淀粉糊精的制备工艺调控及诱导产α-淀粉酶的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
α-淀粉酶是一种重要的工业用酶,广泛应用于食品、纺织和造纸等行业。本课题采用酶法制备不同DE值糊精,研究了酶法生产糊精的工艺,并以不同DE值糊精作为碳源,研究了枯草芽孢杆菌的产酶特性,用二次回归旋转设计优化发酵培养基和培养条件,研究了α-淀粉酶的酶学性质,确定了深层发酵工艺和发酵动力学模型,并进行了中试放大研究。最后探讨了不同DE值糊精中有效成分诱导枯草芽孢杆菌的产酶机理。主要研究结果如下:
     1.中温淀粉酶和高温淀粉酶联用制备糊精可以有效地缩短酶解反应时间,减少酶的用量,提高效率和降低成本。正交试验结果表明,温度对淀粉水解产品的DE值影响最大,反应时间的影响最小。制备糊精较为适宜的水解条件为温度90℃,时间10min,中温淀粉酶用量4 U/g淀粉,高温淀粉酶用量7U/g淀粉。在此基础上适当调整酶解时间或加酶量,可以获得不同DE值的糊精产品。
     2.淀粉乳酶解前用超声波处理,然后酶解制备糊精,可获得分子分布更为均匀的糊精样品。超声波作用条件为:超声功率50W,超声全程时间范围可选择5-15min,超声波工作时间选择2-5s范围,间隔时间可选择20s以上。在此基础上调整加酶量或酶解时间,可获得不同DE值的糊精样品。超声波处理后淀粉的粘度降低;超声波处理会侵蚀淀粉颗粒表面,造成不同程度的破裂;高强度的超声波降解支链淀粉的作用增强,超声波处理制备的糊精分子分布更为均匀,大分子比例减少,分支化度较小,线性分子数量增多。
     3.糊精的性质:糊精与原淀粉相比粒度均变小。DE值22以下的糊精具有结晶结构,保持A型特征峰,峰强随DE值的增大逐渐减弱。说明水解首先发生在无定形区,其次才是结晶区。不同DE值糊精的表观粘度随DE值的增大而逐渐降低;热重分析(TG)分析表明,糊精的热稳定性较原淀粉高;DE值较大的糊精的透光率较高。
     Sephadex G50凝胶过滤层析结果表明,DE值较大的糊精线性较强。HPLC分析结果表明双酶法所得糊精分子量分布比较均匀,七糖以下组分中含有较大比例的单糖、二糖、三糖和五糖。
     4.不同DE值糊精作为碳源对B.subtilis ZJF-1A5产α-淀粉酶的产酶特性:糊精的DE值控制在16-22,B.subtilis ZJF-1A5的接种量控制在3%-4%,产酶量及酶活较高。发酵工艺单因素条件为:最佳条件温度为37℃,初始pH为5.0,摇床转速为210 r/min,培养时间为54 h。
     通过二次回归正交旋转设计,所得回归方程为:Y=151.6+14.7X_1-7.8 X_2+26.9X_3-19.7 X_1~2-4.5 X_2~2+6.8 X_1X_3。相应得到优化的工艺参数为:培养温度为37℃,发酵培养基pH为5,时间为58 h,α-淀粉酶活力达到理论最大值206.5 U/mL。经检验该工艺参数可靠。
     在发酵摇床试验中,以DE值为16-22的糊精为碳源时,和以淀粉和葡萄糖为碳源时相比,酶活分别提高了80.2%和219.3%。
     经5L级全自动发酵罐中试验证,利用DE值为16-22的糊精为碳源,酶活可达到469.8±27.7 U/mL,与淀粉作为碳源相比,酶活力提高了41.9%。
     5.菌株ZJF-1A5分泌的主要α-淀粉酶的最适反应温度在60℃,最适pH值是6.0,其活性受酸性变化影响不大,在pH值4左右,仍能保持较高的酶活水平,因此该酶为酸性淀粉酶,具有较高的工业应用价值。
     菌株ZJF-1A5分泌的主要α-淀粉酶能够被Mg~(2+)、Ca~(2+)、Na~+、Al~(3+)激活,且Al~(3+)对ZJF-1A5分泌的主要α-淀粉酶的激活能力最强,目前尚未见其他关于Al~(3+)激活α-淀粉酶的报道。
     6.一定DE值的糊精诱导B.subtilis ZJF-1A5产α-淀粉酶的量增加。糊精中主要的诱导成分是糊精中的麦芽低聚糖,通过基本培养基发酵,添加不同聚合度的麦芽低聚糖,实验结果表明,麦芽五糖的诱导活性最强,证实麦芽低聚糖在糊精诱导B.subtilis ZJF-1A5产α-淀粉酶量升高过程中起到重要作用。
α-amylase as an important industrial enzyme was widely used in food industries, textile technology, paper manufacturing and so on. In this study, the method preparing dextrin with different DE value by combination of common and thermalα-amylase was investigated. Dextrin with different DE value was used as carbon source and its effect on enzyme production was studied. Medium and conditions of fermentation were optimized using quadratic regression revolution design. The properties ofα-amylase produced by B.subtilis ZJF-1A5 were studied. The batch process and dynamics model were studied and medium-scale up was also investigated. The inducing mechanism of dextrin with different DE value on production ofα-amylase by B.subtilis ZJF-1A5 was discussed. The main results were as following:
     1. By successive use of double-enzyme method (medium-temperature and high-temperatureα-amylases), the method preparing dextrin was obtained, which could reduce the time of enzymatic hydrolysis and addition of enzyme. According to the result of single-factor experiment, an orthogonal test was designed and carried out, the optimum condition was determined as follows: reaction temperature 90℃, hydrolysis time 20 min, addition of medium-temperatureα-amylase 4 U/g starch and addition of high-temperatureα-amylase 7 U /g starch. On the basis of above conditions, dextrin with different DE value could be obtained by adjusting the hydrolysis time or enzyme addition.
