度光存储技术的现状和今后的发展. 中国计量学院学报. 2001, 9(2):6-12
    77. F. H. Mok, M. C. Tackitt and H. M. Stoll. Storage of 500 High Resolution Holograms in a LiNb03 Crystal. Opt.Lett. 1991, 16(8):605-608
    78. D. Psaltis and G. W. Burr. Holographic Data Storage. Computer. 1998, 2:52-60
    79. P. Dittrich, G. Montemezzani and P. Gunter. Tunable optical filter for wavelength division multiplexing using dynamic interband photorefractive gratings. Optics Communications. 2002, 214:363-370
    80. L. Hesselink, S. S. Orlov and M. C. Bashaw.. Holographic Data Storage Systems. Proceedings of the IEEE. 2004, 92(8):1231-1280
    81. 韦丹. 磁信息存储技术的回顾与展望. 物理. 2004, 9:646-651
    82. P. P. Banerjee, M. R. Chatterjee, N. Kukhtarev and T. Kukhtareva. Volume holographic recording and readout for 90-deg geometry. Opt.Eng. 2004, 43:2053-2060
    83. R. Qin and D. Wei. Thermodynamic Behavior of a Nano-Sized Magnetic Grain near the Superparamagnetic Limit. MICE Trans.on Electronics. 2003, E86-C(9):1825-1829
    84. M. Mansuripur and G. Sincerbox. Principles and Techniques of Optical Data Storage. Proceedings of theIEEE. 1997, 85(11):1780-1796
    85. H. Coufal and G. W. Burr. Optical Data Storage. International Trends in Optics. 2002
    86. H. Shin and M. Lee. Holographic angle multiplexing combined with peristrophic multiplexing in a photorefractive LiNbO3 crystal. Optics Communications. 2007, 269(2):299-303
    87. C. C. Sun, Y. N. Lin, S. P. Yeh, W. C. Su and Y. Ouyang. High longitudinal selectivity of shifting multiplexing in volume holograms. Optics and Laser Technology. 2002, 34(7):523-526
    88. M. Bunsen, A. Okamoto and Y. Takayama. Hologram multiplexing with photorefractive beam-fanning speckle. Optics Communications. 2004, 235(1):41-47
    89. F. H. Mok and H. Fai. Angle-multiplexing storage of 5000 holograms in lithium niobate. Optics Letters. 1993, 18:915-917
    90. E. C. Maniloff and K. M . Johnson. Maximized photorefractive holographic storage. J.Appl.Phys. 1991, 70(9):4072-4075
    91. Y. Taketomi, J. E. Ford, H. Sasaki, J. Ma, Y. Fainman and S. H. Lee. Incremental recording for photorefractive hologram multiplexing. Opt.Lett. 1991,16(22): 1774-1777
    92. J. J. Amodei and D. L. Stabler. Holographic pattern fixing in electro-optic crystals. Appl.Phys.Lett. 1971,18:540-541
    93. K. Buse, I. Nee, M. Müller and E. Kr?tzig. Development of thermally fixed holograms in photorefractive lithium-niobate crystals without light. Optical Materials. 2001, 18(1):17-18
    94. I. Oliveira, J. Frejlich, L. Arizmendi and M. Carrascosal. Nearly 100% diffraction efficiency fixed holograms in oxidized iron-doped LiNbO3 crystal using self-stabilized recording technique. Optics Communications. 2005, 247:39-48
    95. G. W. Burr, J. Ashley, H. Coufal, R. K. Grygier, J. A. Hoffnagle, C. M. Jefferson, B. Marcus. Modulation coding for pixelmatched holographic data storage. Opt.Lett. 1997, 22: 639–641
    96. J. F. Heanue, M. C. Bashaw, L. Hesselink. Channel codes for digital hologra-phic data storage. J.Opt.Soc.Am.A. 1995, 12:2432–2439
    97. A. Yariv, S. S. Orlov and G. A. Rakuljic. Holographic storage dynamics in lithium niobage: theory and experiment. Opt.Soc.Am.B. 1996, 13:2513-2523
    98. G. W. Burr, H. Coufal, R. K. Grygier, J. A. Hoffnagle and C. M.Jefferson. Noise reduction of page-oriented data storage by inverse filtering during recording. Opt.Lett. 1998, 23:289–291
    99. D. Psaltis, D. Brady and K. Wagner. Adaptive optical networks using photorefractive crystals. Appl.Opt. 1988, 27(9):1756-1757
    100. C. Gu, J. Hong, H. Li, D. Psaltis and P. Yeh. Dynamics of grating formation in photovoltaic media. J.Appl.Phys. 1991, 69:1167-1172
    101. D. L. Staebler. In Holographic Recording Materials, H.M.Smith, ed. 1977, Vol.20 of Topics in Applied Physics(Spring-Verlag, Berlin):101-105
    102. A. Glass, D. V. Linde and T. J. Negram. High-voltage bulk photovoltaic effect and the photorefractive process in LiNbO3. Appl.Phys.Lett. 1974, 25:233-235
