单链高分子的相行为及其在通道内输运动力学的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高分子稀溶液体系的热力学和动力学性质与单链高分子结构的复杂性有密切的联系。本文利用计算机模拟方法研究单链体系的相行为受支化结构与序列结构的影响及其在非平衡体系下的输运过程,有助于加深对高分子单链体系性质的结构依赖性认识,扩展其在单分子功能材料以及纳米器件领域的应用。主要内容包括:
     1、研究了单链星型高分子的相转变随星型分子结构的变化规律。提出了采用形状因子来表征Liquid-Crystal(LC)和Coil-Globule(CG)这两个转变的方法。相比于比热曲线,该方法可以更加精确而有效地确定这两个转变。发现随着星型分子臂数的增加,LC转变温度的标度规律与线性高分子相比没有发生显著的变化,而CG转变逐渐向液固转变移动,其原因是由于单体密度的增大使得星型高分子在塌缩时需要更低的温度来使其吸引作用克服体积排除效应。
     2、研究了单链树枝型高分子的相转变随支化度的变化规律。研究发现不仅支化度对相转变过程中的两个转变温度有显著的影响,在支化度相同的情况下转变温度也受结构规整度的不同而发生着改变。随着支化度的增加,CG转变逐渐减弱最终无法观察到,而液固转变则逐渐向高温方向移动。其原因在于高支化度使得高分子不需要更低的温度即可得到致密的塌缩态。两种支化规整度不同的高分子,即完美树形高分子和随机超支化高分子,在支化度相同的情况下,前者具有更高的液固转变温度。这是因为规整的完美树形高分子具有更接近于完美晶体的结构,进而降低了结晶条件使得在更高的结晶温度下出现转变。
     3、研究了单链类蛋白质共聚物(Protein-like copolymer,PLC)在水环境中的塌缩结晶行为。利用HP和AB两种PLC模型研究了随着嵌段长度m变化的相转变机理。研究表明存在两种机理,即疏水聚集效应与相分离效应,共同支配着PLC的塌缩结晶过程。随着m的增加,HP-PLC的低能态构象从管形结构向蝌蚪结构演化,而AB-PLC则从多层结构向两个分开球变化。当m很小时,LC转变消失,而在m较大时,AB-PLC呈现出两个一级转变分别对应于两组分相分离转变和LC转变,而HP-PLC只呈现出一个一级相转变。在AB-PLC塌缩结晶过程中,存在一个核壳结构的中间态。
     4、研究了交变场下带电大分子在溶剂存在下的棘轮狭缝内的输运过程。带电大分子呈现出复杂的净移动行为,其不仅依赖于狭缝形状,还受到外电场和电荷分布的影响。特定的序列条件下发现了负向净移动现象。该负移动现象起源于构象相关的几个因素,即:熵棘轮效应,构象反转效应和耗散阻力效应。由于该负移动和序列结构与交变场频率有关,可以为设计新型纳米分离器件提供思路。
The thermodynamics and kinetics properties of the dilute polymer solution arestrongly related with the structural complexity of a single polymer chain. We performa computer simulation to study the influence of phase behavior from the branchedstructure and the linear sequence of a single polymer chain as well as its transportprocess under nonequilibrium condition. It may provide a deeper understanding on thedependence of the structure on the property of a single polymer chain, which mayextend its application in single molecular functional material and the fabrication ofnano-scale devices. The research content of this thesis include:
     1. The phase transition behaviors of a single star polymer are studied. We proposeusing the shape factor to locate the Liquid-Crystal (LC) transition and Coil-Globule(CG) transition, which show a higher accuracy compared with the specific heatfunction. It is found that with the increase of the star arm, the scaling behavior of theLC transitions has no significant variation compared with linear polymers, however,the CG transitions shift toward the LC transition. The main reason for that is thelarger density of star polymer need a lower temperature for the attractive force toovercome the excluded volume effect.
     2. The phase transition behaviors of a single dendritic polymer are studied. It isfound that not only the DB acts great influence on the phase transition temperature,but the structural regularity can also change the transition behaviors. With the increaseof DB, the CG transition becomes weaker and finally disappears for highly branchedpolymer, and the LC transition temperatures shift toward higher direction. Two typesof dendritic polymer, i.e. a dendrimer and a hyperbranched polymer, with differentbranching regularity show different LC transition temperature, even they have thesame DB and the former one shows a higher temperature. A higher DB indicates thata lower temperature is no need for the polymer to collapse and to freeze due to itsdenser structure and a more regular structure further reduces the freezing conditionbecause the structure is already more close to a perfect crystal.
     3. The phase behaviors of a single Protein-like Copolymer (PLC) are studied. Usingtwo PLC models, i.e. HP and AB model, we studied the phase transition mechanismwith the variation of the block length m, It is found that two mechanism, i.e. hydrophobic aggregation effect and phase separation effect dominate the collapsingand freezing process of a single PLC chain. With the increase of m, the lowest energyconformations for HP-PLC evolve from a tube-like aggregation to a tadpole structure,while for AB-PLC, it changes from a multilayered structure to two separated spheres.When m is very small, the LC transition disappeared. When m is larger, AB-PLCsshow two first order transition corresponding to the phase separation transitionbetween the two components and LC transition, while, the HP-PLC only show onefirst order transition. During the freezing process of AB-PLC, a special intermediatestate with a core-shell structure, is found.
