曲线梁桥地震反应特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
曲线梁桥由于其空间结构的不规则性所导致的弯扭耦合效应使得其地震响应与其它梁式桥结构有着很大区别。目前,国内外桥梁抗震设计规范对曲线梁桥有一些指导性意见,但并没有给出具体的抗震设计方法或快速评估方法,随着大量山区曲线梁桥工程的实施,其地震反应特性与抗震性能的研究亟待完善。本文依托印度尼西亚的一座实际公路曲线梁桥工程为研究背景,建立有限元分析模型。为使研究结论不致太过片面,笔者基于三种不同的曲线布局、三种不同的曲率半径、两种不同的支座布置方式等因素,对有限元模型进行扩展,一共建立了20个曲线梁桥模型(包括两种不同支座布置方式的直线梁桥模型),基本涵盖曲线桥梁结构的主要形式。对曲线梁桥结构的地震反应特性做了以下研究:
     1)综述了目前国内外有关曲线梁桥结构抗震研究的成果。重点介绍了有关其最不利输入角度的研究工作,并归纳和延伸了基于反应谱法的最不利输入角度计算公式,为后文的研究工作提供理论基础。
     2)对各种曲线梁桥模型的自振特性进行分析与总结,提出了将“振型角”作为判断类似不规则结构振型特性参数的方法。基于文中所述的最不利输入角度计算公式,对所有曲线梁桥模型的最不利输入角度进行计算,并与统计结果进行比较,验证了最不利输入角度简化计算方法的正确性。在此基础上总结了曲线梁桥结构各种地震反应量随曲率半径、地震动输入角度变化而变化的规律。
     3)采用时程动力分析方法对反应谱法所得结果进行验证。参照文中所述的5条选波原则,选取了15条实际地震动记录进行动力时程响应分析,将所得结果均值与转换的反应谱计算结果进行比较,验证了转化反应谱计算的精确性,再将转化谱计算结果与规范反应谱计算结果进行比较,结果表明误差很小。这说明对于曲线梁桥结构可以采用转换地震记录为反应谱的方式对结构进行反应谱分析代替时程记录的计算结果,在保证了精确性的同时也简化了计算工作。
     4)探讨对于曲线梁桥静力弹塑性分析的正确办法。因为曲线梁桥其自身结构的不规则性,常规的静力弹塑性分析方法中对于加载模式,监测位置等规定对于曲线梁桥结构是否实用暂无定论。本文研究了基于不同加载模式与不同监控位置下曲线梁桥结构Pushover曲线和性能点的特性差异,并对差异来源及结果本身进行评估,总结出适合于曲线梁桥结构静力弹塑性分析的正确方法。
The seismic response of the highway curved bridge is difference from other bridges for the coupling interaction between the moment and torsion resulted from its irregular space structure. At present, both in China and abroad, the seismic design code of bridge has given some design guidance for curved bridges but have not given the specific method for anti-seismic design or rapid evaluation. The study of the character of the seismic response and performance of curved bridge need to be improved with a great quantity curved bridge engineering have been constructed. In this paper, a finite element model is built up for the study of the seismic response and performance of curved bridge by taking an example of a curved beam bridge engineering in Indonesia. In the study,20seismic models are set from3curve styles,3radius of curvature and2arrangements of bearings so as to overall analysis of curve bridge. The study scope covers nearly all curve bridges style of highway, which develops from4parts below:
     1. Achievements on curved bridge from domestic and overseas are reviewed and summarized. In Chapter One, it is introduced of the most unfavorable angle of earthquake input and extended its calculation formula to provide the theory basis for further study of next stage.
     2. The natural vibration properties of curved bridge are analyzed and proposed the "Modal Angle" as criterion to differentiate irregular structure vibration mode properties parameters. Base on calculation formula of the most unfavorable angle of earthquake input, compare the results of curve bridge when input the most unfavorable angle to verify the accuracy of simplicity calculation.
