脂肪族超支化聚醚改性形状记忆环氧及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
形状记忆环氧(Shape Memory Epoxy,SMEP)是一种新兴智能材料,由于具有较好形状记忆性能、力学性能以及广阔应用前景而受到人们的重视,增韧问题在形状记忆环氧的研究和使用中是非常重要的。超支化聚合物(Hyperbranched Polymer,HBP)是近年来另一个新兴的研究热点,用HBP增韧的环氧体系可以在韧性提高同时,体系强度、热性能等只受轻微影响,且改性剂与基体间的反应性易调节。针对以上背景,本文提出了“脂肪族超支化聚醚改性形状记忆环氧及其性能研究”这一课题,合成了超支化聚合物“聚3-乙基-3-羟甲基氧杂环丁烷(HBPO)”及其不同支化度和端基接枝比例的产物,并用其增韧SMEP,研究了HBPO含量、固化工艺、支化度、端基改性比例等因素对SMEP体系性能的影响和原因,分析了固化机理,给出了体系增韧机制。
     首先合成了高支化度的HBPO,采用1H-NMR、定量13C-NMR、GPC等方法对其化学结构、支化度、分子量、分散系数等进行表征之后,用HBPO增韧形状记忆环氧-酸酐(SMEP-AA)体系。通过变温红外方法在线监测SMEP-AA体系的固化过程,给出了HBPO/SMEP-AA体系的固化机理。然后,确定出HBPO/SMEP-AA体系的两种固化工艺,研究了HBPO含量和固化工艺对体系力学性能、玻璃化转变温度和形状记忆性能的影响,并从宏微观角度分析了性能变化的原因。研究发现,10%-HBPO-1-GX体系具有最佳的增韧效果,断裂伸长率、断裂功和拉伸强度与未改性体系相比分别提高了70%、147%、40%,增幅明显,Tg稍有下降,HBPO的加入对SMEP-AA体系形状固定率和形状回复率没有影响,形状回复速率在合适的HBPO含量下可以得到提高,解决了SMEP材料在使用中高韧性与高强度及良好耐热性能难共存的技术难题。改性体系均相,反应程度提高,自由体积尺寸和含量减小。根据微观结构分析,提出了该体系的增韧机理,很好地解释其增强增韧的原因以及与其他HBP增韧环氧体系的差别,认为在改性体系中形成了以HBPO为中心的三维交错区域,该区域在受力时发生的强迫变形和相关变化是体系增强增韧的主因。
     合成了不同支化度的HBPO,进行了结构、支化度和分子量表征后,用其增韧SMEP-AA体系。首先探讨了支化度降低对HBPO/SMEP-AA体系固化机理的影响,接着研究了支化度变化对体系性能的影响。结果表明随着HBPO支化度的降低,改性体系的韧性、强度和模量都呈下降趋势,Tg值略微降低,体系形状固定率和形状回复率不受影响,但形状回复温度有所下降,回复过程的温度跨度增加,回复速率减小。通过微观结构分析得知,随着HBPO支化度的降低,HBPO/SMEP-AA体系相容性下降,反应程度略有减小,自由体积尺寸和含量增加,界面相互作用减弱,体系中难以形成有效的三维交错区域,导致HBPO/SMEP-AA体系性能下降。
     合成了端羧基不同接枝比例的HBPOS,进行了结构、端羧基接枝比例和分子量表征后,用其增韧SMEP-AA体系。首先探讨了端羧基接枝对HBPOS/SMEP-AA体系固化机理的影响,接着研究了HBPOS接枝比例对体系性能的影响。结果表明随着HBPOS端羧基接枝比例的增加,改性体系的韧性和强度均呈下降趋势,Tg值先增后减,体系的形状固定率和形状回复率不受影响,但回复过程的温度跨度明显增加,形状回复速率减小。微观结构分析的结果表明,随着HBPOS端羧基接枝比例的增加,HBPOS/SMEP-AA体系相容性逐渐变差,反应程度略有提高,自由体积尺寸和含量增加,界面相互作用减弱,体系断面微观结构发生改变,由于存在较大位阻而难以形成三维交错区域,使得HBPOS/SMEP-AA体系性能下降。
     使用HBPO增韧形状记忆环氧-胺(SMEP-AM)体系,通过变温红外在线监测固化过程,给出了HBPO/SMEP-AM的固化机理。研究了HBPO/SMEP-AM体系性能随HBPO含量的变化规律,结果表明改性体系的韧性和强度都随着HBPO含量的增大而先增后减,加入5wt.%-HBPO体系具有最佳的增韧效果,其断裂伸长率、断裂功、拉伸强度和Tg值与未改性体系相比分别提高了38%、77%、29%和3℃,HBPO的加入对SMEP-AM体系的形状固定率和形状回复率没有影响,形状回复速率在合适的HBPO含量下得到提高。微观结构研究发现,HBPO/SMEP-AM不是均相体系,HBPO的加入使体系反应程度明显增加,孔穴增韧和基体剪切变形抽丝增韧是HBPO/SMEP-AM体系的增韧机理。
Shape memory epoxy (SMEP), a new type of smart material attracts more attentions in recent years because of its outstanding shape memory performance and excellent mechanical property as well as broad application prospects. Toughening research is important for the basic study and practical application of SMEP. Hyperbranched polymer (HBP) is another recent emerging research hotspot. HBP modified epoxy can be effectively toughened along with slight impact on the strength and thermal properties. Moreover, the reactivity between HBP and epoxy matrix can easily be adjusted. In this thesis, hyperbranched polymer “poly-3-ethyl-3-(hydroxymethyl)oxetane (HBPO)” with different degree of branching and HBPO with different proportion of carboxyl grafting were synthesized and used for toughening SMEP. The effects of HBPO content, curing method, degree of branching and proportion of carboxyl grafting on properties of SMEP systems were investigated. The curing mechanism and toughening mechanism were studied.