     2. Starch was treated by ultrasonic and then hydrolyzed by the method of medium-temperature and thermalα-amylases, the molecular distribution of the obtained dextrin was more even. The ultrasonic conditions were as following: ultrasonic power 50W, total stimulation time 5-15min, ultrasonic stimulation time 2-5s and ultrasonic intermissive time 20s. On the basis of above conditions, dextrin with different DE value could be obtained by adjusting the hydrolysis time or enzyme addition. It was considered by integrated analysis that the surfaces of starch granules were subjected to erode and the pasting viscosity of starch decreased. The molecular weight distributions of dextrin by enzyme method with ultrasonic assistance were more even. The proportion of large molecules in the product reduced while the amount of linear molecules increased.
     3. The particle of the dextrin changed significantly compared with the starch. The obtained dextrin subjected to enzyme hydrolysis showed the narrowest size distribution. The crystal type of A -type of dextrin with DE value below 22 had been partly preserved and possessed crystal structure and the peak intensity was gradually weakened with the increase of DE value. This result revealed that amorphous areas composed of amylopetin (in coral regions of starch particles) were hydrolyzed firstly in the process of the enzyme hydrolysis. Apparent viscosity of dextrin with different value decreased with the increase of DE value. TG analysis showed that the thermal stability of the dextrin was higher than that of the raw starch. Transmittances of dextrin with large DE value were higher than that with low DE value. Gel filtration chromatography by Sephadex G50 showed the amount of linear molecules of dextrin with larger DE value increased. HPLC analysis showed molecular weight distributions of dextrin by medium-temperature and high-temperatureα-amylases method were more even and contained large proportion of glucose, maltose, maltotriose and maltopentaose in the components of oligosaccharide the polymerization degree (DP) was below seven.
     4. Yield and activity ofα-amylase were relatively high when the DE value of dextrin was controlled in the range of 16-22 and inoculation amount of B.subtilis ZJF-1A5 was 3%-4%. Single factor conditions of fermentation process parameters were temperature 37℃, pH 5.0, rotation speed 210 r/min and the culture time 54h.
     Regression equation was obtained by quadratic orthogonal rotation and the equation was as following: Y = 151.6 + 14.7 X_1 - 7.8 X_2+ 26.9 X_3- 19.7 X_1~2- 4.5 X_2~2+ 6.8 X_1X_3. The optimum parameters were determined as follows: temperature 37℃, pH 5.0 and the culture time 58 h. Theoretical maximum ofα-amylase activity reached 206.5 U/mL. And the product has a good application prospect.
     Compared with starch and glucose, dextrins with DE value 16-22 were used as carbon source in shaking-bottle incubating test, the activities ofα-amylase increased by 80.2% and 219.3%, respectively.
     The pilot test in 5L automatic fermentor showed that theα-amylase activity reached 469.8±27.7 U/mL when dextrins with DE value 16-22 were used as carbon sources. Compared with starch used as carbon sources, theα-amylase activity increased by 41.9%.
     5. The properties of a-amylase by B.subtilis ZJF-1A5 were studied. Its optimum temperature was 60℃. Its optimum pH of was 6.0 andα-amylase activity changed little at pH 4.0. So the enzyme was a kind of acidα-amylase and has perspective application in industry.
     The result showed that Mg~(2+), Ca~(2+), Na~+ and Al~(3+) were the activators ofα-amylase produced by B.subtilis ZJF-1A5 and activation ability of Al~(3+) was the strongest. At present there was no report about that Al~(3+) activated the activity ofα-amylase.