     4. The net mobility of a charged macromolecule in a ratchet slit with explicitsolvents under AC electric field is studied. It is found that, the chargedmacromolecule shows complex net mobility depending not only on the structure ofthe ratchet slit, but also on the external electric field and charge sequence. Purelynegative mobility is discovered for certain charge sequence condition. This negativemobility originates from many conformation related factors, i.e. the entropic ratcheteffect, the conformation inversion effect and the dissipative effect. Due to the relationbetween the mobility and charge sequence and the frequency of the AC electric field,these mechanisms can provide new way to design novel nano-scale separationdevices.
引文
[1]. D. Yan, C. Gao, and H. Frey, Hyperbranched polymers: synthesis, properties,and applications2011: Wiley Hoboken, NJ.
    [2]. M. Rubenstein and R. Colby, Polymer Physics,2003, Oxford Univ. Press:New York.
    [3]. H. Staudinger, über Polymerisation. Berichte der deutschen chemischenGesellschaft (A and B Series),1920.53(6),1073-1085.
    [4]. W. Kuhn, über die gestalt fadenf rmiger moleküle in l sungen. Colloid&Polymer Science,1934.68(1),2-15.
    [5]. P.J. Flory, Thermodynamics of high polymer solutions. The Journal ofChemical Physics,1942.10,51.
    [6]. M.L. Huggins, Solutions of long chain compounds. The Journal of ChemicalPhysics,1941.9(5),440-440.
    [7]. P.J. Flory, Principles of polymer chemistry1953: Cornell University Press.
    [8]. J. Isaacson and T. Lubensky, Flory exponents for generalized polymerproblems. Journal de Physique Lettres,1980.41(19),469-471.
    [9]. P. De Gennes, Collapse of a polymer chain in poor solvents. Journal dePhysique Lettres,1975.36(3),55-57.
    [10]. A.R. Khokhlov and P.G. Khalatur, Protein-like copolymers: computersimulation. Physica A,1998.249(1–4),253-261.
    [11]. A.R. Khokhlov and P.G. Khalatur, Conformation-Dependent Sequence Design(Engineering) of AB Copolymers. Physical Review Letters,1999.82(17),3456-3459.
    [12]. O. Altintas and C. Barner-Kowollik, Single Chain Folding of SyntheticPolymers by Covalent and Non-Covalent Interactions: Current Status andFuture Perspectives. Macromolecular Rapid Communications,2012.33(11),953.
    [13]. J. Du and R.K. O'Reilly, Anisotropic particles with patchy, multicompartmentand Janus architectures: preparation and application. Chemical SocietyReviews,2011.40(5),2402-2416.
    [14]. R. Malik, C.K. Hall, and J. Genzer, Protein-Like Copolymers (PLCs) asCompatibilizers for Homopolymer Blends. Macromolecules,2010.43(11),5149-5157.
    [15]. J.S. Haghpanah, et al., Artificial Protein Block Copolymers Blocks ComprisingTwo Distinct Self-Assembling Domains. ChemBioChem,2009.10(17),2733-2735.
    [16]. V.S. Pande, A.Y. Grosberg, and T. Tanaka, Heteropolymer freezing and design:Towards physical models of protein folding. Reviews of Modern Physics,2000.72(1),259-314.
    [17]. V.I. Lozinsky, et al., Synthesis and Studies ofN-Vinylcaprolactam/N-Vinylimidazole Copolymers that Exhibit the“Proteinlike” Behavior in Aqueous Media. Macromolecules,2003.36(19),7308-7323.
    [18]. R.M. Holmes and D.R.M. Williams, Single Chain Asymmetric BlockCopolymers in Poor Solvents. Candidates for Patchy Colloids.Macromolecules,2011.44(15),6172-6181.
    [19]. J. Zhang, Z.-Y. Lu, and Z.-Y. Sun, A possible route to fabricate patchynanoparticles via self-assembly of a multiblock copolymer chain in one step.Soft Matter,2011.7(21),9944-9950.
    [20]. A.K. Dasmahapatra, H. Nanavati, and G. Kumaraswamy, Pathway tocopolymer collapse in dilute solution: Uniform versus random distribution ofcomonomers. The Journal of Chemical Physics,2007.127(23),234901-7.
    [21]. H.S. Ashbaugh, Tuning the Globular Assembly of Hydrophobic/HydrophilicHeteropolymer Sequences. The Journal of Physical Chemistry B,2009.113(43),14043-14046.
    [22]. P. Englebienne, et al., Directional interactions in semiflexible single-chainpolymer folding. Soft Matter,2012.8(29),7610-7616.
    [23]. I.A. Haidar Ahmad, D.A. Striegel, and A.M. Striegel, How does sequencelength heterogeneity affect the dilute solution conformation of copolymers?Polymer,2011.52(5),1268-1277.
    [24]. Y.K. Jhon, et al., Effect of Comonomer Sequence Distribution on theAdsorption of Random Copolymers onto Impenetrable Flat Surfaces.Macromolecules,2009.42(7),2843-2853.
