高速铁路中小跨度桥梁与轨道相互作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在中国高速铁路建设中,为节约耕地、减少路基沉降等问题,往往以桥梁代替路基作为轨道的支撑结构,由此产生的无缝线路和铁路桥梁之间的相互作用问题,是高速铁路桥梁设计的重要课题之一。
     桥上铺设无缝线路后,在温度、徐变、制动力和地震作用下,梁轨间产生相对位移,由于梁轨之间的非线性约束作用,将在轨道、梁体和墩台中引起纵向力。该纵向力既是轨道强度和稳定性的控制性指标,也是影响桥梁下部结构设计的重要因素。高速铁路桥梁中,应用范围最广、数量最多的结构形式为标准跨度的简支梁和连续梁桥。在跨越既有线时,也常采用斜拉桥的形式。研究中小跨度简支梁、连续梁和斜拉桥上梁轨系统的受力特性有其必要性。
     本文在吸收和借鉴国内外研究成果的基础上,建立了可进行温度、活载和地震响应分析的梁轨系统力学模型,编制了相关实用程序,对高速铁路中广泛使用的标准跨度简支梁、连续梁,以及应用日益广泛的斜拉桥进行了梁轨相互作用分析,探讨了设计参数对梁轨系统受力的影响,对简支梁、连续梁和独塔斜拉桥上梁轨系统的受力特点进行总结,并提出设计建议,本文主要内容包括:
     1、推导了线路纵向阻力的迭代公式,采用非线性杆模拟线路阻力、带刚臂的梁单元模拟梁体,建立了考虑加载历史和邻跨结构的梁轨系统模型。在进行温度和活载作用分析时,考虑了滑动支座摩阻力、扣件竖向刚度的影响;在进行地震响应分析时,还考虑了桩-土共同作用、桥墩非线性、地震动行波效应,以及梁体间的碰撞效应。通过与相关文献中的算例进行对比,证明模型的正确性。
     2、采用Visual Basic.net图形界面和Access数据库技术,基于ANSYS二次开发,开发了标准跨度简支梁和连续梁的实用有限元程序SBCWR和CBCWR,可分析温度、活载和地震,以及三者耦合作用下的梁轨系统响应,并探索性地开发了基于客户端/服务器端的梁轨分析程序。
     3、探讨了简支梁标准跨度的双线无砟轨道简支箱梁的跨数、截面形式、线路阻力、路基段钢轨长度、滑动支座摩阻系数、下部结构刚度等因素对梁轨相互作用的影响,分析不同地震激励方向和行波效应下的梁轨系统动力响应,以及轨道结构对简支梁桥动力特性和碰撞效应的影响。
     4、针对主跨为40-100m的双线无砟轨道连续梁,探讨相邻简支梁跨数、桥墩刚度等因素的影响。针对大跨度连续梁,设置多种小阻力扣件和钢轨伸缩调节器组合布置方案进行比选。参照国内外规范检算标准,推导无缝线路固定区极限温度跨长及各跨连续梁桥制动墩纵向刚度限值,讨论碰撞效应对连续梁上无缝线路的影响。
     5、分析了某槽型截面独塔斜拉桥梁轨系统纵向力分布规律,探讨相邻简支梁支座布置、斜拉桥结构体系、截面形式、桥塔和拉索温度变化及风载的影响;分析一致激励和行波效应下,斜拉桥梁轨系统的动力响应。
In China's high-speed railway, the embankment was often replaced by the bridge as the support of track to save farmland and reduce embankment settlement. The interaction between the continuously welded rail (CWR) and bridge was one of the important topics in high-speed railway bridge.
     After the CWR was laid on the bridge, the relative displacement took place between beam and track under the action of the temperature, creep, braking force and earthquake. Due to the nonlinear constraint between beam and track, the longitudinal force was generated in the track, beam and pier. The longitudinal force was both a controlling indicator of the track strength and stability. It was an important factor to affect the bridge design as well. In the high-speed railway, the bridge forms of the widest applied range and largest quantity were simply-supported beam and continuous beam with standard span length. The cable-stayed bridge was also often used across the existing line. It was necessary to study the force characteristics of the beam-track system on medium and small simply-supported beam, continuous beam and cable-stayed bridge.
