新型金属阻尼器的减振机理及其在桥梁抗震中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
阻尼就是使自由振动衰减的各种摩擦力和其他阻碍力,而安置在结构上的特殊构件可以提供运动的阻力,耗减能量的装置,称之为阻尼器。有效地设置阻尼器能改善结构在地震作用下的表现,特别是能保障如桥梁等国民生命线工程在地震作用后的正常使用。在桥梁工程中使用阻尼器类产品已成为国内外桥梁工程师的共识,在欧美、日本、新西兰等国家和地区,桥梁设计必须要考虑使用阻尼器来抗震、抗风。我国新建大桥如苏通大桥已开始使用阻尼器,但均限于进口产品,国内善无生产高性能阻尼器的能力。对阻尼器进行系统深入的研究很有必要。
     本文对国内外现有阻尼器类型进行了工作机理分析,在此基础上研发了两种新型的金属阻尼器,对其进行理论设计、有限元验证、试验测试和整桥动力分析,为工程应用提供了科学依据。
     本文首先将国内外现有阻尼器类型进行总结分类,对每一类型有代表性的阻尼器产品进行结构分析,工作机理分析,理论力学模型简化,总结其使用条件和使用性能优缺点。
     本文研发了两种新型的金属阻尼器:E型和C型金属阻尼器。首先通过理论设计确定了该金属阻尼器的结构形式和截面尺寸,然后进行有限元分析验证理论设计的正确性,并在上海同济建设工程质量检测站对其使用性能进行测定。研究表明:①在设计荷载作用下,该阻尼器同时进入塑性屈服的面积大,吸收能量转化为塑性变形的能力强;②有限元分析结果和理论设计值很接近,验证了理论设计的正确性;③试验测试结果与有限元分析结果相当吻合,产品性能能够保证。
     本文探讨了国内铁路桥梁两种常见梁型在设置有几种新型阻尼器产品的情况下的抗震性能。与未设置阻尼器的常规桥梁支座布置方式对比,重点考察了墩顶、墩底的水平剪力降低效果和阻尼器吸收地震能量的能力。研究表明:①设置E型金属阻尼器能显著降低墩顶、墩底的水平剪力,吸收地震能力强;②设置摩擦隔振阻尼器能显著降低墩顶、墩底的水平剪力,吸收地震能力强;③设置速度锁定装置能显著降低墩顶、墩底的水平剪力,吸收地震能量很少,主要发挥了类似固定支座的作用,将地震力传递至下部结构中。
     综上所述,本文研制了E型和C型金属阻尼器,为国内首创。研制的阻尼器具有结构简单,耗能能力强,性能稳定等特点。应用此金属阻尼器能显著提升桥梁抗震性能,降低桥梁工程造价。本文的理论分析、有限元分析、试验测试、整桥抗震分析为阻尼器的工程应用提供了科学依据。
Damping is to make the free vibration attenuation of friction and other obstacles force, and placed in the structure of the particular component can provide the resistance movement, energy depletion of the device, called the damper. Effective damper settings can improve the structure of the earthquake under the performance, in particular, to protect bridges and other nationals such as the lifeline of the earthquake in normal use. The use of the bridge project damper products has become the consensus of bridge engineers at home and abroad, in Europe and the United States, Japan, New Zealand and other countries and regions, the bridge design must consider the use of dampers to seismic and wind. My new bridge if the Sutong Bridge has begun to use the damper, but are limited to imported products, domestic production of high-performance without good damper capacity. The damper system for in-depth study is necessary.
     In this paper, the existing domestic and international damper on the type of work carried out analysis on the basis of this research and development of two new metal damper, its design theory, finite element validation, test and dynamic analysis of the entire bridge for engineering applications To provide a scientific basis.
     This paper will be available at home and abroad to sum up damper type classification, a representative of each type of damper products structure, working mechanism analysis, theoretical mechanics model simplification, summing up its terms of use and advantages and disadvantages.
     This paper has developed two new metal damper: E-and C-type metal damper. First identified through theoretical design of the metal damper section of the structure and size, and finite element analysis verification of the correctness of the design and construction projects in Shanghai Tongji quality inspection stations to determine their performance. Research shows that:①in the design load, the damper at the same time to enter the area of plastic, energy absorption into the plastic deformation ability;②finite element analysis and design theory of value is very close to verify the correctness of the theory of design ;③test results and finite element analysis of a matching product performance guarantee.