    [25]. A. Kolinski and P. Madziar, Collapse transitions in protein-like latticepolymers: The effect of sequence patterns. Biopolymers,1997.42(5),537-548.
    [26]. Y.A. Kriksin, P.G. Khalatur, and A.R. Khokhlov, Reconstruction ofProtein-Like Globular Structure for Random and Designed Copolymers.Macromolecular Theory and Simulations,2002.11(2),213-221.
    [27]. B.-C. Lee, R.N. Zuckermann, and K.A. Dill, Folding a Nonbiological Polymerinto a Compact Multihelical Structure. Journal of the American ChemicalSociety,2005.127(31),10999-11009.
    [28]. H.K. Murnen, et al., Impact of Hydrophobic Sequence Patterning on theCoil-to-Globule Transition of Protein-like Polymers. Macromolecules,2012.45(12),5229-5236.
    [29]. E.D. Nelson, L.F. Teneyck, and J.N. Onuchic, Symmetry and KineticOptimization of Proteinlike Heteropolymers. Physical Review Letters,1997.79(18),3534-3537.
    [30]. J.M.P.v.d. Oever, et al., Coil-globule transition for regular, random, andspecially designed copolymers: Monte Carlo simulation and self-consistentfield theory. Physical Review E,2002.65(4),041708.
    [31]. E. Orlandini and T. Garel, Collapse transitions of a periodic hydrophilichydrophobic chain. European Physical Journal B,1998.6(1),101-110.
    [32]. D.F. Parsons and D.R.M. Williams, Single Chains of Block Copolymers inPoor Solvents: Handshake, Spiral, and Lamellar Globules Formed byGeometric Frustration. Physical Review Letters,2007.99(22),228302.
    [33]. T.T. Pham, B. Dünweg, and J.R. Prakash, Collapse Dynamics of Copolymersin a Poor Solvent: Influence of Hydrodynamic Interactions and ChainSequence. Macromolecules,2010.43(23),10084-10095.
    [34]. J.J. Semler and J. Genzer, Design of random copolymers with statisticallycontrolled monomer sequence distributions via Monte Carlo simulations. TheJournal of Chemical Physics,2006.125(1),014902.
    [35]. J.J. Semler, et al., Facile Method of Controlling Monomer SequenceDistributions in Random Copolymers. Advanced Materials,2007.19(19),2877-2883.
    [36]. E.I. Shakhnovich and A.M. Gutin, Engineering of stable and fast-foldingsequences of model proteins. Proceedings of the National Academy ofSciences of the United States of America,1993.90(15),7195-7199.
    [37]. Siu, G. Zhang, and C. Wu, Effect of Comonomer Distribution on theCoil-to-Globule Transition of a Single AB Copolymer Chain in Dilute Solution.Macromolecules,2002.35(7),2723-2727.
    [38]. S. Sun, et al., Designing amino acid sequences to fold with good hydrophobiccores. Protein Engineering,1995.8(12),1205-1213.
    [39]. P.E. Theodorakis and N.G. Fytas, Microphase separation in linear multiblockcopolymers under poor solvent conditions. Soft Matter,2011.7(3),1038-1044.
    [40]. T. Wüst and D.P. Landau, Versatile Approach to Access the Low TemperatureThermodynamics of Lattice Polymers and Proteins. Physical Review Letters,2009.102(17),178101.
    [41]. K.A. Dill, et al., The protein folding problem: when will it be solved? Currentopinion in biotechnology,2007.17(3),342-346.
    [42]. C. Levinthal, Are there pathways for protein folding. The Journal of ChemicalPhysics,1968.65(1),44-45.
    [43]. J.L. Cornette, et al., Hydrophobicity scales and computational techniques fordetecting amphipathic structures in proteins. Journal of Molecular Biology,1987.195(3),659-685.
    [44]. J. Janin, Surface and inside volumes in globular proteins. Nature,1979.277(5696),491-492.
    [45]. G. Rose, et al., Hydrophobicity of amino acid residues in globular proteins.Science,1985.229(4716),834-838.
    [46]. R. Wolfenden, et al., Affinities of amino acid side chains for solvent water.Biochemistry,1981.20(4),849-855.
    [47]. K.A. Dill, Dominant forces in protein folding. Biochemistry,1990.29(31),7133-7155.
    [48]. H.S. Chan and K.A. Dill, Comparing folding codes for proteins and polymers.Proteins,1996.24(3),335-344.
    [49]. T. Hoque, M. Chetty, and A. Sattar, Extended HP model for protein structureprediction. Journal of Computational Biology,2009.16(1),85-103.
    [50]. F.H. Stillinger, T. Head-Gordon, and C.L. Hirshfeld, Toy model for proteinfolding. Physical Review E,1993.48(2),1469-1477.
    [51]. C. Clementi, Coarse-grained models of protein folding: toy models orpredictive tools? Current opinion in biotechnology,2008.18(1),10-15.
    [52]. V. Tozzini, Coarse-grained models for proteins. Current opinion inbiotechnology,2005.15(2),144-150.
    [53]. N. Gō and H. Abe, Noninteracting local-structure model of folding andunfolding transition in globular proteins. I. Formulation. Biopolymers,1981.20(5),991-1011.