     In this dissertation, on the basis of existing researches, the beam-track mechanics model for the temperature, live load and seismic response analysis was established. The related utility program was compiled. The beam-track interaction was analyzed for standard span length simply-supported beam and continuous beam widely used in high-speed railway as well as cable-stayed bridge of the increasingly widespread application. The impact of the design parameters on the beam-track system was explored. The beam-track system force characteristics on simply-supported beam, continuous beam and single-tower cable-stayed bridge were summarized, and the design proposals were put forward. The main contents in this dissertation included:
     1. The iterative formula of track longitudinal resistance was derived. The nonlinear bar elements were used to simulate the track resistance and the beam element with rigid arms was used to simulate the bridge. The beam-track finite element model was established considering the loading history and adjacent structures. Analyzing the temperature and live load, the impact of the movable bearing friction and vertical stiffness of the fastener was considered. Analyzing the seismic response, the pile-soil interaction, pier nonlinearity, traveling wave effect and pounding effect between beams were also taken into account. Compared with the examples in the relevant literatures, the correctness of the model was proved.
     2. Based on the ANSYS, the practical finite element programs, SBCWR and CBCWR, for simply-supported beam and continuous beam with the standard span length were developed by the Visual Basic.net graphical interface and Access database, which could be used to analyze beam-track system response under the temperature, live load, earthquake and three coupling. Based on the client/server, the beam-track analysis program was developed.
     3. It was explored that the span number of double unballasted track simply-supported box beams with standard span length, cross-sectional form, track resistance, roadbed track length, movable bearing friction, substructure stiffness and other factors made the impact on the beam-track interaction. Under the different seismic excitation directions and traveling wave effects, the dynamic response to the beam-track system was analyzed, and it was also analyzed that the track made the impact on the dynamic characteristics and pounding effect of simply-supported beams.
     4. It was explored that the span number of adjacent simply-supported beams, pier stiffness and other factors made the impact on the continuous beams with a main span of40-100m carrying double unballasted track. For the large continuous beam, the small resistance fastener and track expansion device arrangements were set to do the comparison. Based on the related standards, the maximum expansion length and minimum stiffness of continuous beam pier were put forward. It was discussed that the pounding effect made the impact on the CWR and continuous beam.
     5. The longitudinal force distribution for the beam-track system of an U-shape section and single-tower cable-stayed bridge was analyzed, and the impact of adjacent simply-supported beams, cable-stayed bridge structure system, cross-sectional form, tower and cable temperature variation as well as wind load was explored. Under the action of uniform excitation and traveling wave effect, the dynamic response to the beam-track system of cable-stayed bridge was analyzed.
引文
[1]孙树礼.京沪高速铁路桥梁工程[J].铁道标准设计,2008,6(6):1-4.
    [2]鲍列耶夫柯.铁路桥梁承受制动力的问题[M].桥梁译丛,1964.
    [3]Braking and acceleration force on bridges--Braking and starting tests on track, D 101/RP 1/E[R].ORE,1969.
    [4]Braking and acceleration force on bridges and interactions between track and structures--Thermal phenomena in the interaction between CWR and bridges in the case of a DB pre-stressed concrete bridge with ballasted track, D 101/RP 25/E[R].ORE,1984.
    [5]Fryba. Quasi-static distribution of braking and starting forces in rail and bridges[J]. Rail International,1974(11).
    [6]联邦德国铁路管理总局.DS 899/59铁路新干线上桥梁的特殊规程[S].张健峰译.北京:铁道部大桥工程局,1985.
    [7]Esveld C. Modern Railway Track[M]. MRT-Productions,1989.
    [8]Maragakis E, Douglas B M, Haque S, et al. Full-resonance tests of a railway bridge, 1996[C].ASCE.
    [9]Union Interationale Des Chemins De Fer U. UIC 774-3 Track/bridge interaction. Recommendations for calculations[S]. Paris:International Union of Railways,2001.
    [10]EuroPean Committee For Standardization. BS EN 1991-2:2003 Eurocaode 1:Actions on structures-Part 2:Traffic loads on bridges[S].2003.