     First, HBPO with high degree of branching was synthesized and characterized by1H-NMR, quantitative13C-NMR and GPC methods. The curing mechanism of HBPO/SMEP-AA system was studied through variable-temperature FT-IR method. Two curing methods were chosen for preparation of HBPO/SMEP-AA systems. Then, the effects of HBPO content and curing method on mechanical property, Tg and shape memory property of SMEP system were investigated. The system10%-HBPO-1-GX prepared with the second curing method the best toughening performance with elongation at break, work of fracture and tensile strength increased by70%,147%and40%respectively. Tg value slightly decreased compared with the unmodified SMEP system. Incorporation of HBPO had no effect on SMEP’s shape retention ratio and shape recovery ratio, whereas improved the shape recovery rate. Thus, good toughness, high strength and good heat resistance were concomitantly achieved. It was revealed that HBPO/SMEP-AA was a homogeneous system with higher extent of reaction, smaller free volume size and lower free volume content. Microstructural analysis revealed a toughening mechanism of HBPO/SMEP-AA system which well explained the observed simultaneous improved toughness and strength, and the difference between HBPO/SMEP-AA and other HBP modified epoxy systems. With this toughening mechanism, three-dimensional staggered fields centered in HBPO formed in the modified system.
     A series of HBPO with different degree of branching were synthesized and characterized. The effects of HBPO’s degree of branching on curing mechanism and properties of HBPO/SMEP-AA system were investigated. The results showed that, with lower HBPO’s degree of branching, toughness, strength and modulus of the modified system all reduced, Tg slightly decreased, shape retention ratio and shape recovery ratio unaffected, but the shape recovery temperature lowered, temperature range during recovery process became larger, and the recovery rate reduced. The microstructural analysis revealed, with lower HBPO’s degree of branching for HBPO/SMEP-AA system, poorer compatibility, slightly reduced extent of reaction, larger free volume size, higher free volume content and weaker interfacial interaction. Three-dimensional staggered fields were hard to form and to function effectively in HBPO/SMEP-AA system modified by HBPO with low degree of branching, and that’s what made properties reduced.
     A series of HBPOS with different proportion of carboxyl grafting were synthesized and characterized in detail. The effects of carboxyl grafting on curing of HBPOS/SMEP-AA and HBPOS’s proportion of carboxyl grafting on properties of this system were investigated. The results showed that, with increased HBPOS’s proportion of carboxyl grafting, toughness and strength of the modified system both reduced, Tg value first increased and then slightly decreased, shape retention ratio and shape recovery ratio of modified system unaffected, but temperature range during recovery process larger, and the shape recovery rate reduced. The microstructure analysis revealed that, with increased HBPOS’s proportion of carboxyl grafting, HBPOS/SMEP-AA system got poorer compatibility, slightly improved extent of reaction, larger free volume size, higher free volume content, weaker interfacial interaction and a gradually changed fractograph. Three-dimensional staggered fields were hard to form in HBPOS/SMEP-AA system because of intense steric effect of HBPOS.
     HBPO was used for toughening SMEP-AM system. The curing mechanism of HBPO/SMEP-AM system was studied through variable-temperature FT-IR. Then the effect of HBPO content on properties of HBPO/SMEP-AM system was investigated. The results showed that, with increased HBPO content, toughness and strength of the modified system first increased and then decreased. The modified system with5wt.%HBPO content achieved the best toughening performance, with elongation at break, work of fracture, tensile strength and Tg value increased by38%,77%,29%and3℃respectively. The shape retention ratio and shape recovery ratio of modified system were unaffected, and the shape recovery rate of SMEP could be improved at an appropriate HBPO content. The microstructural analysis revealed that HBPO/SMEP-AM was a heterogeneous system and its extent of reaction was highly improved after incorporation of HBPO. The toughening mechanism of HBPO/SMEP-AM system was found to be cavitation and matrix shear deformation.