    [54]. A. Kolinski and J. Skolnick, Reduced models of proteins and their applications.Polymer,2004.45(2),511-524.
    [55]. R.D. Astumian, Making molecules into motors. Scientific American,2001.285(1),44-51.
    [56]. R.P. Feynman, R.B. Leighton, and M. Sands, Feynman lectures on physics. vol.1: Mainly mechanics, radiation and heat1963: Addison-Wesley.
    [57]. J. Rousselet, et al., Directional motion of brownian particles induced by aperiodic asymmetric potential. Nature,1994.370(6489),446-8.
    [58]. L. Gorre-Talini, J. Spatz, and P. Silberzan, Dielectrophoretic ratchets. Chaos,1998.8(3),650-656.
    [59]. C.-F. Chou, et al., Sorting by diffusion: An asymmetric obstacle course forcontinuous molecular separation. Proceedings of the National Academy ofSciences of the United States of America,1999.96(24),13762-13765.
    [60]. C. Kettner, et al., Drift ratchet. Physical Review E,2000.61(1),312.
    [61]. D. Van Der Meer, et al., Spontaneous ratchet effect in a granular gas. PhysicalReview Letters,2004.92(18),184301.
    [62]. L.R. Huang, et al., Tilted Brownian Ratchet for DNA Analysis. AnalyticalChemistry,2003.75(24),6963-6967.
    [63]. D. Erta, Lateral Separation of Macromolecules and Polyelectrolytes inMicrolithographic Arrays. Physical Review Letters,1998.80(7),1548.
    [64]. Z. Li and G. Drazer, Separation of Suspended Particles by Arrays of Obstaclesin Microfluidic Devices. Physical Review Letters,2007.98(5),050602.
    [65]. L.R. Huang, et al., Role of molecular size in ratchet fractionation. PhysicalReview Letters,2002.89(17).
    [66]. R. Eichhorn, et al., Moving backward noisily. Chaos,2005.15(2),026113-026113-9.
    [67]. A. Ros, et al., Brownian motion-Absolute negative particle mobility. Nature,2005.436(7053),928-928.
    [68]. P. Reimann, Brownian motors: noisy transport far from equilibrium. PhysicsReports,2002.361(2-4),57-265.
    [69]. P. Reimann and P. H nggi, Introduction to the physics of Brownian motors.Applied Physics A: Materials Science&Processing,2002.75(2),169-178.
    [70]. G.W. Slater, H.L. Guo, and G.I. Nixon, Bidirectional Transport ofPolyelectrolytes Using Self-Modulating Entropic Ratchets. Physical ReviewLetters,1997.78(6),1170-1173.
    [71]. M.T. Downton, et al., Single-polymer Brownian motor: A simulation study.Physical Review E,2006.73(1),011909.
    [72]. R. Ashton, C. Padala, and R.S. Kane, Microfluidic separation of DNA. Currentopinion in biotechnology,2003.14(5),497-504.
    [73]. H.G. Craighead, Nanoelectromechanical systems. Science,2000.290(5496),1532-1535.
    [74]. J.C.T. Eijkel and A. Berg, Nanofluidics: what is it and what can we expectfrom it? Microfluidics and Nanofluidics,2005.1(3),249-267.
    [75]. D.G. Hert, C.P. Fredlake, and A.E. Barron, DNA sequencing by microchipelectrophoresis using mixtures of high-and low-molar masspoly(N,N-dimethylacrylamide) matrices. Electrophoresis,2008.29(23),4663-4668.
    [76]. K.D. Dorfman, DNA electrophoresis in microfabricated devices. Reviews ofModern Physics,2010.82(4),2903-2947.
    [77]. M. Napoli, J.C.T. Eijkel, and S. Pennathur, Nanofluidic technology forbiomolecule applications: a critical review. Lab on a Chip,2010.10(8),957-985.
    [78]. R.W. Hammond, et al., Differential transport of DNA by a rectified Brownianmotion device. Electrophoresis,2000.21(1),74-80.
    [79]. J. Bader, et al., A Brownian-ratchet DNA pump with applications tosingle-nucleotide polymorphism genotyping. Applied Physics A: MaterialsScience&Processing,2002.75(2),275-278.
    [80]. J. Han and H.G. Craighead, Separation of long DNA molecules in amicrofabricated entropic trap array. Science,2000.288(5468),1026-1029.
    [81]. F. Tessier and G.W. Slater, Strategies for the separation of polyelectrolytesbased on non-linear dynamics and entropic ratchets in a simple microfluidicdevice. Applied Physics A: Materials Science&Processing,2002.75(2),285-291.
    [82]. S.I. Denisov, E.S. Denisova, and P. Hanggi, Ratchet transport for a chain ofinteracting charged particles. Physical Review E,2005.71(1).
    [83]. G.W. Slater, et al., Theory of DNA electrophoresis: A look at some currentchallenges. Electrophoresis,2000.21(18),3873-3887.
    [84]. G.W. Slater, et al., Recent developments in DNA electrophoretic separations.Electrophoresis,1998.19(10),1525-1541.
    [85]. S. Matthias and F. Muller, Asymmetric pores in a silicon membrane acting asmassively parallel brownian ratchets. Nature,2003.424(6944),53-57.