     3. The results of time-history dynamic analysis are compared with response spectrum method in curve bridge seismic response. Refer to the principle of choosing seismic wave,15seismic history records are chose for time-history dynamic analysis. Simultaneously, the mean values of these records are contrast with the value of transformational response spectrum. Then, the value of transformational response spectrum is contrasted with the value of specification design response spectrum. It is verified of there is a very small percentage error in these values. That is to say, for curved bridge, not only it can gain the precision conclusion, but simplify the calculation, which substitute time-history dynamic analysis by transformational response spectrum.
     4. The static elastic-plastic analysis method of curved bridge is discussed. For the reason of irregular of curve bridge, it is open to discuss if it is reasonable that conventional lateral loading pattern, detecting position to use analysis the curve bridge. In the study, it gains correct methods to solve the curve bridge static elastic-plastic analysis basing on its characteristic under different lateral loading pattern and detecting position.
引文
[1]Anderson D L,Mitchell D,Tinawi R G.Performance of Concrete Bridges during the Hyogo-ken Nanbu(Kobe)Earthquake On January 17,1995.Canadian Journal of Civil Engineering.1996,23:(3).
    [2]刘季,刘志刚,贾抒.美国加州桥梁震害及加固.工程抗震,1997.2.
    [3]陈箐,刘岳梅编译.美国公路界对日本神户地震的考察与反思.国外桥梁,1998,4.
    [4]李鸿晶,陆鸣,温增平,罗韧.汶川地震桥梁震害的特征[J],南京工业大学学报,2009,31(1):24-29
    [5]AASHTO.Standard Specifications for High-way Bridges-16th Edition[s].American Association of State Highway and Transportation Officials,Inc,1996.
    [6]CALTRANS.Caltrans Seismic Design Criteria[s].Memo to Designers20-1,January 1999.
    [7]TNZ.Bridge Manual [s].Transit New Zealand, 1994.
    [8]Caltrans, Seismic Design Criteria[S],2006.6
    [9]日本道路协会.道路桥示方书同解说,V耐震设计篇[R].东京:日本道路协会,1996.
    [10]Eurocode 8-Design provisions for earthquake resistance of structures.Part2-Bridges. 1994.
    [11]中华人民共和国交通部标准.公路工程抗震设计规范(JTJ004-89).北京:人民交通出版社,1990.
    [12]中华人民共和国国家标准.铁路工程抗震设计规范(GBJI11-87).北京:中国计划出版社,1989年.
    [13]中华人民共和国行业推荐性标准.公路桥梁抗震设计细则(JTG/T B2-01-2008).北京:人民交通出版社,2008.
    [14]Tseng, W S., Penzien J., Seismic Analysis of Long Multiple-Span Highway Bridges[J], Earthquake Engineering and Structural Dynamics, 1975, 4:3-24.
    [15]Tseng, W S.. Penzien J., Seismic Response of Long Multiple-Span Highway Bridges[J], Earthquake Engineering and Structural Dynamics, 1975, 4:25-48.
    [16]Williams D,Godden W.Seismic response of long curved bridge structur-es:experimental model studies[J].Earthquake Engineering and Structural Dynami-cs,1979,7(2):107~128.
    [17]Kawashimak K,Penzien J.Theoretical and experimental dynamic behave-or of a curved model bridge structure[J]. Earthquake Engineering and Structural Dynamics,1979,7(2):129-145.
    [18]Chang P C, Heins C P. Seismic study of curved bridges using the rayleigh-ritz method[J].Computers&Structures,1985,21(6):1095~1104.
    [19]Abdel-Salam, M N., Heins C P., Seismic Response of Curved Steer Box Girder Bridges[J], Journal of Structural Engineering, 1988, 114(12): 2790~2800.
    [20]Desroches R,Fenves G L.Evaluation of recorded earthquake response of a curved highway bridge[J].Earthquake Spectra,1997,3(3):363-386.
    [21]T.S. Parasleva. A.J. Kappos and A.G. Sextos.Extension of modal pushover analysis to seismic assessment of bridges[J].Earthquake Engineering and Structural Dynamics, published online in Wiley InterScience.2006.
    [22]Mwafy A,Elnashai A,Yen W H. Implications of design assumptions on capacity estimates and demand predictions of multi-span curved bridges[J].Journal of Bridge Engineering,2007, 12(6):710~726.