    [11]Place D, Davis S, Barron M. Track-structure interaction on the Taiwan high speed rail viaducts:IABSE2003,2003[C]. IABSE.
    [12]Evangelista L, Petrangli M P, Traini G. The cable-stayed bridge over the Po river: IABSE2003,2003[C]. IABSE.
    [13]Moelter T M. Closed and open joints for bridges on high speed lines:IABSE2003, 2009[C]. IABSE.
    [14]Fitzwilliam D. Track structure interactions for the Taiwan High Speed Rail project: IABSE2003,2009[C]. IABSE.
    [15]Ruge P, Widarda D R, Schmalzlin G, et al. Longitudinal track-bridge interaction due to sudden change of coupling interface[J]. Computers & Structures, 2009,87(1-2):47-58.
    [16]Ruge P, Birk C. Longitudinal forces in continuously welded rails on bridgedecks due to nonlinear track-bridge interaction[J]. Computers & Structures, 2007,85(7-8):458-475.
    [17]Jean C V, Daniel D. Towards fully optimized high-speed railway viaducts:2008中国高速铁路桥梁技术国际交流会,北京,2008[C].
    [18]Calcada R, Delgado R, Matos A. Bridges for High-speed Railways[M]. London: CRC Press/Balkema,2009.
    [19]Calcada R. Track-Bridge Interaction on High-Speed Railways[M]. CRC Press/Balkema,2009.
    [20]Manterola J, Martinez C A. Prestressed concrete railway bridges[M]//CALCDA R, DELGADO R, MATOS A N C E. Bridges for High-speed Railways. London: 2009:93-124.
    [21]Nasarre J. Serviceablility limit states in relation to the track in railway bridges[M]//CALCADA R, DELGADO R, MATOS A N C E. Bridges for High-speed Railways. London:2009:211-220.
    [22]Millances Mato F. Track-structure interaction and seimic design of the bearings system for some viaducts of Ankara-Istanbul HSRL project[M]//CALCADA R. Track-Bridge Interaction on High-Speed Railways. London:CRC Press/Balkema, 2009:37-53.
    [23]Dutoit D. New evolutions for high speed rail line bridge design criteria and corresponding design procedures [M]//CALCADA A R. Track-Bridge Interaction on High-Speed Railways. London:CRC Press/Balkema,2009:1-6.
    [24]Petrangeli M P. The Italian experience:two case studies [M]//Calcada A R. Track-Bridge Interaction on High-Speed Railways. London:CRC Press/Balkema, 2009:139-148.
    [25]Matsumoto N, Asanuma K. Some experience on track-bridge interaction in Japan[M]//CALCADA R. Track-Bridge Interaction on High-Speed Railways. London: CRC Press/Balkema,2009:77-94.
    [26]Simoes R, Calcada R, Delgado R. Track-bridge interaction in railway lines: Application to the study of the bridge over the River Moros[M]//CALCADA R. Track-Bridge Interaction on High-Speed Railways. London:CRC Press/Balkema, 2009:201-210.
    [27]Okelo R, Olabimtan A. Nonlinear Rail-Structure Interaction Analysis of an Elevated Skewed Steel Guideway[J]. Journal of Bridge Engineering,2011,16(3):392-399.
    [28]张建.刚构桥上无缝线路的ANSYS分析及二次开发[D].长沙:中南大学,2007.
    [29]王光前.桥上无缝线路的伸缩力及其变形随梁温变化时的重分布[J].铁道标准设计,1984,4(4):8-15.
    [30]段承慈.有碴钢筋混凝土梁桥上无缝线路钢轨挠曲附加力、支座受力及墩顶位移的试验研究[J].长沙铁道学院学报,1986(1):59-72.
    [31]卢耀荣,冯淑卿.桥上无缝线路挠曲力的计算[J].铁道学报,1987,9(6):56-67.
    [32]卢跃荣.桥上无缝线路伸缩调节器的结构及技术条件[J].铁道建筑,1985(2):10-13.