    [86]. M. Streek, et al., Mechanisms of DNA separation in entropic trap arrays: aBrownian dynamics simulation. Journal of Biotechnology,2004.112(1–2),79-89.
    [87]. S.W.P. Turner, M. Cabodi, and H.G. Craighead, Confinement-InducedEntropic Recoil of Single DNA Molecules in a Nanofluidic Structure. PhysicalReview Letters,2002.88(12),128103.
    [88]. G.B. Salieb-Beugelaar, et al., Electrophoretic separation of DNA in gels andnanostructures. Lab on a Chip,2009.9(17),2508-2523.
    [89]. M. Kenward and G.W. Slater, Polymer deformation in Brownian ratchets:Theory and molecular dynamics simulations. Physical Review E,2008.78(5),051806.
    [90]. P. H nggi and F. Marchesoni, Artificial Brownian motors: Controllingtransport on the nanoscale. Reviews of Modern Physics,2009.81(1),387.
    [91]. M. Chinappi, et al., Molecular dynamics simulation of ratchet motion in anasymmetric nanochannel. Physical Review Letters,2006.97(14).
    [92]. F. Wang and D.P. Landau, Determining the density of states for classicalstatistical models: A random walk algorithm to produce a flat histogram.Physical Review E,2001.64(5),056101.
    [93]. F. Wang and D.P. Landau, Efficient, Multiple-Range Random Walk Algorithmto Calculate the Density of States. Physical Review Letters,2001.86(10),2050-2053.
    [94]. R.E. Belardinelli and V.D. Pereyra, Wang-Landau algorithm: A theoreticalanalysis of the saturation of the error. The Journal of Chemical Physics,2007.127(18),184105-7.
    [95]. R.E. Belardinelli, S. Manzi, and V.D. Pereyra, Analysis of the convergence ofthe1∕t and Wang-Landau algorithms in the calculation of multidimensionalintegrals. Physical Review E,2008.78(6),067701.
    [96]. Z. Wang and X. He, Phase transition of a single star polymer: A Wang-Landausampling study. The Journal of Chemical Physics,2011.135(9),094902-10.
    [97]. D. Antypov and J.A. Elliott, Wang Landau Simulation ofPolymer Nanoparticle Mixtures. Macromolecules,2008.41(19),7243-7250.
    [98]. P.N. Vorontsov-Velyaminov, N.A. Volkov, and A.A. Yurchenko, Entropicsampling of simple polymer models within Wang–Landau algorithm. Journalof Physics A: Mathematical and General,2004.37(5),1573.
    [99]. M.P. Taylor, W. Paul, and K. Binder, Phase transitions of a single polymerchain: A Wang--Landau simulation study. The Journal of Chemical Physics,2009.131(11),114907-9.
    [100]. M.P. Taylor, W. Paul, and K. Binder, All-or-none proteinlike folding transitionof a flexible homopolymer chain. Physical Review E,2009.79(5),050801.
    [101]. M.P. Taylor, W. Paul, and K. Binder, Two-state protein-like folding of ahomopolymer chain. Physics Procedia,2010.4(0),151-160.
    [102]. K. Binder, et al., Simulation of Phase Transitions of Single Polymer Chains:Recent Advances. Macromolecular Symposia,2006.237(1),128-138.
    [103]. J. Luettmer-Strathmann, et al., Transitions of tethered polymer chains: Asimulation study with the bond fluctuation lattice model. The Journal ofChemical Physics,2008.128(6),064903-15.
    [104]. W. Paul, et al., New Results on the Collapse Transition(s) of FlexibleHomopolymers. Macromolecular Symposia,2007.252(1),1-11.
    [105]. W. Paul, et al., Phase transitions in a single polymer chain: A micro-canonicalanalysis of Wang–Landau simulations. Computer Physics Communications,2008.179(1–3),17-20.
    [106]. W. Paul, et al., Unexpectedly normal phase behavior of single homopolymerchains. Physical Review E,2007.75(6),060801.
    [107]. F. Rampf, K. Binder, and W. Paul, The phase diagram of a single polymerchain: New insights from a new simulation method. Journal of PolymerScience Part B: Polymer Physics,2006.44(18),2542-2555.
    [108]. F. Rampf, W. Paul, and K. Binder, On the first-order collapse transition of athree-dimensional, flexible homopolymer chain model. Europhysics Letters,2005.70(5),628.
    [109]. P.E. Theodorakis, W. Paul, and K. Binder, Interplay between Chain Collapseand Microphase Separation in Bottle-Brush Polymers with Two Types of SideChains. Macromolecules,2010.43(11),5137-5148.
    [110]. A. Cunha Netto, et al., Wang-Landau sampling in three-dimensional polymers.Brazilian journal of physics,2006.36(3A),619-622.
    [111]. F. Lou and P. Clote, Thermodynamics of RNA structures by Wang–Landausampling. Bioinformatics,2010.26(12), i278-i286.
    [112]. M. Radhakrishna, S. Sharma, and S.K. Kumar, Enhanced Wang Landausampling of adsorbed protein conformations. The Journal of Chemical Physics,2012.136(11),114114-6.
    [113]. G. Brown, et al., Convergence for the Wang-Landau density of states. PhysicalReview E,2011.84(6),065702.