     In this paper, two common domestic railway bridge-beam set up in a number of new products damper where the seismic performance. And not set damper bridge bearing the conventional arrangement of comparison, mainly inspected Liaodun top of the pier at the end of the level of effectiveness and reduce the shear damper the ability to absorb seismic energy. Research shows that:①set up E-type metal damper can significantly reduce the top pier, the pier at the end of the level of shear, a strong ability to absorb the earthquake;②friction isolation damper settings can significantly reduce the top pier, the pier at the end of the level of shear, absorbing earthquake Ability;③set speed locking device can significantly reduce the top pier, the pier at the end of the level of shear, absorb seismic energy rarely, played a major role similar to fixed-bearing, power transmission to the earthquake in the lower part of the structure.
     To sum up, this paper has been developed E-and C-type metal damper for domestic first. Development of the damper is simple in structure, energy and strong, stable performance, and other characteristics. Application of this metal damper can significantly improve the bridge seismic performance, lower cost of the bridge project. In this paper, the theoretical analysis, finite element analysis, test, the entire bridge seismic analysis to damper the application provides a scientific basis.
引文
[1] 胡幸贤.地震工程学.北京:地震出版社,1988:1-4
    [2] 周福霖.工程结构减震控制.北京:地震出版社,1996:159-206
    [3] Yao J T P.Concept of structural control.ASCE:J Struct Div,1972,98(7):125-129
    [4] 司维明,周福霖.土木工程结构振动控制的研究进展.世界地震工程,1997,13(2):8-12
    [5] 刘季,周云.结构减振控制研究与运用状况(上、下).哈尔滨建筑大学学报,1995,28(4):1-10
    [6] Caughey T K, Karyeaclis M P.Stability of semi-active impact damper.J Appl Mech,1989,56(4):926-940
    [7] 唐家祥,刘再华.建筑结构基础隔震.武汉:华中理工大学出版社,1993:78-85
    [8] 刘季,李惠.液压质量控制系统控制底层柔性结构地震反应的试验研究.地震工程与工程振动,1994,14(3):38-46
    [9] 王肇民,张旭升.斜拉弹簧质量阻尼器的风振控制机理[J].建筑结构学报,1998,19(3):50-57
    [10] 瞿伟廉,程慰塑,毛增达等.设置粘弹性阻尼器钢结构高层建筑抗震抗风设计的实用方法.建筑结构学报,1998,19(3):41-49
    [11] 戴航,关国雄,张佑启.带缝钢筋混凝土高剪力墙抗震性能研究.东南大学学报,1997,27(9):39-44
    [12] 刘伟庆,魏琏.摩擦耗能支撑钢筋混凝土框架的振动台试验研究.建筑结构学报, 1997,18(3):29-37
    [13] 刘季,周永程,雷立宏.结构主动控制AMD系统分析及其优化设计[J].地震工程与工程振动,1996,16(3):55-60
    [14] 李惠,铃木祥之,吴波.AMD控制结构地震反应的试验研究[J].振动工程学报,1999,12(2):223-228
    [15] 顾明,王晓勇.用主动调频质量阻尼器控制高层建筑的风致振动[J].地震工程与工程振动,1998,18(3):88-95
    [16] 李爱群,瞿伟廉,程文壤.南京电视塔的混合振动控制研究[J].建筑结构学报,1996,17(3) :9-17
    [17] 蓝宗建,房良,王新德等.钢筋混凝土巨型框架多功能减振结构体系.工业建筑,2002,(2):1-3
    [18] 陈波,潘汉明,瞿伟廉.土木工程结构模糊控制发展综述.武汉理工大学学报,2001,23(7):80-82
    [19] 瞿伟廉,李卓球,姜德生等.智能材料结构系统在土木工程中的应用.地震工程与工程振动,1999,19(3):87-95
    [20] 吴波,孙科学,李惠等.形状记忆合金力学性能的试验研究[J].地震工程与工程振动,1999,19(2):104-111
    [21] 瞿伟廉,袁润章,项海巩.ER智能材料减震结构体系的研究.振动工程学报,1999,12(2):193-201
    [22] 韩玉林,李爱群,林萍华.基于形状记忆合金耗能器的框架振动控制试验研究.东南大学学报,2000,30(4):16-20
    [23] 欧进萍,邹向阳.粘弹性耗能器的性能试验研究.振动与冲击,1999,18(3):12-19