    [33]卢耀荣.再议中国与德国桥上无缝线路设计理念的差异[J].铁道建筑,2007(6):75-77.
    [34]广钟岩.铁路无缝线路(第一版)[M].中国铁道出版社,1989.
    [35]卜一之.高速铁路桥梁纵向力传递机理研究[D].西南交通大学桥梁隧道及结构工程,1998.
    [36]蒋金洲.桥上无缝线路钢轨附加纵向力及其对桥梁墩台的传递[J].中国铁道科学,1998,19(002):67-75.
    [37]蒋金洲,卢耀荣.我国客运专线桥上无缝线路采用小阻力扣件的建议[J].铁道建筑,2007(11):90-93.
    [38]阴存欣.铁路桥梁纵向附加力的静动力非线性分析与仿真研究[D].北京:铁道部科学研究院,2000.
    [39]阴存欣.铁路桥梁纵向力动力非线性仿真技术[J].中国铁道科学,2001,22(005):122-127.
    [40]阴存欣.铁路桥梁在列车纵向制动作用下的动力反应分析[J].中国铁道科学,2000,21(2):8-18.
    [41]杨梦蛟.轨道结构与桥梁共同作用力学计算模型的研究[J].中国铁道科学,2001(03):60-65.
    [42]马坤全,陈文艳.轨道交通高架桥合理抗震设计参数及抗震措施研究[J].中国铁道科学,2001,22(4):63-68.
    [43]蔡成标.高速铁路特大桥上无缝线路纵向附加力计算[J].西南交通大学学报,2003,38(5):609-614.
    [44]马战国.中小跨度长联连续梁桥桥上无缝线路纵向力的研究[J].中国铁道科学,2003,24(1):59-64.
    [45]马战国.既有线简支梁桥无缝线路计算分析[J].铁道建筑,2006(007):77-79.
    [46]铁道部科学研究院.铁建设函[2003]205号新建铁路桥上无缝线路设计暂行规定[S].北京:中国铁道出版社,2003.
    [47]朱剑月,耿传智.PC简支梁铁路桥墩身动力响应的特解边界元分析[J].中国铁道科学,2004,25(2):31.34.
    [48]Qingyuan X, Xiaolin Z, Zhiping Z, et al. Mechanics model of additional longitudinal force transmission between bridges and continuously welded rails with small resistance fasteners[J]. Journal of Central South University of Technology, 2004,11(3):336-339.
    [49]徐庆元,陈秀方.小阻力扣件桥上无缝线路附加力[J].交通运输工程学报,2003,3(1):25-29.
    [50]徐庆元,王平,屈晓晖.高速铁路桥上无缝线路断轨力计算模型[J].交通运输工程学报,2006,6(3):23-26.
    [51]徐庆元,陈秀方,李树德.高速铁路桥上无缝线路纵向附加力研究[J].中国铁道科学,2006,27(3):8-12.
    [52]徐庆元.高速铁路桥上无缝线路纵向附加力三维有限元静力与动力分析研究[D].中南大学,2005.
    [53]徐庆元,张旭久.高速铁路博格纵连板桥上无砟轨道纵向力学特性[J].中南大学学报(自然科学版),2009,40(2):527-531.
    [54]吴斌,张勇,曾志平,等.温度及收缩荷载下路基上双块式无砟轨道力学及裂缝特性研究[J].铁道科学与工程学报,2011,8(1):19-23.
    [55]陈鹏,高亮,冯雅薇,等.连续梁桥上无缝线路纵向附加力的变化规律[J].北京交通大学学报:自然科学版,2007,31(1):85-88.
    [56]陈鹏.高速铁路无砟轨道结构力学特性的研究[D].北京交通大学道路与铁道工程,2008.
    [57]曾志平,陈秀方,金守华,等.跨兴闫公路桥钢轨伸缩调节器动力特性试验[J].铁道建筑,2007(005):79-80.
    [58]曾志平,陈秀方,金守华,等.跨兴闫公路特大桥无缝线路综合试验研究[J].铁道科学与工程学报,2007,4(2):34-38.
    [59]李秋义,孙立.桥墩温差荷载引起的桥上无缝线路钢轨附加力[J].中国铁道科学,2007,28(4):50-54.