引文
[1]严冰.智能型形状记忆聚氨酯的合成与性能研究[D].长沙:湖南大学硕士学位论文.2003:2
    [2] Dorotheyev E A, Dotsenko V S, Tirozzi B. Statistical Memory Model forPolymer-Chain Shapes[J]. International Journal of Modern Physics.1993,7(13):2509-2527
    [3] Hayashi S, Kondo S, Kapadia P. Room-Temperature-Functional Shape-MemoryPolymers[J]. Plastics Engineering.1995,51(2):29-31
    [4] Buckley C P, Prisacariu C, Caraculacu A. Novel Triol-CrosslinkedPolyurethanes and Their Thermorheological Characterization as Shape-MemoryMaterials[J]. Polymer.2007,48:1388-1396
    [5] Chun B C, Cho T K, Chung Y C. Enhanced Mechanical and Shape MemoryProperties of Polyurethane Block Copolymers Chain-Extended by EthyleneDiamine[J]. European Polymer Journal.2006,42:3367-3373
    [6] Xu J, Shi W, Pang W. Synthesis and Shape Memory Effects of Si–O–SiCross-Linked Hybrid Polyurethanes[J]. Polymer.2006,47:457-465
    [7] Yang Z, Hu J, Liu Y, et al. The Study of Crosslinked Shape MemoryPolyurethanes[J]. Materials Chemistry and Physics.2006,98:368-372
    [8] Khonakdar H A, Jafari S H, Rasouli Sorour, et al. Investigation and Modeling ofTemperature Dependence Recovery Behavior of Shape-Memory CrosslinkedPolyethylene[J]. Macromolecular Theory and Simulations.2007,16:43-52
    [9] Rezanejad S, Kokabi M. Shape Memory and Mechanical Properties ofCross-linked Polyethylene/Clay Nanocomposites[J]. European Polymer Journal.2007,43:2856-2865
    [10] Thiebaud F, Zeghmati B, Charmoillaux J F, et al. Smart Material ThermalCharacterization: Ni-Ti Shape Memory Alloy Embedded in a Resin EpoxyMatrix[C]//SPIE.1996,2779:535-540
    [11] Ju D Y, Shimamoto A. Damping Property of Epoxy Matrix Composite Beamswith Embedded Shape Memory Alloy Fibers[J]. Journal of Intelligent MaterialSystems and Structures.1999,10(7):514-520
    [12] Francis W, Lake M, Hinkle J, et al. Development of an EMC Self-lockingLinear Actuator for Deployable Optics[C]//AIAA.2002-2364
    [13] Hazelton C S, Gall K R, Abrahamson E R, et al. Development of a PrototypeElastic Memory Composite STEM for Large Space Structures[C]//AIAA2003-1977
    [14] Schultz M R, Hulse M J, Keller P N. Neutrally Stable Composite TapeSprings[C]//AIAA.2006-1810
    [15] Campbell D, Maji A. Deployment Precision and Mechanics of Elastic MemoryComposites[C]//AIAA.2003-1495
    [16] Campbell D, Lake M S, Mallick K. A Study of the Bending Mechanics ofElastic Memory Composites[C]//AIAA.2004-1636
    [17] Lake M S, Munshi N A, Tupper M L, et al. Application of Elastic MemoryComposite Materials[C]//AIAA.2001-4602
    [18] Arzberger S C, Tupper M L, Lake M S, et al. Elastic Memory Composites(EMC) for Deployable Industrial and Commercial Applications[C]//SPIE.2005,5762:35-47
    [19] Cadogan D P, Scarborough S E, Lin J K, Shape Memory CompositeDevelopment for Use in Gossamer Space Inflatable Structures[C]//AIAA.2002-1372
    [20] Xie T, Rousseau I A. Facile Tailoring of Thermal Transition Temperatures ofEpoxy Shape Memory Polymers[J]. Polymer.2009,50:1852-1856
    [21] Liu Y, Han C, Tan H, et al. Thermal, Mechanical and Shape MemoryProperties of Shape Memory Epoxy Resin[J]. Materials Science andEngineering A.2010,527:2510-2514
    [22] Leng J, Wu X, Liu Y. Effect of a Linear Monomer on the ThermomechanicalProperties of Epoxy Shape-Memory Polymer. Smart Materials and Structures.2009,18:1-6
    [23]赖学平.形状记忆环氧树脂的制备及性能研究[D].哈尔滨:哈尔滨工业大学硕士论文.2007:951-54
    [24] Liu Y, Han C, Tan H, et al. Organic-Montmorillonite Modified Shape MemoryEpoxy Composite[J]. Polymers for Advanced Technologies.2011,22:2017-2021
    [25] Han C, Liu Y, Tan H. Preparation and Investigation on Properties of ShapeMemory Epoxy Modified by Hyperbranched Polyester[C]//Advanced MaterialsResearch.2011,335-336:851-855
    [26] Tan H, Sun H, Liu Y. Effect of Clay Modification on the Morphological,Mechanical and Thermal Properties of Epoxy/Polypropylene/MontmorilloniteShape Memory Materials[C]//SPIE.2012,8409:84091Z
    [27]徐社中编译.形状记忆树脂.国外塑料.1990,8(2):27-33
    [28] Ratna D, Karger-Kocsis J. Recent Advances in Shape Memory Polymers andComposites: a Review[J]. Journal of Materials Science.2008,43:254-269
    [29] Nguyen T D, Yakacki C M, Brahmbhatt P D, et al. Modeling the RelaxationMechanism of Amorphous Shape Memory Polymers[J]. Advanced Materials.2010,22:3411-3423