    [114]. H.K. Lee, Y. Okabe, and D.P. Landau, Convergence and refinement of theWang–Landau algorithm. Computer Physics Communications,2006.175(1),36-40.
    [115]. A. Troster and C. Dellago, Wang-Landau sampling with self-adaptive range.Physical Review E,2005.71(6Pt2),066705.
    [116]. C. Zhou and R.N. Bhatt, Understanding and improving the Wang-Landaualgorithm. Physical Review E,2005.72(2),025701.
    [117]. A.D. Swetnam and M.P. Allen, Improving the Wang–Landau algorithm forpolymers and proteins. Journal of Computational Chemistry,2011.32(5),816-821.
    [118]. L. Zhan, A parallel implementation of the Wang–Landau algorithm. ComputerPhysics Communications,2008.179(5),339-344.
    [119]. J. Yin and D.P. Landau, Massively parallel Wang–Landau sampling onmultiple GPUs. Computer Physics Communications,2012.183(8),1568-1573.
    [120]. A.Y. Grosberg, A.R. Khokhlov, and Y.A. Atanov, Statistical physics ofmacromolecules1994: AIP press New York.
    [121]. C. Gao and D. Yan, Hyperbranched polymers: from synthesis to applications.Progress in Polymer Science,2004.29(3),183-275.
    [122]. A. Babel and S.A. Jenekhe, High Electron Mobility in Ladder PolymerField-Effect Transistors. Journal of the American Chemical Society,2003.125(45),13656-13657.
    [123]. J.H. Lee, et al., Damping Behavior of Entangled Comb Polymers: Experiment.Macromolecules,2009.42(4),1392-1399.
    [124]. H. Kudo, et al., Synthesis of Cyclic Polymers: Ring-Expansion Reaction ofCyclic S-Dithioester with Thiiranes. Macromolecules,2005.38(14),5964-5969.
    [125]. C.K. Ober, et al., Research in Macromolecular Science: Challenges andOpportunities for the Next Decade. Macromolecules,2008.42(2),465-471.
    [126]. M.K. Mishra and M.K.M.S. Kobayashi, Star Hyperbranched Polymers1999:Marcel Dekker.
    [127]. H. Yin, S.-W. Kang, and Y.H. Bae, Polymersome Formation from AB2Type3-Miktoarm Star Copolymers. Macromolecules,2009.42(19),7456-7464.
    [128]. G. Gorodyska, et al., Reconformation and Metallization of UnimolecularMicelles in Controlled Environment. Nano Letters,2003.3(3),365-368.
    [129]. Z. Li, M.A. Hillmyer, and T.P. Lodge, Laterally Nanostructured Vesicles,Polygonal Bilayer Sheets, and Segmented Wormlike Micelles. Nano Letters,2006.6(6),1245-1249.
    [130]. Z. Li, et al., Multicompartment Micelles from ABC Miktoarm Stars in Water.Science,2004.306(5693),98-101.
    [131]. J.H. Lee and L.A. Archer, Stress Relaxation of Star/Linear Polymer Blends.Macromolecules,2002.35(17),6687-6696.
    [132]. K.B. Keys, F.M. Andreopoulos, and N.A. Peppas, Poly(ethylene glycol) StarPolymer Hydrogels. Macromolecules,1998.31(23),8149-8156.
    [133]. S. Huissmann, R. Blaak, and C.N. Likos, Star Polymers in Solvents of VaryingQuality. Macromolecules,2009.42(7),2806-2816.
    [134]. K. Charmuszko and A. Sikorski, The structure of star-branched copolymers. AMonte Carlo study. Journal of Non-Crystalline Solids,2009.355(24–27),1408-1413.
    [135]. F.L. Verso, et al., Collapse of Telechelic Star Polymers to WatermelonStructures. Physical Review Letters,2006.96(18),187802.
    [136]. A. Sikorski, Properties of Star-Branched Polymer Chains. Application of theReplica Exchange Monte Carlo Method. Macromolecules,2002.35(18),7132-7137.
    [137]. P. Romiszowski and A. Sikorski, Temperature dependance of properties ofstar-branched polymers: A computer simulation study. The Journal ofChemical Physics,1998.109(7),2912-2920.
    [138]. L.A. Molina and J.J. Freire, Monte Carlo Simulation of Many-Chain StarPolymer Solutions. Macromolecules,1998.32(2),499-505.
    [139]. I.M. Lifshitz, A.Y. Grosberg, and A.R. Khokhlov, Some problems of thestatistical physics of polymer chains with volume interaction. Reviews ofModern Physics,1978.50(3),683-713.
    [140]. D.T. Seaton, T. Wüst, and D.P. Landau, Collapse transitions in a flexiblehomopolymer chain: Application of the Wang-Landau algorithm. PhysicalReview E,2010.81(1),011802.
    [141]. T. Vogel, M. Bachmann, and W. Janke, Freezing and collapse of flexiblepolymers on regular lattices in three dimensions. Physical Review E,2007.76(6),061803.
    [142]. D.F. Parsons and D.R.M. Williams, Globule transitions of a singlehomopolymer: A Wang-Landau Monte Carlo study. Physical Review E,2006.74(4),041804.