    103. E. Kr?tzig and R. Orlowski. Light induced charge transport in doped LiNbO3 and LiTaO3 Ferroelectrics. 1980, 27:241-244
    104. W. Phillips and D. L. Staebler. Control of the Fe2+ concentration in iron-doped lithiumniobate. J.Electron.Mat. 1974, 3:601-605
    105. I. Nee, M. Muller, K. Buse and E. Kratzig E. Kratzig. Role of iron in lithium-niobate crystals for the dark-storage time of holograms. J.Appl.Phys. 2000, 88:4282-4287
    106. Y. Yang, I. Bee, K. Buse and D. Psaltis. Ionic and electronic dark decay of holograms in LiNbO3:Fe crystals. Appl.Phys.Lett. 2001, 78:4076-4078
    107. 江竹青. 光折变晶体中高密度全息存储热固定技术的研究. 北京工业大学博士论文. 2003
    108. F. H. Mok, G. W. Burr and D. Psaltis. System metric for holographic memory systems. Opt.Lett. 1996, 21(12):896-905
    109. A. B. Vander-Lugt. Signal detection by coplex spatial filtering. IEEE Trans.Inf.Theory. 1964, IT-10(2):139-145
    110. C. S. Weaver and J. W. Goodman. A technique for optically convolving two functions. Appl.Opt. 1966, 5(7):1248-1249
    111. J. Goodman. Introduction to Fourier Optics. McGraw-Hill. 1968:171-182
    112. S. Shin and B. Javidi. Three-dimensional object recognition by use of a photorefractive volume holographic processor. Opt.Lett. 2001, 26(15):1161-1163
    113. A. Heifetz, J. T. Shen, J. K. Lee, R. Tripathi and M. S. Shahriar. Translation-invariant object recognition system using an optical correlator and a super-parallel holographic random access memory. Opt.Eng. 2006, 45:201-205
    114. M. P. Bernal, G. W. Burr, H. Coufal and M. Quintanilla. Balancing interpixel cross talk and detector noise to optimize area density in holographic storage systems. Appl.Opt. 1998, 37:5377-5385.
    115. M. Levene, G. J. Steckman and D. Psaltis. A method to control the shift invariance of opticas. App Opt. 1999, 38:394-397
    116. 张海军. 人耳识别关键技术研究. 北京北京科技大学博士论文. 2006
    117. A. Nelleri, U. Gopinathan, J. Joseph and K. Singh. Wavelet based three-dimensional object recognition using single off-axis digital fresnel hologram. Proc.SPIE. 2005, 5827:30-37
    118. S. Jutamulia, G. Mu, H. Zhai and F. Song. Use of laser diode in joint transform correlator. Opt.Eng. 2004, 43:1751-1758
    119. C. O. Yang, L. Cao, Q. He, Y. Liao, M. Wu and G. Jin. Sidelobe suppression in volume holographic optical correlators by use of speckle modulation. Opt.Lett. 2003, 28:1972-1975
    120. M. Sshahriar, R. Tripathi, M. Kleinschmit, J. Donoghue, W. Weathers, M. Huq and J. T. Shen. Superparallel holographic correlator for ultrafast database searches. Opt.Lett. 2003, 28:525-529
    121. X. Wang, L. Liu, A. Yan, Z. Luan and Z. Hu. Influence of light intensity on crossed-beam photorefractive gratings in doubly doped LiNbO3 crystals. Proc.SPIE. 2006, 6314:15-22
    122. D. Liu, L. Liu, C. Zhou, L. Ren and G. Li. Nonvolatile holograms in LiNbO3:Fe:Cu by use of the bleaching effect. Appl.Opt. 2002, 41:6809-6814
    123. O. Momtahan and A. Adibi. Global optimization of sensitivity and dynamic range of two-center holographic recording. J.Opt.Soc.Am.B. 2003, 20(3):449-461
    124. A. Adibi, K. Buse and D. Psaltis. Effect of annealing in two-center holographic recording. J.Opt.Soc.Am.B. 2001, 18(5):584-601
    125. G. Corradi, H. Sothe, J. M. Spacth and K. Polgar. Mn2+ defects in LiNbO3: an Electron Nuclear Double Resonsence investigation of Mn2+ site and the local disorder. J.Phys: condens.Matter. 1990, 2:6603-6610
    126. C. Prieto and C. Zaldo. Determination of the lattice site of Fe in photorefractive LiNbO3. Solid State Commun. 1992, 83:819-821
    127. A. Adibi, K. Buse and D. Psaltis. Multiplexing holograms in LiNbO3:Fe:Mn crystals. Opt.Lett. 1999, 24:652-660
    128. S. Maniloff and K. M. Johnson. Effect of scattering on the dynamics of holographic recording and erasure in photorefractive lithium niobate. J.Appl.Phys. 1993, 73:541-548

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700