    [30] Liu Y, Gall K, Dunn M L, et al. Thermomechanics of Shape Memory Polymers:Uniaxial Experiments and Constitutive Modeling[J]. International Journal ofPlasticity.2006,22:279-313
    [31] Qi H J, Nguyen T D, Castro F, et al. Finite Deformation Thermo-MechanicalBehavior of Thermally Induced Shape Memory Polymers[J]. Journal of theMechanics and Physics of Solids.2008,56:1730-1751
    [32] Chen Y, Lagoudas D C. A Constitutive Theory for Shape Memory Polymers.Part I-Large Deformations[J]. Journal of the Mechanics and Physics of Solids.2008,56:1752-1765
    [33] Nguyen T D, Qi H J, Castro F, et al. A Thermoviscoelastic Model forAmorphous Shape Memory Polymers: Incorporating Structural and StressRelaxation[J]. Journal of the Mechanics and Physics of Solids.2008,56:2792-2814
    [34] Diani J, Liu Y, Gall K. Finite Strain3D Thermoviscoelastic Constitutive Modelfor Shape Memory Polymers[J]. Polymer Engineering and Science.2006,46:486-492
    [35] Sun L, Huang W M. Mechanisms of the Multi-Shape Memory Effect andTemperature Memory Effect in Shape Memory Polymers[J]. Soft Matter.2010,6:4403-4406
    [36] Yu K, Xie T, Leng J, et al. Mechanisms of Multi-Shape Memory Effects andAssociated Energy Release in Shape Memory Polymers[J]. Soft Matter.2012,8:5687-5694
    [37] Feldkamp D M, Rousseau I A. Effect of Chemical Composition on theDeformability of Shape-Memory Epoxies[J]. Macromolecular Materials andEngineering.2011,296,1128-1141
    [38] Castro F, Westbrook K K, Hermiller J, et al. Time and Temperature DependentRecovery of Epoxy-Based Shape Memory Polymers. Journal of EngineeringMaterials and Technology.2011,133:1-9
    [39] Fabrizio Q, Loredana S, Anna S E. Shape Memory Epoxy Foams for SpaceApplications. Materials Letters.2012,69:20-23
    [40] Liu C, Qin H, Mather P T. Review of Progress in Shape-Memory Polymers[J].Journal of Materials Chemistry.2007,17:1543-1558
    [41] Feldkamp D M, Rousseau I A. Effect of the Deformation Temperature on theShape-Memory Behavior of Epoxy Networks[J]. Macromolecular Materials andEngineering.2010,295:726-734
    [42] Leonardi A B, Fasce L A, Zucchi I A, et al. Shape Memory Epoxies Based onNetworks with Chemical and Physical Crosslinks. European Polymer Journal.2011,47:362-369
    [43] Wei K, Zhu G, Tang Y, et al. Thermomechanical Properties of Shape-MemoryHydro-Epoxy Resin. Smart Materials and Structures.2012,21:1-8
    [44]魏堃,朱光明.热固性环氧树脂形状记忆效应研究[J].中国胶粘剂.2011,20(2):26-28
    [45] Rousseau I A, Xie T. Shape Memory Epoxy: Composition, Structure,Properties and Shape Memory Performances. Journal of Materials Chemistry.2010,20:3431-3441
    [46] Kim Y H. Highly Branched Polymers[J]. Advanced Materials.1992,4(11):764-766
    [47] Kim Y H, Webster O W. Hyperbranched Polyphenylenes[J]. Macromolecules.1992,25:5561-5572
    [48]谭惠民,罗运军.超支化聚合物[M].化学工业出版社.2005:5
    [49] Hawker C J, Lee R, Frechet J M J. One-step Synthesis of HyperbranchedDendritic Polyesters[J]. Journal of American Chemical Society.1991,113(12):4586
    [50] Gao C, Yan D. Hyperbranched Polymers: from Synthesis to Applications[J].Progress in Polymer Science.2004,29:187
    [51] Kienle R H, Hovey A G. The Polyhydric Alcohol-Polybasic Acid Reaction. I.Glycerol-Phthalic Anhydride[J]. Journal of American Chemical Society.1929,51:509-519
    [52] Kienle R H, van der Meulen P A, Petke F E. The Polyhydric Alcohol-PolybasicAcid Reaction. III. Further Studies of the Glycerol-Phthalic AnhydrideReaction[J]. Journal of American Chemical Society.1939,61:2258-2268
    [53] Kienle R H, van der Meulen P A, Petke F E. The Polyhydric Alcohol-PolybasicAcid Reaction. IV. Glyceryl Phthalate from Phthalic Acid[J]. Journal ofAmerican Chemical Society.1939,61:2268-2271
    [54] Flory P J. Molecular Size Distribution in Three Dimensional Polymers. I.Gelation[J]. Journal of American Chemical Society.1941,63(11):3083-3090
    [55] Flory P J. Molecular Size Distribution in Three Dimensional Polymers. II.Trifunctional Branching Units[J]. Journal of American Chemical Society.1941,63(11):3091-3096
    [56] Flory P J. Molecular Size Distribution in Three Dimensional Polymers. III.Tetrafunctional Branching Units[J]. Journal of American Chemical Society.1941,63(11):3096-3100
    [57] Flory P J, Refiner J. Statistical Mechanics of Cross-linked Polymer Networks I.Rubberlike Elasticity[J]. Journal of Chemical Physics.1943,11(11):512-520.