     6. The yield ofα-amylase by B.subtilis ZJF-1A5 increased by using dextrin with a certain DE value range as carbon source. The effective induced component in dextrins might be oligosaccharide. By ordinary fermention with oligosaccharide as carbon source, the results showed that inducing activity of maltopentaose was the strongest. It further confirmed that dextrins played important roles during the process of production ofα-amylase by B.subtilis ZJF-1A5.
引文
[1] 包海蓉,王慥.2003.酸-乙醇介质制备的玉米淀粉糊精特性[J].上海水产大学学报,12(1):.45-50
    [2] 毕金峰.2005.两种淀粉酶的酶学性质及应用研究.农业工程学报[J],21(2):238-241
    [3] 成训研.1995.正在兴起的代脂肪食品配料[J].肉类工业,(9):44.
    [4] 段春红,董海洲,张慧,王昭,张凤.2005.干法制备黄糊精工艺的研究[J].食品与发酵工业,31(9):39-41
    [5] 范进填.1994.淀粉糊化动力学[J],淀粉与淀粉糖,(2):8-11
    [6] 高大维,陈满香,梁竑.1994.超声波催化糖化酶水解淀粉的初步研究[J].华南理工大学学报(自然科学版),22(1):70-74.
    [7] 耿予欢,张本山,高大维.1999.超声波影响异麦芽低聚糖生产的研究[J].食品工业科技,20(1): 14-16.
    [8] 谷长生,刘继伟,郝晓敏,宋文东,朱圣文,颜健斌.2007.酸法醇介质制备红薯淀粉糊精的工艺及特性研究[J].食品科技,(5):61-65
    [9] 顾正彪,王志强.1996.淀粉酸热转化过程研究[J].陕西粮油科技,21(3):43-45
    [10] 郭星,温其标.2007.酶法处理和超声波作用对抗酶解淀粉形成的影响[J].现代食品科技,23(1):8-10
    [11] 郝晓敏,刘继伟,谷长生,宋文东,颜健斌,熊伟梅.2007.酸.乙醇介质制备木薯淀粉糊精的工艺及其优化[J].粮油加工,(1):88-89
    [12] 郝晓敏,王遂,崔凌飞.2006.α-淀粉酶水解玉米淀粉的研究[J].食品科学.27(2):141-143
    [13] 郝晓敏,王遂.2007.酶法制备玉米淀粉糊精的性质研究[J].食品工业,(6):5-7
    [14] 郝晓敏.2007.酸法醇介质制备木薯淀粉糊精的工艺及特性研究[J].食品科学.28(12):193-196
    [15] 何小维,黄强,罗发兴.2005.超声处理后的玉米淀粉与环氧丙烷的反应机理[J].华南理工学报(自然-科学版),33(8):91-94.
    [16] 刘海燕,郭秒,慕跃林,黄遵锡.2004.环状糊精的性质和应用[J],中国食品添加剂,(5):67-69
    [17] 刘文慧,王颉,王静,徐立强.2007.麦芽糊精在食品工业中的应用现状[J].中国食品添加剂,(2):183-186
    [18] 刘贤钊,罗志刚,胡振华,柯泽楷,董华壮.2008.超声波处理对玉米淀粉流变性质的影响[J].现代食品科技,24(4):316-318
    [19]刘晓欣,顾正彪,洪雁.2006.麦芽糊精糖分组成和分子量分布的研究及其对性质的影响[J].食品工业科技,27(2):97-100
    [20]刘亚伟.2003.玉米淀粉生产及转化技术[M].北京:化学工业出版社,150-151.
    [21]罗明朗.1995.淀粉水解产品的生产与应用[J],粮食与饲料工业,(7):37-41
    [22]马福强.2001.耐高温α-淀粉酶在酒精生产中的应用[J].酿酒科技,105:42-43
    [23]马涛,赵琨,毛闯.2007.大米淀粉为基质制备低DE值麦芽糊精的研究[J].食品科学.28(10):237-240
    [24]邱冬梅.1999.耐高温α-淀粉酶在酒精生产中的应用[J]_中国酿造,3:34-35
    [25]邵法都.2000.真菌淀粉酶在红曲黄酒中的应用[J].酿酒,136(1):72-74.
    [26]沈文胜,吴小燕.2006.高温型α-淀粉酶制取麦芽糊精工艺条件的优化[J].食品科技,13(6):29-31
    [27]谭志光,唐书泽.2006.酶法制取大米麦芽糊精和浓缩蛋白[J].食品工业科技,(10):114-117
    [28]唐书泽,李福谦,张志森.2007.葡萄糖当量及聚合度与麦芽糊精的性质[J].食品与机械,23(3):.175-177
    [29]陶兴无.2006.a-淀粉酶在甜玉米饮料生产中的应用研究[J].湖北工业大学学报,21(2):17-20.