    [24] 周云,徐赵东,赵鸿铁.粘弹性阻尼结构的性能、分析方法及工程运用[J].地震工程与工程振动,1998,18(3):142-148
    [25] 刘季,陈月明.粘弹性阻尼器结构的减震研究.哈尔滨建筑大学学报,1998,31(5):1-7
    [26] 隋杰英.粘弹性阻尼器性能试验研究:[东南大学博士学位论文].南京:东南大学,2000:105-111
    [27] 程文壤,隋杰英,陈月明等.宿迁市交通大厦采用粘弹性阻尼器的减震设计与研究.建筑结构学报,2000,21(3):30-35
    [28] 叶正强.工程结构减振粘滞流体阻尼器的动态力学性能试验研究:[东南大学硕士学位论文].南京:东南大学土木工程学院,2000:45-50
    [29] 叶正强,李爱群,徐幼麟.工程结构粘滞流体阻尼器减振新技术及其应用.东南大学学报,2002,32(3):466-473
    [30] 王亚勇,薛彦涛,欧进萍等.北京饭店等重要建筑的消能减震抗震加固设计方法.建筑结构,1998,18(2):32-36
    [31] 冼巧玲,周福霖,张传镁等.高层建筑用复合型摩擦消能支撑的设计试验和分析.世界地震工程,1996,(4):5-9
    [32] 冼巧玲,周福霖,俞公葬等.高层建筑新型摩擦消能减震体系.广东土木建筑,1996,(2):20-22
    [33] 冼巧玲,周福霖.复合型摩擦消能支撑的滞回模型.华南建设学院西院学报,2000,8(l):5-10
    [34] 李向真,欧海龙,程国亮.摩擦消能支撑钢框架结构的弹塑性地震反应时程分析.地震工程与工程振动,2002,22(3):154-159
    [35] 李爱群,丁大钧,曹征良.建筑结构摩阻式控制装置的力学与耗能分析.力学与实践,1994,(5):44-46
    [36] 李爱群,丁大钧,曹征良.摩阻式控制装置的抗震试验研究.工程抗震,1997,(8):10-12
    [37] 陈宗明等.新型抗震耗能支撑的试验研究.工程抗震,1993,(4):14-19
    [38] 刘伟庆.摩擦阻尼支撑框架的试验研究和理论分析:[东南大学博士学位论文].南京:东南大学土木工程系,1995:45-59
    [39] 刘伟庆,王曙光,戴航等.耗能支撑钢筋硅框架结构的工程应用[J].振动工程学报,1999,12(6):64-68
    [40] 孙峰,周云,俞公葬等.加劲圆环耗能器性能的试验研究[J].地震工程与工程振动,1999,19(3):115-120
    [41] 周云,刘季 .双环软钢耗能器的试验研究 .地震工程与工程振动, 1998,18(2):117-123
    [42] 周云,周福霖,邓雪松.铅阻尼器的研究和应用[J].世界地震工程,1999,15(l):53-61
    [43] 谭在树,钱稼茹.钢筋混凝土框架用粘滞阻尼墙减震研究.建筑结构学报,1998,19(2:)50-59
    [44] 郑正昌,森高英夫,下田郁夫等.鹿儿岛机场候机楼抗震补强—增设粘滞阻尼墙的结构三维弹塑性分析[J].建筑结构,2000,(6):20-23
    [45] Mostaghel N, Khodaverdian M. Dynamics of resilient-friction base isolator (R-FBI). Earthquake Engrg And Struct Dyn, 1987,15(3):379-390
    [46] Sladek J R, Klingner R E. Effect of tuned mass dampers on seismic response. ASCE:J Struct Div, 1983,10(9):2004-2009
    [47] Kaynia A M, Veneziano D, Biggs J M. Absorber system for earthquake excitation. ASCE:J Struct Div,1981,10(7):1465-1484
    [48] Soong T T, G. F Dargush. Passive energy dissipation systems in structural engineering. John Wiley&Sons,1997:78-83
    [49] 周云,邓雪松,黄文虎.耗能减震结构的抗震设计原则与设计方法[J].世界地震工程,1998,14(4):49-56.
    [50] Zhang R H, Soong T T. Seismic Design of Viscoelastic Dampers for Structural Applications. J SE,1992,118(5).
    [51] 欧进萍,丁建华.油缸间隙式粘滞阻尼器理论与性能试验.地震工程与工程振动,1999,19(4):82-89.
    [52] Inaudi J. A. Modulated homogeneous friction: a semi-active damping strategy. Earthquake Engineering and Structural Dynamics, 1997,26(3):361-376.
    [53] Hrovat D., Barak P. and Rabins M. Semi-active versus passive or active tuned mass dampers for structural control. J. Eng. Mech, 1983,109(3):691-705.
    [54] 沈崇棠,刘鹤年.非牛顿流体力学及其应用[M].北京:高等教育出版社,1989:36-63
    [55] Makris N, Constantinou M C. Viscous dampers: testing, modeling, application in vibration and seismic isolation[R]. Buffalo: State University of New York NCEER report-90-0028,1990:35-40
    [56] Terenzi G. Dynamics of SDOF systems with non-linear viscous damping. Journal of engineering Mechanics, 1999,125(8):956-963

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700