    [58] Flory P J. Molecular Size Distribution in Three Dimensional Polymers. IV.Branched Polymers Containing A-R-Bf-1Type Units[J]. Journal of AmericanChemical Society.1952,74:2718-2723
    [59] Tomalia D A, Baker H, Dewald J, et al. A New Class ofPolymers-Starburst-Dendritic Macromolecules[J]. Polymer Journal.1985,17:117
    [60] Newkome G R, Yao Z, Baker G R, et al. Micelles.1. Cascade Molecules: ANew Approach to Micelles-A [27]-arborol[J]. Journal of Organic Chemistry.1985,50:2003-2004
    [61] Kim Y H, Webster O W. Hyperbranched Polyphenylenes[J]. PolymericPreprints.1988,29(2):310-311
    [62] Cai L, Lu Y. Synthesis and Characterization of a Thermotropic LiquidCrystalline Hyperbranched Polyester[J]. Polymer International.2009,58:640-647
    [63] Ikladious N, Mansour S, Rozik N. New Aliphatic Hyperbranched PolyesterPolyols Based on1,3,5-Tris(2-hydroxyethyl)Cyanuric Acid as a Core[J].Journal of Polymer Science Part A: Polymer Chemistry.2008,46:5568-5579
    [64]陈营,张秋禹,任杰等. A2+B’B2型超支化聚酰亚胺的合成及性能[J].现代化工.2011,31(11):52-55
    [65] Kou Y, Wan A, Tong S, et al. Preparation, Characterization and Modification ofHyperbranched Polyester-Amide with Core Molecules[J]. Reactive&Functional Polymers.2007,67:955-965
    [66] Gao C, Zheng X. Facile Synthesis and Self-Assembly of Multihetero-ArmHyperbranched Polymer Brushes[J]. Soft Matter.2009,5:4788-4796
    [67] Sunder A, Hanselmann R, Frey H, et al. Controlled Synthesis ofHyperbranched Polyglycerols by Ring-Opening MultibranchingPolymerization[J]. Macromolecules.1999,32:4240-4246
    [68] Magnusson H, Malmstrom E, Hult A. Synthesis of Hyperbranched AliphaticPolyethers via Cationic Ring-Opening Polymerization of3-Ethyl-3-(hydroxymethyl)oxetane[J]. Macromolecular Rapid Communications.1999,20:453-457
    [69] Liu J, Huang W, Zhou Y, et al. Synthesis of Hyperbranched Polyphosphates bySelf-Condensing Ring-Opening Polymerization of HEEP without Catalyst[J].Macromolecules.2009,42:4394-4399
    [70] Satoh T, Tamaki M, Taguchi T, et al. Synthesis of Novel HyperbranchedPolymer Through Cationic Ring-Opening Multibranching Polymerization of2-Hydroxymethyloxetane[J]. Journal of Polymer Science Part A: PolymerChemistry.2011,49:2353-2365
    [71] Chen Y, Bednarek M, Kubisa P, et al. Synthesis of Multihydroxyl BranchedPolyethers by Cationic Copolymerization of3,3-Bis(hydroxymethyl)oxetaneand3-Ethyl-3-(hydroxymethyl)oxetane[J]. Journal of Polymer Science Part A:Polymer Chemistry.2002,40:1991-2002
    [72] Rahm M, Westlund R, Eldsater C, et al. Tri-Block Copolymers of PolyethyleneGlycol and Hyperbranched Poly-3-ethyl-3-(hydroxymethyl)oxetane ThroughCationic Ring Opening Polymerization[J]. Journal of Polymer Science Part A:Polymer Chemistry.2009,47:6191-6200
    [73] Murali M, Rao V S, Samu A B. Liquid Crystalline Photoactive Hyperbranchedand Linear Benzylidene Polyester with Terminal Epoxy and Pendant HydroxylGroups[J]. Journal of Polymer Science Part A: Polymer Chemistry.2007,45:3116-3123
    [74] Zhang D, Jia D, Zhou Z. Synthesis and Characterization of Low ViscosityAromatic Hyperbranched Polyester Epoxy Resin[J]. Macromolecular Research.2009,17(5):289-295
    [75]梅锦岗,杨建军,吴庆云等.水性超支化聚氨酯合成方法的研究进展[J].化工新型材料.2011,39(5):29
    [76] Kambouris P, Hawker C J. A Versatile New Method for StructureDetermination in Hyperbranched Macromolecules[J]. Journal of the ChemicalSociety, Perkin Transactions1.1993,(22):2717-2721