    [30]王镜岩,朱圣庚,徐长法.2002.生物化学(第三版).北京:高等教育出版社.
    [31]王楠 马荣山.2007.耐高温α-淀粉酶的研究进展.中兽医医药杂志,3,68-69.
    [32]王遂,梁霆.1996.耐高温α-淀粉酶在生产超高麦芽糖浆中的应用研究[J].生物技术,6(2):18-19.
    [33]徐丽霞,扶雄,黄强.2007.淀粉酶在麦芽糖生产中的应用[J].中国甜菜糖业,4:29-31.
    [34]徐良增,许时婴,杨瑞金.2000.麦芽糊精[J].粮食与油脂,(7):36-38
    [35]徐良增,许时婴,杨瑞金.2001,浅述麦芽糊精[J].食品科学,22(5):87-90
    [36]徐良增,许时婴,杨瑞金.2001.酶法液化玉米淀粉制备麦芽糊精的研究[J].食品工业,(3):24-25
    [37]徐正康,罗发兴,罗志刚.2004.超声波在淀粉制品中的应用[J].粮油加工与食品机械,(12):60-64.
    [38]徐忠,张洪微,韩玉洁.2005.酶法制备马铃薯高麦芽糖浆的研究[J],5(1):37-42.
    [39]尤新,1997.淀粉糖品生产与应用手册[M],北京:中国轻工业出版社
    [40]袁志发主编.2000.试验设计与分析[M].北京:高等教育出版社
    [41]张克旭.1997.氨基酸发酵工艺学[M].北京:中国轻工业出版社.
    [42]张力田编著.1994.变性淀粉[M],广州:华南理工大学出版社
    [43]张友松主编.1999.变性淀粉生产与应用手册[M].北京:中国轻工业出版社
    [44]张云茹,范守城,范首君.2006.全酶法生产高麦芽糖浆及其工艺研究[J].中国粮油学报,21(2):23-26.
    [45]赵达,刘伟成,裘季燕.2008,枯草芽孢杆菌B03液体发酵条件的优化.华北农学报.23(2):205-209
    [46]赵奕玲,廖丹葵,张友全,童张法.2007.超声波对木薯淀粉性质及结构的影响[J].过程工程学报,7(6):1138-1143
    [47]周慧,鲁治斌,齐杰,李惟.1994.蛋白水解酶活力测定新方法.生物化学杂志,5(10):630-632.
    [48]周中凯.1999.改性淀粉——糊精[J].农牧产品开发,(2):42-43
    [49]Alexander, R. J.1995. Fat replacers based on starch[J],Cereal Food World, 40 (5):366.
    [50]Amanullah A., Blair R., Nienow A.W. et al. 1999. ffects of agitation intensity on mycelial morphology and protein production in chemostat cultures of recombinant Aspergillus oryzae.Biotechnol Bioeng,62: 434-446.
    [51]Arnesen S, Eriksen S.H, Olsen J, Jensen B. 1998, Increased production of alpha amylase from Thermomyces lanuginosus by the addition of Tween-80[J]. Enzyme Microb Technol,23:249-252.
    [52]Babu K.R. and T. Satyanarayana 1993. Parametric optimization of extracellular α- amylase production by thermophilic Bacillus coagulans. Folia. Microbio, 38:77-80.
    [53]Beatriz M. Brena et al. 1996, Chromatographic methods for amylases[J]. J Chromatogr 5,684:217-237
    [54]Becks S, Bielawaski C, Henton D, et al. 1995,Application of a liquid stable amylase reagent on the Ciba Corning Express clinical chemistry system[J]. Clin Chem,41: 186.
    [55]BeMiller, J N. DEXTRINS[J]. 1773-1775
    [56]Benczedi D, Tomka I, Escher F. 1998. Thermodynamics of amorphous starch-water systems Ⅰ. Volume fluctuations [J]. Macromolecules, 31 (9) : 3055-3061.
    [57]Bhella R.S., Altosaar I. 1985. Purification and some properties of the extracellular α-amylase from Aspergillus awamori. Can J Microbiol. 31: 149.
    [58]Bolton D. J, C.T. Kelly and W.M. Fogarty. 1997.Purification and characterization of the α-amylase of Bacillus flavothermus. Enzym. Microb. Tech,20:340-343.
    [59]Bradford M.M.1976.Bradford assay protocol for protein quantification. Anal. Biochem,12:248-254.
    [60]Cheng CY, Yabe I, Toda K. 1989, Predominant growth of α-amylase regulation mutant in continuous culture of Bacillus caldolyticus[J]. J Ferment Bioeng, 67: 176-181.
    [61] Chiang J.P, J.E. Alter and M. Stemberg. 1979.Purification and characterization of a thermostable α-amylase from Bacillus licheniformis. Starch,31:86-92.