    [143]. D.F. Parsons and D.R.M. Williams, An off-lattice Wang-Landau study of thecoil-globule and melting transitions of a flexible homopolymer. The Journal ofChemical Physics,2006.124(22),221103-4.
    [144]. C. Junghans, M. Bachmann, and W. Janke, Microcanonical Analyses ofPeptide Aggregation Processes. Physical Review Letters,2006.97(21),218103.
    [145]. S. Neidle, Principles of nucleic acid structure2007: Academic Press.
    [146]. C. Branden and J. Tooze, Introduction to protein structure. Vol.2.1991:Garland New York.
    [147]. K. Binder, Monte Carlo and molecular dynamics simulations in polymerscience1995: Oxford University Press, USA.
    [148]. M. Müller, J.P. Wittmer, and M.E. Cates, Topological effects in ring polymers:A computer simulation study. Physical Review E,1996.53(5),5063-5074.
    [149]. J. Suzuki, et al., Dimension of ring polymers in bulk studied by Monte-Carlosimulation and self-consistent theory. The Journal of Chemical Physics,2009.131(14),144902-6.
    [150]. A. Di Cecca and J.J. Freire, Monte Carlo Simulation of Star Polymer Systemswith the Bond Fluctuation Model. Macromolecules,2002.35(7),2851-2858.
    [151]. L. Wang and X. He, Investigation of ABn (n=2,4) type hyperbranchedpolymerization with cyclization and steric factors: Influences of monomerconcentration, reactivity, and substitution effect. Journal of Polymer SciencePart A: Polymer Chemistry,2009.47(2),523-533.
    [152]. L. Wang and X. He, Conformation of nonideal hyperbranched polymer in ABn(n=2,4) type polymerization. Journal of Polymer Science Part B: PolymerPhysics,2010.48(5),610-616.
    [153]. W. Humphrey, A. Dalke, and K. Schulten, VMD: Visual molecular dynamics.Journal of Molecular Graphics,1996.14(1),33-38.
    [154]. D.H.E. Gross, Microcanonical thermodynamics: Phase transitions in "Small"systems2001: World Scientific Publishing Company Incorporated.
    [155]. M. Watzlawek, C.N. Likos, and H. L wen, Phase Diagram of Star PolymerSolutions. Physical Review Letters,1999.82(26),5289-5292.
    [156]. J. Roovers, P.M. Toporowski, and J. Douglas, Thermodynamic Properties ofDilute and Semidilute Solutions of Regular Star Polymers. Macromolecules,1995.28(21),7064-7070.
    [157]. V. Dimitris, et al., Multiarm star polymers dynamics. Journal of Physics:Condensed Matter,2001.13(41), R855.
    [158]. W. Burchard, Static and dynamic light scattering from branched polymers andbiopolymers, in Light Scattering from Polymers1983, Springer Berlin/Heidelberg. p.1-124.
    [159]. W. Burchard, M. Schmidt, and W.H. Stockmayer, Influence of HydrodynamicPreaveraging on Quasi-Elastic Scattering from Flexible Linear andStar-Branched Macromolecules. Macromolecules,1980.13(3),580-587.
    [160]. W. Burchard, Solution Properties of Branched Macromolecules, in BranchedPolymers II, J. Roovers, Editor1999, Springer Berlin/Heidelberg. p.113~194.
    [161]. W. Burchard, M. Schmidt, and W.H. Stockmayer, Information onPolydispersity and Branching from Combined Quasi-Elastic and IntergratedScattering. Macromolecules,1980.13(5),1265-1272.
    [162]. Y.H. Kim, Hyperbranched polymers10years after. Journal of PolymerScience Part A: Polymer Chemistry,1998.36(11),1685-1698.
    [163]. B. Voit, Hyperbranched polymers—All problems solved after15years ofresearch? Journal of Polymer Science Part A: Polymer Chemistry,2005.43(13),2679-2699.
    [164]. K. Inoue, Functional dendrimers, hyperbranched and star polymers. Progressin Polymer Science,2000.25(4),453-571.
    [165]. R.A.T.M. van Benthem, Novel hyperbranched resins for coating applications.Progress in Organic Coatings,2000.40(1–4),203-214.
    [166]. L. Boogh, B. Pettersson, and J.-A.E. M nson, Dendritic hyperbranchedpolymers as tougheners for epoxy resins. Polymer,1999.40(9),2249-2261.
    [167]. H. Wei, et al., Thermo-sensitive polymeric micelles based onpoly(N-isopropylacrylamide) as drug carriers. Progress in Polymer Science,2009.34(9),893-910.
    [168]. Y. Shen, et al., Gold Nanoparticles Coated with a ThermosensitiveHyperbranched Polyelectrolyte: Towards Smart Temperature and pHNanosensors. Angewandte Chemie International Edition,2008.47(12),2227-2230.
    [169]. R. Duncan, The dawning era of polymer therapeutics. Nature Reviews DrugDiscovery,2003.2(5),347-360.
    [170]. E.R. Gillies and J.M.J. Fréchet, Dendrimers and dendritic polymers in drugdelivery. Drug Discovery Today,2005.10(1),35-43.
    [171]. J. Khandare and T. Minko, Polymer–drug conjugates: Progress in polymericprodrugs. Progress in Polymer Science,2006.31(4),359-397.