    [60]闫子权.不同型式桥梁无缝线路纵向力研究[D].北京交通大学道路与铁道工程,2009.
    [61]闫子权.城轨桥梁更换支座对桥上无缝线路的影响[J].都市快轨交通,2008,21(5):48-52.
    [62]张迅,斯朗拥宗,李小珍.桥墩温差荷载对连续梁桥上无缝线路纵向附加力的影响[J].铁道建筑,2008(12):4-6.
    [63]张华平.高铁中小跨度连续梁桥梁轨相互作用研究[D].中南大学桥梁与隧道工程,2010.
    [64]赵卫华.斜拉桥上无缝线路设计计算方法研究[D].西南交通大学道路与铁道工程,2010.
    [65]赵卫华,王平,曹洋.大跨度钢桁斜拉桥上无缝线路制动力的计算[J].西南交通大学学報,2012,47(3):361-366.
    [66]铁道第三勘察设计院集团有限公司,中铁第四勘察设计院集团有限公司,中国铁道科学研究院.TB 10621-2009高速铁路设计规范(试行)[S].北京:中国铁道出版社,2010.
    [67]徐彩彩.地震作用下有砟轨道变形特性研究[D].西南交通大学道路与铁道工程,2011.
    [68]曲村,高亮,乔神路,等.高速铁路长大桥梁CRTS Ⅰ型双块式无砟轨道无缝线路影响因素分析[J].铁道工程学报,2011(3):46-51.
    [69]曲村,高亮,乔神路.高速铁路长大桥梁CRTS Ⅰ型板式无砟轨道无缝线路力学 特性分析[J].铁道标准设计,2011(4):12-16.
    [70]李伟强,唐进锋.桥上无缝线路纵向力作用下桥墩强度安全储备量分析[J].石家庄铁道学院学报,2005,18(003):17-19.
    [71]唐进锋,尹华拓,曾志平,等.温度梯度作用下板式无砟道岔岔区板力学特性分析[J].铁道科学与工程学报,2011,8(1):24-28.
    [72]中铁第四勘察设计院集团有限公司.铁路无缝线路设计规范(送审稿)[S].2008.
    [73]朱彬.客运专线跨区间无缝线路桥上钢轨伸缩调节器的设置[J].铁道标准设计,2008(z1):86-89.
    [74]朱彬.大跨度钢箱混合梁斜拉桥无缝线路设计研究[J].铁道标准设计,2012,2(2).
    [75]田卿.基于梁轨共同作用的高速铁路桥梁地震动力响应研究[D].长沙:中南大学土木工程学院,2012.
    [76]刘从新.考虑收缩徐变影响的斜拉桥梁轨相互作用研究[D].长沙:中南大学土木工程学院,2012.
    [77]刘舟.收缩徐变和日照温差对高铁连续梁桥梁轨纵向力影响研究[D].长沙:中南大学土木工程学院,2012.
    [78]闫斌,戴公连.高速铁路斜拉桥上无缝线路纵向力研究[J].铁道学报,2012,34(3):83-87.
    [79]闫斌,戴公连,董林育.客运专线斜拉桥梁轨相互作用设计参数[J].交通运输工程学报,2012,12(001):31-37.
    [80]Gonglian D, Bin Y. Longitudinal forces of continuously welded rail on high-speed railway cable-stayed bridge considering impact of adjacent bridges[J]. Journal of Central South University,2012,19(8):2348-2353.
    [81]闫斌,刘从新,杜凯,等.门式墩上高速铁路连续梁桥梁轨相互作用[J].华中科技大学学报:自然科学版,2012,40(003):81-84.
    [82]戴公连,闫斌,魏标.门式墩纵向刚度及其对无缝线路纵向力的影响[J].华中科技大学学报(自然科学版),2012(11):33-36.
    [83]徐庆元,陈秀方,周小林,等.高速铁路桥上无缝线路力学计算模型对比[J].交通运输工程学报,2005,5(3):19-24.
    [84]蔡成标,徐鹏.高速铁路无砟轨道关键设计参数动力学研究[J].西南交通大学学报,2010(4):493-497.