    [62] Christopher G Oates. 1997. Towards an Understanding of Starch Granule Structure and Hydrolysis [J]. Trends in Food Sci Tech, 8(11): 375-382.
    [63] Chung Y.C, T. Kobayashi, H. Kanai, T. Akiba and T. Kudo.1995.Purification and properties of extracellular amylase from the hyperthermophilic archeon Thermococccus profundus DT5432, Appl. Environ. Microbiol, 61:1502-1506.
    [64] Cui Y.Q., Van der Lans R.G.J.M., Luyben K.C.A.M.. 1997. Effect of agitation intensities on fungal morphology of submerged fermentation.Biotechnol Bioeng, 55: 715-726.
    [65] Daniel J Gallant, Brigitte Bouchet, Paul M Baldwin. 1997. Microscopy of Starch: Evidence of a New Level of Granule Organization [J]. Carbohyd Polym, 32(3/4): 177-191.
    [66] Dean ACR. 1972, Influence of environment on the control of enzyme synthesis[J]. J Appl Chem Biotechnol, 22: 245-259.
    [67] Dercova K, Augustin J, Krajcova D. 1992, Cell growth and a-amylase production characteristics of Bacillus subtilis[J]. Folia Microbiol, 37: 17 -23.
    [68] Dokic L, Jakovljevic J, Dokic P. 2004. Relation between viscous characteristics and dextrose equivalent of maltodextrins[J]. Starch /Stark, 56 (11): 520-525.
    [69] Dokic P, Jakovljevic J, Dokic-Baucal Lj. 1998. Molecular characterics of maltodextrins and rheological behaviour of diluted and concentrated solutions[ J ].Colloid Surface A,(141): 435-440.
    [70] Dokik P., Jakovljevic J., Dokic-Baucal L.1998.Colloids Surfaces A,141:435.
    [71] Egas M.C, M.S. da Costa, D.A. Cowan and E.M. Pires.1998.Extracellular alpha-amylase from Thermus filiformis Ork A2: purification and biochemical characterization. Extremophiles,2(1):23-32.
    [72] Eratt JA, Douglas PE, Moranelli F, et al. 1984, The induction ofα-amylase by starch in Aspergillus oryzae: evidence for controlled mRNA expression[J]. Can J Biochem Cell Biol,62: 678-690.
    [73] Fraces R. KaLz. 1986. MalLodexLrins[J]. Cereal Foods World, 31(12):866 - 867.
    [74] Gerard,C.,Colonna,P.,Buleon,A.,Planchot,V.,2001.Amylolysis of maize mutant starches[J]. J. Sci. Food Agric,81, 1281-1287.
    [75] Gidley M J, Bulpin P V. 1987. Crystalisation of malto-oligosaccharides as model of the crystalline forms of starch: M inumum chain length requirement for the formation of double helices[ J ]. Carbohyd Res, (161): 291.
    [76] Gigras P, Sahai V, Gupta R. 2002, Statistical media optimization and production of ITS alpha amylase from A. oryzae in a bioreactor[J]. Curr Microbiol, 45(3):203-208.
    [77] Goto C.E, Barbosa EP, Kistner LCL, Moreira FG, Lenartoviez V, Peralta RM. 1998, Production of amylase by Aspergillus fumigatus utilizing a-methyl D-glucoside, a synthetic analog of maltose as substrate. FEMS[J]. Microbiol Lett,167:139-143.
    [78] Goyal S.,et al,1978, Ind. J. Microbiol, 13,73.
    [79] Gupta R, Gigras P, Mohapatra H et al. 2003,Microbial α-amylases: a biotechnological perspective[J]. Process Biochem, (38): 1599-/1616.
    [80] Hamilton LM, Kelly CT, Fogarty WM. 1999, Purification and properties of the raw starch degrading a-amylase of Bacillus sp.IMD434[J]. Biotechol Lett,21: 111-115.
    [81] Hayashida S, Teramoto Y, Inoue T. 1988, Production and characteristics of raw potato starch digesting α-amylase from Bacillussubtilis 65[J]. Appl Environ Microbiol, 54: 1516-522.
    [82] Hebeda RE, Bowles LK, Teague WM. 1990, Developments in enzymes for retarding staling of baked goods[J]. Cereal Foods World, 35: 453-457.
    [83] Hebeda RE, Bowles LK, Teague WM. 1991, Use of intermediate temperature stability enzymes for retarding staling in baked goods[J]. Cereal Foods World, 36: 618-624
    [84] Hiller P, D.A.J. Wase and A.N. Emery. 1996.Production of α-amylase by Bacillus amyloliquefaciens in batch and continuous culture using a defined synthetic medium. Biotechnol.Lett., 8:795-800.