    [172]. C.C. Lee, et al., Designing dendrimers for biological applications. NatureBiotechnology,2005.23(12),1517-1526.
    [173]. Y. Zhou, et al., Self-Assembly of Hyperbranched Polymers and Its BiomedicalApplications. Advanced Materials,2010.22(41),4567-4590.
    [174]. Y. Zhou and D. Yan, Supramolecular self-assembly of amphiphilichyperbranched polymers at all scales and dimensions: progress, characteristicsand perspectives. Chemical Communications,2009(10),1172-1188.
    [175]. B.I. Voit and A. Lederer, Hyperbranched and Highly Branched PolymerArchitectures—Synthetic Strategies and Major Characterization Aspects.Chemical Reviews,2009.109(11),5924-5973.
    [176]. I. Carmesin and K. Kremer, The bond fluctuation method: a new effectivealgorithm for the dynamics of polymers in all spatial dimensions.Macromolecules,1988.21(9),2819-2823.
    [177]. P.-Y. Lai and K. Binder, Structure and dynamics of polymer brushes near theTheta point: A Monte Carlo simulation. The Journal of Chemical Physics,1992.97(1),586-595.
    [178]. Y. Rouault and O.V. Borisov, Comb-Branched Polymers: Monte CarloSimulation and Scaling. Macromolecules,1996.29(7),2605-2611.
    [179]. L. Wang, X. He, and Y. Chen, Diffusion-limited hyperbranched polymers withsubstitution effect. The Journal of Chemical Physics,2011.134(10),104901-9.
    [180]. C.J. Hawker, R. Lee, and J.M.J. Frechet, One-step synthesis of hyperbrancheddendritic polyesters. Journal of the American Chemical Society,1991.113(12),4583-4588.
    [181]. O.N. Vassiliev and M.W. Matsen, Fluctuation effects in block copolymermelts. The Journal of Chemical Physics,2003.118(16),7700-7713.
    [182]. K.C. Daoulas and M. Muller, Single chain in mean field simulations:Quasi-instantaneous field approximation and quantitative comparison withMonte Carlo simulations. The Journal of Chemical Physics,2006.125(18),184904-18.
    [183]. D.Q. Pike, et al., Theoretically informed coarse grain simulations of polymericsystems. The Journal of Chemical Physics,2009.131(8),084903-10.
    [184]. V. Mishra, G.H. Fredrickson, and E.J. Kramer, SCFT Simulations of anOrder–Order Transition in Thin Films of Diblock and Triblock Copolymers.Macromolecules,2011.44(13),5473-5480.
    [185]. W. Kong, et al., Highly Symmetric Patchy Multicompartment Nanoparticlesfrom the Self-Assembly of ABC Linear Terpolymers in C-Selective Solvents.Langmuir,2012.28(32),11714-11724.
    [186]. Y. Mai and A. Eisenberg, Self-assembly of block copolymers. ChemicalSociety Reviews,2012.41(18),5969-5985.
    [187]. P.S. Chinthamanipeta, Q. Lou, and D.A. Shipp, Periodic TitaniaNanostructures Using Block Copolymer Templates. ACS Nano,2010.5(1),450-456.
    [188]. R.E. Belardinelli and V.D. Pereyra, Fast algorithm to calculate density of states.Physical Review E,2007.75(4),046701.
    [189]. G.H. Fredrickson and E. Helfand, Fluctuation effects in the theory ofmicrophase separation in block copolymers. The Journal of Chemical Physics,1987.87(1),697-705.
    [190]. F.S. Bates, et al., Fluctuations, conformational asymmetry and blockcopolymer phase behaviour. Faraday Discussions,1994.98(0),7-18.
    [191]. A.K. Khandpur, et al., Polyisoprene-Polystyrene Diblock Copolymer PhaseDiagram near the Order-Disorder Transition. Macromolecules,1995.28(26),8796-8806.
    [192]. M. Ohgushi and A. Wada,‘Molten-globule state’: a compact form of globularproteins with mobile side-chains. FEBS Letters,1983.164(1),21-24.
    [193]. Y. Kuroda, S.-i. Kidokoro, and A. Wada, Thermodynamic characterization ofcytochrome c at low pH: Observation of the molten globule state and of thecold denaturation process. Journal of Molecular Biology,1992.223(4),1139-1153.
    [194]. A.R. Dinner, et al., Understanding protein folding via free-energy surfacesfrom theory and experiment. Trends in Biochemical Sciences,2000.25(7),331-339.
    [195]. J.S. Bader, et al., DNA transport by a micromachined Brownian ratchet device.Proceedings of the National Academy of Sciences of the United States ofAmerica,1999.96(23),13165-13169.
    [196]. J. Fu, et al., A patterned anisotropic nanofluidic sieving structure forcontinuous-flow separation of DNA and proteins. Nature Nanotechnology,2007.2(2),121-128.
    [197]. S.J. Marrink, et al., The MARTINI force field: Coarse grained model forbiomolecular simulations. Journal of Physical Chemistry B,2007.111(27),7812-7824.
    [198]. H.J.C. Berendsen, et al., Molecular dynamics with coupling to an external bath.The Journal of Chemical Physics,1984.81(8),3684-3690.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700