    [77] Wan H, Chen Y, Chen L, et al. Supramolecular Control of the BranchedTopology of Poly(sulfone-amine) from Divinylsulfone andHexamethylenediamine[J]. Macromolecules.2008,41:465-470
    [78] Chen L, He P, Jia Z, et al. Synthesis and Characterization of HyperbranchedPoly(sulfone-amine) Modified–Cyclodextrin[J]. E-polymers.2006,45:1-7
    [79] Frechet J M J, Hawker C J. Hyperbranched Polyphenylene and HyperbranchedPolyesters: New Soluble, Three-dimensional, Reactive Polymers[J]. Reactive&Functional Polymers.1995,26:127-136
    [80] Dabritz F, Lederer A, Komber H, et al. Synthesis and Characterization of TwoClasses of Hyperstar Polymers Bearing Hyperbranched Cores Grafted withLinear Arms[J]. Journal of Polymer Science Part A: Polymer Chemistry.2012,50:1979-1990
    [81]艾鹏,陈艳华,吴晓淼.超支化聚合物结构和形貌的表征与分析.化学分析计量.2010,19(3):25-27
    [82] Li Z, Wu W, Ye C, et al. New Main-Chain Hyperbranched Polymers: FacileSynthesis, Structural Control, and Second-Order Nonlinear Optical Properties[J].Polymer.2012,53:153-160
    [83] Ishizu K, Takahashi D, Takeda H. Novel Synthesis and Characterization ofHyperbranched Polymers[J]. Polymer.2000,41:6081-6086
    [84] Zagar E, Zigon M. Characterization of a Commercial Hyperbranched AliphaticPolyester Based on2,2-Bis(methylol)propionic Acid[J]. Macromolecules.2002,35:9913-9925
    [85] Luca E D, Richards R W, Grillo I, et al. Molecular Characterization of aHyperbranched Polyester II. Small-Angle Neutron Scattering[J]. Journal ofPolymer Science Part B: Polymer Physics.2003,41:1352-1361
    [86]洪玲,王新灵,赵喜安.多检测凝胶渗透色谱技术在超支化聚氨酯表征中的应用[J].上海交通大学学报.2003,37:629-631
    [87] Tian W, Fan X, Kong J, et al. Cyclodextrin-Based Hyperbranched PolymersMolecule Design, Synthesis, and Characterization[J]. Macromolecules.2009,42:640-651
    [88]郑晓昱,王锦成,杨科等.超支化聚合物的特征、制备及其应用研究进展[J].绝缘材料.2011,44(1):36-40
    [89]苏津津,李盛彪,赵丽凤.超支化聚合物研究进展[J].化工新型材料.2008,36(9):3-5
    [90]陈荣国,肖荔人,陈庆华等.超支化聚合物的性能、合成及其功能化应用研究[J].功能材料(增刊).2007,38:3393-3397
    [91]杨晓东,郑亚萍,张娇霞.超支化环氧树脂的研究进展及应用[J].中国胶粘剂.2009,18(2):53-56
    [92]王兴元,罗运军,夏敏.超支化聚合物在紫外光固化涂料中的应用研究进展[J].化工新型材料.2008,36(3):15-17
    [93] Zhou Y, Huang W, Liu J, et al. Self-Assembly of Hyperbranched Polymers andIts Biomedical Applications[J]. Advanced Materials.2010,22:4567-4590
    [94] Boogh L, Pettersson B, Manson J E. Dendritic Hyperbranched Polymers asTougheners for Epoxy Resins[J]. Polymer.1999,40:2249-2261
    [95] Mezzenga R, Boogh L, Manson J E. A Review of Dendritic HyperbranchedPolymer as Modifiers in Epoxy Composites[J]. Composites Science andTechnology.2001,61:787-795
    [96] Zhang J, Guo Q, Fox B. Thermal and Mechanical Properties of a DendriticHydroxyl-Functional Hyperbranched Polymer and Tetrafunctional Epoxy ResinBlends[J]. Journal of Polymer Science: Part B: Polymer Physics.2010,48:417-424
    [97] Wu H, Xu J, Liu Y, et al. Investigation of Readily ProcessableThermoplastic-Toughened Thermosets. V. Epoxy Resin Toughened withHyperbranched Polyester[J]. Journal of Applied Polymer Science.1999,72:151-163
    [98] Foix D, Yu Y, Serra A, et al. Study on the Chemical Modification ofEpoxy/Anhydride Thermosets Using a Hydroxyl Terminated HyperbranchedPolymer[J]. European Polymer Journal.2009,45:1454-1466
    [99] Blanco I, Cicala G, Lo Faro C, et al. Thermomechanical and MorphologicalProperties of Epoxy Resins Modified with Functionalized HyperbranchedPolyester[J]. Polymer Engineering and Science.2006:1502-1511