    [85] Hwang K.Y, H.K. Song, C. Chang, J. Lee, S.Y. Lee, K.K. Kim, S. Choe, R.M. Sweet and S.W. Suh.1997.Crystal structure of thermostable α-amylase from Bacillus licheniformis refined at 1.7 (?) resolution. Structure. Mol. Cell. Biol,7:251-258.
    [86] Ikura Y, Horikoshi K. 1987, Effect of amino compounds on alkaline amylase production by alkalophilic Bacillus sp[J]. J Ferment Technol, 65: 707-709.
    [87] lori M.O, O.O. Amund and O. Omidiji. 1997.Purification and properties of an alpha-amylase produced by a cassava-fermenting strain of Micrococcus luteus. Folia. Microbiol(Praha) ,42 (5):445-454.
    [88] Ilori M.O, O.O. Amund, and O. Omidiji. 1996.Effect of carbon and nitrogen sources on gluco-amylase production in Lactobacillus brevis. Folia. Microbiol,41:339-340.
    [89] Imai Y, Suzuki M, Masamoto M, et al. 1993,Amylase production by Aspergillus oryzae in a new kind of fermentor with a rotary draft tube[J]. J Ferment Bioeng, 76: 459-464.
    [90]Ivanova V,E.Dobreva and M.D.Legoy.1998.Characteristics of immobilized thermostable amylases from two Bacillus licheniformis strains.Acta.Biotechnol,18(4):339-351.
    [91]Jackson.D.S.,Choto-owen C.et al.1988.Characterization of starch cooked in alkali by aqueous high-performance size-exclusion chromatography[J].Cereal Chem,(65):493-496
    [92]Jane(?)ek S,B.Svensson and R.Henrissat.1997.Domain evolution in the a-amylase family.J.Mol.Evol,45:322-331.
    [93]Johnson J A,Srisuthep R.1975.Physical and chemical properties of oligosaccharides[J].Cereal Chem,(52):70~78.
    [94]Jorgensen S,C.E.Vorgias and G.Antranikian.1997.Cloning,sequencing,characterization,and expression of an extracellular alpha-amylase from the hyperthermophilic archaeon Pyrococcus furiosus in Escherichia coli and Bacillus subtilis.J.Biol.C/zem,272:16335-16342.
    [95]Kandra L,G.Gyemant,J.Remenyik,G.Hovanszki,and A.Liptak.2002.Action pattern and subsite mapping of Bacillus licheniformis a-amylase(BLA)with modified maltooligosaccharide substrates.FEBS Letters,518:79-82.
    [96]Kennedy J F,Boy R J,Stead J A,White,C A.1987.Composition of the low temperature precipitate from commercial high dextrose equivalent maltodextrins and the kinetics of its formation[J].Starch/Stark,(39):171~178.
    [97]Kim T.U,B.G.Gu,J.Y.Jeong,S.M.Byun and Y.C.Shin.1995.Purification and characterization of a maltotetraose forming alkaline alpha amylase from an alkalophilic Bacillus strain,GM 8901.Appl.Environ.Microbiol,61:3105-3112.
    [98]Kubota.K.el al.1979.J.Food Sci,44:1391
    [99]Kulp K,Ponte GJ.1981,Staling white pan bread:fundamental causes[J].Crit Rev Food Sci Nutr,15:1-48.
    [100]Kundu AK,Das S,Gupta TK.1973,Influence of culture and nutritional conditions on the production of amylase by the submerged culture of Aspergillus oryzae[J].J Ferment Technol,51:142-150.
    [101]Kwan-Hwa Park et al.2000,Structure,speci(?)city and function of cyclomaltodextrinase,a multispeci0c enzyme of the K-amylase family[J].Biochimica et Biophysica Acta,1478:165-185
    [102]Lachmund A,Urmann U,Minol K,et al.1993,Regulation of a-amylase formation in Aspergillus oryzae and Aspergillus nidulans transformants[J].Curr Microbiol,26:47-151
    [103]Lachmund,A.Urmann U.,Minol K.,et al.1993.Regulation of a-amylase formation in Aspergillus oryzae and Aspergillus nidulans transformants.Curr Microbiol.26:47-/51;
    [104]Laderman K.A,B.R.Davis,H.C.Krutzsch,M.S.Lewis,Y.V.Griko,P.L.Privalov and C.B.Anfinsen.1993.The purification and characterization of an extremely thermostable alpha-amylase from the hyperthermophilic archaebacterium Pyrococcus furiosus.J.Biol.Chem,268(32):24394-24401.
    [105]Lee J,Parulekar SJ.1993,Enhanced production of a-amylase in fedbatch cultures of Bacillus subtilis TN 106[pAT5][J].Biotechnol Bioeng,42:1142-1150.
    [106]Lee S.K,Y.B.Kim and G.E.Ji.1997.Purification of amylase secreted from Bifidobacterium adolescentis.J.Appl.Microbiol,83:267-272.