    [85]翟婉明,赵春发,蔡成标.磁浮列车与轮轨高速列车对线桥动力作用的比较研究[J].交通运输工程学报,2001,1(1):7-12.
    [86]李建中,魏标.基于位移的非规则梁桥抗震设计[J].土木工程学报,2011(08):95-101.
    [87]铁道部科学研究院.TB/T 1893-2006铁路桥梁板式橡胶支座[S].北京:中国铁道出版社,2006.
    [88]陈学喜,朱晞,高学奎.地震作用下桥梁梁体间的碰撞响应分析[J].中国铁道 科学,2005,26(6):75-79.
    [89]周国良,李小军,刘必灯,等.大质量法在多点激励分析中的应用,误差分析与改进[J].工程力学,2011,28(1):48-54.
    [90]张志超,张亚辉,林家浩.考虑行波效应的车桥系统地震响应分析[J].地震工程与工程振动,2010(4):8-16.
    [91]田卿.基于梁轨相互作用的高速铁路桥梁地震动力响应研究[D].长沙:中南大学土木工程学院,2012.
    [92]李建中,范立础.非规则梁桥纵向地震反应及碰撞效应[J].土木工程学报,2005,38(1):84-90.
    [93]王其昌,翟婉明,蔡成标,等.UIC60与CHN60钢轨性能比较[J].铁道标准设计,1999(3):21-24.
    [94]雷晓燕,圣小珍.现代轨道理论研究[M].北京:中国铁道出版社,2008.
    [95]李玲英.高速铁路中小跨度桥梁活载设计标准的探讨[D].长沙:中南大学土木工程学院,2011.
    [96]李阳春.桥墩温差荷载作用下桥上无缝线路钢轨附加力研究[J].铁道建筑,2008(2):6-9.
    [97]广钟岩,高慧安.铁路无缝线路(第四版)[M].北京:中国铁道出版社,2004.
    [98]黄艳.考虑轨道约束的铁路桥梁抗震研究[D].北方交通大学,2003.
    [99]李保友.提速干线钢桁梁桥上无缝线路纵向附加力研究[D].中南大学,2006.
    [100]陈秀方.连续梁桥上无缝线路附加力研究[J].中国铁道科学,2003(03):59-64.
    [101]刘文硕,戴公连.高速铁路中小跨径连续梁的设计与探讨[J].铁道科学与工程学报,2010,7(2):45-51.
    [102]中华人民共和国铁道部.GB50111-2006铁路工程抗震设计规范[S].北京:中国计划出版社,2006.
    [103]刘华宇,陈波.大跨度格构式拱结构对行波效应的响应研究[J].钢结构,2011(10):1-4.
    [104]方诗圣,章晓晖,方飞,等.行波效应对预应力混凝土曲线箱梁桥地震反应的影响[J].工程与建设,2012(2):220-222.
    [105]姜迎春,刘铁林,栾宇.考虑行波效应的二维框架结构的地震响应[J].西安建筑科技大学学报(自然科学版),2012(3):331-338.
    [106]马大炜,钱立新.高速铁路桥梁制动载荷研究[J].铁道学报,2000,22(5):116-120.
    [107]李勇.非一致地震激励下高架连续梁桥动力响应与控制研究[D].北京:北京工业大学土木工程,2012.
    [108]张迅.常用跨度连续梁桥墩顶纵向水平线刚度限值研究[D].成都:西南交通大学桥梁与隧道工程,2008.
    [109]TB10621-2009高速铁路设计规范(试行)条文说明[S].北京:中国铁道出版社,2010.
    [110]Daniell W E, Macdonald G J. Improved finite element modeling of a cable-stayed bridge through systematic manual tuning[J]. Engineering Structures, 2007,29(3):358-371.
    [111]Freire S, Negrao O, Lopesb V. Geometrical nonlinearities on the static analysis of highly flexible steel cable-stayed bridges[J]. Computers & Structures, 2006,31-32(84):2128-2140.
    [112]铁道第三勘察设计院.TB10002.1-2005铁路桥涵设计基本规范[S].北京:中国铁道出版社,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700