    [100]DeCarli M, Kozielski K, Tian W, et al. Toughening of a Carbon FibreReinforced Epoxy Anhydride Composite Using an Epoxy TerminatedHyperbranched Modifier[J]. Composites Science and Technology.2005,65:2156-2166
    [101]Varley R J, Tian W. Toughening of an Epoxy Anhydride Resin System Usingan Epoxidized Hyperbranched Polymer[J]. Polymer International.2004,53:69-77
    [102]Ratna D, Varley R J, Simon G P. Toughening of Trifunctional Epoxy Using anEpoxy-Functionalized Hyperbranched Polymer[J]. Journal of Applied PolymerScience.2003,89:2339-2345
    [103]Yang J, Chen Z, Yang G, et al. Simultaneous Improvements in the CryogenicTensile Strength, Ductility and IMPact Strength of Epoxy Resins by aHyperbranched Polymer[J]. Polymer.2008,49:3168-3175
    [104]Yang J, Feng Q, Chen Z, et al. Superiority of Nanosized Over MicrosizedHyperbranched Polymer Second Phase in Modifying Brittle Epoxy Resin[J].Journal of Applied Polymer Science.2011,119:863-870
    [105]Mezzenga R, Manson J A E. Thermo-Mechanical Properties of HyperbranchedPolymer Modified Epoxies[J]. Journal of Materials Science.2001,36:4883-4891
    [106]Ratna D, Simon G P. Epoxy and Hyperbranched Polymer Blends: Morphologyand Free Volume[J]. Journal of Applied Polymer Science.2010,117:557-564
    [107]Mezzenga R, Plummer C J G, Boogh L, et al. Morphology Build-up inDendritic Hyperbranched Polymer Modified Epoxy Resins Modelling andCharacterization[J]. Polymer.2001,42:305-317
    [108]Cicala G, Recca G. Studies on Epoxy Blends Modified with a HyperbranchedPolyester[J]. Polymer Engineering and Science.2008:2382-2388
    [109]Xu G, Shi W, Gong M, et al. Curing Behavior and Toughening Performance ofEpoxy Resins Containing Hyperbranched Polyester[J]. Polymer for AdvancedTechnologies.2004,15:639-644
    [110]Fu J, Shi L, Yuan S, et al. Morphology, Toughness Mechanism, and ThermalProperties of Hyperbranched Epoxy Modified Diglycidyl Ether of Bisphenol A(DGEBA) Interpenetrating Polymer Networks[J]. Polymer for AdvancedTechnologies.2008,19:1597-1607
    [111]王孝科,田敉.端羧基超支化聚酯改性环氧树脂固化体系研究[J].热固性树脂.2008,23(3):25-28
    [112]Wang X, Jiang Z, Zhang Y. Effect of Hyperbranched Polyester onModification of Epoxy Resins Cured with Anhydride[J]. Chinese ChemicalLetters.2006,17(1):125-128
    [113]Morell M, Ramis X, Ferrando F. New Improved Thermosets Obtained fromDGEBA and a Hyperbranched Poly(ester-amide)[J]. Polymer.2009,50:5374-5383
    [114]Morell M, Erber M, Ramis X, et al. New Epoxy Thermosets Modified withHyperbranched Poly(ester-amide) of Different Molecular Weight[J]. EuropeanPolymer Journal.2010,46:1498-1509
    [115]Chen S, Zhang D, Jiang S, et al. Preparation of Hyperbranched Epoxy ResinContaining Nitrogen Heterocycle and Its Toughened and ReinforcedComposites[J]. Journal of Applied Polymer Science,2012,123:3261-3269
    [116]郑亚萍,张娇霞,于培盈等.超支化聚胺酯对环氧树脂力学性能的改性[J].宇航材料工艺.2009,2:42-45
    [117]Parzuchowski P G, Kiz′lin′ska M, Rokicki G. New Hyperbranched PolyetherContaining Cyclic Carbonate Groups as a Toughening Agent for EpoxyResin[J]. Polymer.2007,48:1857-1865
    [118]Fro¨hlicha J, Kautza H, Thomanna R, et al. Reactive Core/Shell TypeHyperbranched Blockcopolyethers as New Liquid Rubbers for EpoxyToughening[J]. Polymer.2004,45:2155-2164
    [119]余传柏,饶保林.超支化聚醚多元醇在干式电抗器浸渍树脂中的增韧研究(1)[J].绝缘材料.2009,42(4):6-9
    [120]Foix D, Ramis X, Ferrandoc F, et al. Improvement of Epoxy Thermosets Usinga Thiol-ene Based Polyester Hyperbranched Polymer as Modifier[J]. PolymerInternational.2012,61:727-734