    [107]Linden A,O.Mayans,W.Meyer-Klaucke,G.Antranikian,and M.Wilmanns.2003.Differential Regulation of a Hyperthermophilic a-Amylase with a Novel(Ca,Zn)Two-met al Center by Zinc.J.Biol.Chem,278:9875-9884.
    [108]Liu X and H.W.Taber.1998.Catabolite regulation of the Bacillus subtilis ctaBCDEF gene cluster.J.Bacteriol,180(23):6154-6163.
    [109]Lloyd N.E.,Nelson W.I.,Whistler R.L.,Bemiller J.N.,Paschall E.F.,1984.Starch Chemistry and Technology,Academic Press,Orlando,FL,614.
    [110]Machius M,N.Declerck,R.Huber and G.Wiegand.1998.Activation of Bacillus licheniformis a-amylase through a disorder→order transition of the substrate-binding site mediated by a calcium-sodium-calcium met al triad.Structure,6:281-292.
    [111]Marc J.E.C.van der Maarel et al.2002,Properties and applications of starch-converting enzymes of the a-amylase family[J].J biotechnol,94:137-155
    [112]Marchal L.M.,Beeftink H.H.,Tramper J.,1999.Trends FoodSci.Technol,10 345.
    [113]Menzel C.,Lerch T,Schneider K,et al.1998,Application of biosensors with an electrolyte isolator semiconductor capacitor(EIS-CAP)transducer for process monitoring[J].Process Biochem,33:175-180.
    [114]Mertz FP,Doolin LE.1973,The effect of phosphate on the biosynthesis of vanilomycin[J].Can J Microbiol,19:263-270.
    [115]Morkeberg R,Carlsen M,Neilsen J.1995,Induction and repression of a-amylase production in batch and continuous cultures of Aspergillus oryzae[J].Microbiology,141:2449-2454
    [116]Morten Sogaard et al.1993,a-Amylases:structure and function[J].Carbohyd Polym,21:137-146
    [117] Muralikrishna G., Nirmala M..2005,Cereal a-amylases-an overview[J]. Carbohyd Polym,60:163-173
    [118] Nielsen J.E and T.V. Borchert.2000.Protein engineering of bacterial α-amylases Biochem Biophys Acta, 1543: 253-274.
    [119] Omobuwajo, T.O., Busari, O.T., Osemwegie, A.A., 2000. Thermal agglomeration of chocolate drink powder[J]. J Food Eng, 46, 73-81.
    [120] Pandey A., Nigam P., Soccol C. R.et al. 2000. Advances in microbial amylases. Biotechnol Appl Biochem. 31:135-152.
    [121] Pareta R, Edieisinghe M J. 2006. A Novel Method for the Preparation of Starch Films and Coatings [J]. Carbohydr Polym, 63(3):425-431.
    [122] Pazlarova J, Votruba J. 1996, Use of zeolite to control ammonium in Bacillus amyloliquifaciens α-amylase fermentations[J]. Appl Microbiol Biotechnol, 45:314-318.
    [123] Pedersen H, Nielsen J. 2000, The influence of nitrogen sources on the α-amylase productivity of Aspergillus oryzae in continuous cultures[J]. Appl Microbiol Biotechnol, 53: 278-281.
    [124] Priest F.G. 1977, Extracellular enzyme synthesis in the genus Bacillus. Bacteriol Rev,41: 711 -753
    [125] Rani Gupta et al. 2003, Microbial a-amylases: a biotechnological perspective[J]. Process Biochem, 38:1599-1616
    [126] Richard F Tester, John Karkalas, Xin Qi.2004.Starch-Composition, Fine Structure and Architecture [J]. J. Cereal Sci., 39(2): 151-165.
    [127] Rukhaiyar R, Srivastava SK. 1995, Effect of various carbon substrate on a-amylase production from Bacillus sp.[J]. J Microb Biotechnol, 10: 76-82.
    [128] Salva T.J.G. and I.O. Moraes.1995.Effect of the Carbon Source on Alpha-Amylase Production by Bacillus subtilis BA-04. Revista de Microbilogia, 26(1):46-51
    [129] Shaw A, R. Bott, andA.G. Day. 1999.Protein engineering of α-amylase for low pH performance. Curr. Opin. Biotechnol,10:349-352.
    [130] Shogren R L. 2000. Modification of Maize Starch by Thermal Processing in Gglacial Acetic Acid [J]. Carbohydr Polym, 43(4): 309-315.
    [131] Slaughter, S.L., Ellis, P.R., Butterworth, P.J., 2001a. An investigation of the action of porcine pancreatic-amylase on native and gelatinised starches[J]. Biochim Biophys Acta 1525, 29-36.
    [132]Slaughter,S.L.,Ellis,P.R.,Jackson,E.C.,Butterworth,P.J.,2001b.The effect of guar galactomannan and water availability during hydrothermal processing on the hydrolysis of starch catalysed by pancreatic alpha-amylase[J].Biochim Biophys Acta Gen.Sub,1571,55-63.
    [133]Susana Rodn'guez Couto et al.2006,Application of solid-state fermentation to food industry-A review[J].J Food Eng,76:291-302
    [134]Suvd D,Z.Fujimoto,K.Takase,M.Matsumura and H.Mizuno.2001.Crystal Structure of Bacillus stearothermophilus a-Amylase:Possible Factors Determining the Thermostability.J Biochem,129:461-468.
    [135]Syu M.J.and Y.H.Chen.1997.A study on the a-amylase fermentation performed by Bacillus amyloliquefaciens.Chem Engine J,65:237-247.
    [136]Takase K.1993.Effect of mutation of an amino acid residue near the catalytic site on the activity of Bacillus stearothermophilus a-amylase.Eur J Biochem,21 1:899-902.
    [137]Takashi Kuriki et al.1999,The Concept of the a-Amylase Family:Structural Similarity and Common Catalytic Mechanism[J].Journal of Biosci and Bioeng,87(5):557-565
    [138]Tester R.F.,Qi X.,Karkalas J..2006,Hydrolysis of native starches with amylases[J].Animal Feed Sci and Tech,130:39-54
    [139]Tester,R.F.,Debon,S.J.J.,Sommerville,M.D.,2000.Annealing of maize starch[J].Carbohydr Polym,42,287-299.
    [140]Tester,R.F.,Karkalas,J.,Qi,X.,2004b.Starch structure and digestibility enzyme-substrate relationship[J].World Poult.Sci.J.,60,186-195.
    [141]Thompson D.B..2000,On the non-random nature of amylopectin branching[J].Carbohyd Polym 43:223-239
    [142]Tonkova A,V.Ivanova,E.Dobreva,M.Stefanova and D.Spasova.1994.Thermostable a-amylase production by immobilized Bacillus licheniformis cells in agar gel and on acrylonitrile/acrylamide membranes.Applied Microbiol and Biot,41(5):517-522.
    [143]Tonomura K,Suzuki H,Nakamura N,et al.1961,On the inducers of a-amylase formation in Aspergillus oryzae[J].Agric Biol Chem,25:1-6.;
    [144]Ueno S,Miyama M,Ohashi Y,et al.1987,Secretory enzyme production and conidiation of Aspergillus oryzae in submerged liquid culture[J].Appl Microbiol Biot,26:273-276.
    [145]Vihinen M,Mantsala P.1989,Microbial amylolytic enzymes[J].Crit Rev Biochem Mol Biol,24:329-418
    [146] Welker N.E and L.L.Campbell. 1963 .Induction of α-amylase of Bacillus stearothermophilus by maltodextrins . J. Bacteriol, 86(4):687-691.
    [147] White D.R, Jr, Hudson P., Adamson J.T. 2003. Dextrin characterization by high-performance anion-exchange chromatography-pulsed amperometric detection and size-exclusion chromatography multi-angle light scattering refractive index detection [J]. Journal of Chromatogra A, (997): 79-85.
    [148] White D.R., Hudson P., Adamson J.T.. 2003. Dextrin characterization by high-performance anion-exchange chromatography-pulsed amperometric detection and size-exclusion chromatography-multi-angle light scattering-refractive index detection[J], J Chromatogr, 997:79-85
    [149] William, F. M..1983.Microbial Enzymes and Biotechnology, 1-22.
    [150] Windish,W. W.and Mhatre N. S. 1965.Microbial Amylases.Adv Appl microbiol, 7.273-304
    [151] Yabuki M., Ono N., Hoshino K., Fukui S.. 1977. Rapid induction of aamylase by non-growing mycelia of Aspergillus oryzae . Appl Environ Microbiol. 34: 1-16.
    [152] Yankov D ., Dobreva E ., et al .1986. Study of optimum conditions and kinetics of starch hydrolysis means of thermaostable a-amylase[J].Enzyme Microb. Technol,8:665.
    [153] Yovita S.P. Rahardjo, J. Tramper, A. Rinzema. 2006,Modeling conversion and transport phenomena in solid-state fermentation: A review and perspectives [J]. Biotechnol Adv24: 161- 179
    [154] Zhang Q., Tsukagoshi N., Miyashiro S.,et al. 1983,Increased production of α-amylase by Bacillus amyloliquefaciens in the presence of glycine[J]. Appl Environ Microbiol, 46: 293-295.
    [155] ZoWa S., Olempska-Beer et al. 2006,Food-processing enzymes from recombinant microorganisms-a review[J]. Regul Toxicol Pharm ,45 : 144-158

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700