    [121]董杰,陈晓婷,李艳青等.超支化聚膦酸酯改性环氧树脂的研究[J].天津科技大学学报.2010,25(6):30-32
    [122]Jin F, Park S J. Thermal Properties and Toughness Performance ofHyperbranched-Polyimide-Modified Epoxy Resins[J]. Journal of PolymerScience: Part B: Polymer Physics.2006,44:3348-3356
    [123]Lv S, Yuan Y, Shi W. Strengthening and Toughening Effects of LayeredDouble Hydroxide and Hyperbranched Polymer on Epoxy Resin[J]. Progressin Organic Coatings.2009,65:425-430
    [124]Cicala G, Recca G, Carciotto S, et al. Development of Epoxy/HyperbranchedBlends for Resin Transfer Molding and Vacuum Assisted Resin TransferMolding Applications: Effect of a Reactive Diluent[J]. Polymer Engineeringand Science.2009,49:577-584
    [125]杨亮亮,杨隽,匡志娟等.超支化聚酯接枝超细二氧化硅改性环氧树脂研究[J].应用化工.2011,40(9):1492-1493
    [126]蒋玉梅,陆绍荣,张晨曦等.环氧树脂/超支化聚酯/纳米SiO2复合材料的制备及性能[J].高分子材料科学与工程.2010,26(3):134-137
    [127]Fu J, Shi L, Zhong Q, et al. Thermally Conductive and Electrically InsulativeNanocomposites Based on Hyperbranched Epoxy and Nano-Al2O3ParticlesModified Epoxy Resin[J]. Polymers for Advanced Technologies.2011,22:1032-1041
    [128]Varley R J. Toughening of Epoxy Resin Systems Using Low-ViscosityAdditives[J]. Polymer International.2004,53:78-84
    [129]Ratna D, Becker O, Krishnamurthy R, et. al. Nanocomposites Based on aCombination of Epoxy Resin, Hyperbranched Epoxy and a Layered Silicate[J].Polymer.2003,44:7449-7457
    [130]熊磊,王汝敏,梁红波,管静.超支化聚合物接枝纳米TiO2/环氧树脂复合材料的制备与表征[J].中国胶粘剂.2009,18(4):26-29
    [131]许培俊,井新利.超支化聚合物增韧环氧树脂.中国环氧树脂应用技术学会“第十三次全国环氧树脂应用技术学术交流会论文集”[C],中国江苏南京,2009:300-304
    [132]罗金树.超支化聚酯增韧环氧及其增韧机理[D].北京:北京化工大学硕士论文,2008:14-15
    [133]张道洪,陈玉坤,贾德民.低黏度高分子质量超支化环氧树脂的合成及性能[J].现代化工.2006,26(1):40-43
    [134]Kurauchi T, Ohta T. Energy Absorption in Blends of Polycarbonate with ABSand SAN[J]. Journal of Materials Science.1984,19:1699-1705
    [135]陈旭东,沈家瑞,夏成林.刚性有机填料(ROF)增韧及其应用研究进展[J].高分子材料科学与工程.1997,23(3):11-15
    [136]张道洪,陈玉坤,蒋世宝等.超支化环氧/双酚A环氧杂化树脂的固化反应动力学[J].石油化工.2006,35(3):250-254
    [137]Zhang D, Jia D, Chen S. Kinetics of Curing and Thermal Degradation ofHyperbranched Epoxy (HTDE)/Diglycidyl Ether of Bisphenol-A EpoxyHybrid Resin[J]. Journal of Thermal Analysis and Calorimetry.2009,98:819-824
    [138]罗金树,李鹏,蔡宏洋等.超支化聚酯增韧环氧体系固化动力学[J].玻璃钢/复合材料.2008,(5):6-11
    [139]Frigione M, Calo`E. Influence of an Hyperbranched Aliphatic Polyester onthe Cure Kinetic of a Trifunctional Epoxy Resin[J]. Journal of AppliedPolymer Science.2008,107:1744-1758
    [140]Xu G, Shi W, Gong M, et al. Curing Behavior and Toughening Performance ofEpoxy Resins Containing Hyperbranched Polyester[J]. Polymer for AdvancedTechnologies.2004,15:639-644
    [141]杨娇萍,陈振坤,芦艾等.超支化聚合物改性酸酐/环氧体系固化行为的研究[C].2007年全国高分子学术论文报告会.成都.2007:781
    [142]夏敏,罗运军,王兴元.超支化聚合物/环氧树脂体系的固化行为及性能[J].高分子材料科学与工程.2008,24(2):99-105
    [143]麦亦勇.超支化聚醚的合成、表征及自组装研究[D].上海:上海交通大学博士论文,2007:32-3347-50
    [144]陆成亮,王波,方鹏飞等.增韧环氧树脂的微结构和力学性能的正电子湮没[J].武汉大学学报(理学版).2006,52(1):40-44
    [145]Wang S, Wang C, Zhu X, et al. Structural Characteristics of HDPE/CaCO3Polymer Composites Probed by Positron Annihilation[J]. Physical Status SolidiA.1994,142:275-279
    [146]姚兴芳,张世锋.端羧基液体丁腈橡胶增韧环氧树脂研究[J].化学与黏合.2008,30(6):13-15
    [147]Carballeira P, Haupert F. Toughening Effects of Titanium DioxideNanoparticles on TiO2/Epoxy Resin Nanocomposites[J]. Polymer Composites.2010,31(7):1241-1246
    [148]张帆.形状记忆环氧树脂的制备及其复合材料性能研究[D].哈尔滨:哈尔滨工业大学硕士论文.2009:20-25

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700