    [23]Burdette N J,Elmshai A S,Lupoi A,etc. Effect of Asynchronous Earthquake Motion on Complex Bridges.Ⅰ:Methodology and Input Motion[J].Journal of Bridge Engineering,2008, 13(2):158~165.
    [24]李国豪,石洞,C P. Heins曲梁桥地震分析的有限单元法[J].同济大学学报,1984,23(1):1-21.
    [25]Qamarucddin,Alism,Qadeera.Dynamic response of horizontally curved girders[J].Journal of Structural Engineering, 1988,15(2):51~58.
    [26]黄剑源,谢旭.薄壁空间螺旋形曲线梁的约束扭转理论分析及结构计算方法[A].工程力学.1995,12(4):73-83.
    [27]吴善幸,谢旭,黄剑源.薄壁空间螺旋形曲线梁的约束扭转理论分析及结构计算方法[A].工程力学.1999,16(1):134-140.
    [28]袁万城,王玉贵,扬玉民,等.曲线梁桥空间地震反应分析[A].第十二届全国桥梁学术会议论文集[C].上海:同济大学出版社,1996.585-590.
    [29]秦权,张威,罗玲.用非弹性反应检查立交桥的抗震能力[J].土木工程学报,1996,29(4):3-10.
    [30]朱东生,虞庐松,刘世忠.不规则桥梁地震动输入主方向的研究[A].兰州铁道学院学报(自然科学版),2000,19(6):37-40.
    [31]朱东生,刘世忠,虞庐松.曲线桥地震反应研究[J].中国公路学报,2002,15(3):42-48.
    [31]聂利英,李建中,胡世德,范立础.曲线梁桥非线性分析及抗震性能评估[A].同济大学学报(自然科学版),2004,32(10),1360-1364.
    [32]高晓安,周锡元.曲线桥梁在多向地震作用下的动力分析方法.特种结构.2005,22(1).56-60.
    [33]Wilson E L,et al.Three dimensional Dynamic Analysis for Multi-component Earthquake Spectra[J].Earthquake Eng.Struct.Dyn,1982,10:471-476.
    [34]Smeby W,Der Kiurghian.Modal combination rules for multicomponent earthquake excitation.Earthquake Engineering and Structural Dynamics,1985(13):1-12.
    [35]Wilson E L,Suharwardy I,Habibullah A.A clarification of the orthogonal effects in a three-dimensional seismic analysis.Earthquake Spectra,1995(11)659-666.
    [36]Lopez O A,Torres R.Discussion of A clarification of"the orthogonal effects in a three-dimensional seismic analysis"by Wilson E L,Suharwardy I and Habibullah A,Earthquake Spectra,1996(12):357-365.
    [37]Menun C,Kiureghian A D.A replacement for the 30%,40% and SRSS rules for multicomponent seismic analysis.Earthquake Spectra,1998(14):163-163.
    [38]聂利英.李建中.范立础.复杂结构地震动输入方向的基本原理及其影响[J].地震工程与工程振动,2003,23(3):30-34.
    [39]冯云田,李明瑞.复杂结构的弹性地震反应分析[J].地震下程与工程振动,1991,11(4):77-86.
    [40]张俊杰,林道锦,胡世德.反应谱法确定地震动最不利输入方向[J].世界地震工程.1999,15(4):38-40.
    [41]范立础,聂利英,李建中.复杂结构地震波输入最不利方向标准问题[J].同济大学学报,2003,31(6):631-636.
    [42]周国良,河谷地形对多支撑大跨桥梁地震反应影响[D],中国地震局工程力学研究所博士学位论文,2010年5月(导师:李小军研究员)
    [43]陈志敏.SAP2000中文版使用指南.人民交通出版社,2006,306-309.
    [44]Fajfar P. Capacity spectrum method based on inelastic demand spectral. Earthquake Engineering and Structural Dynamics, 1999,28(9):979-993
    [45]Chopra A K, Goel R K. A modal pushover analysis procedure for estimating seismic demands for buildings. Engineering and Structural Dynamics,2002(31):561-582
    [46]Vision 2000 Committee. Performance-Based Engineering of Building[C]. Miranda E. Seismic Committee of the Structure Engineer Association of California. Oakland: Wiley Inc, 1995
    [47]FEMA 273. NEHRP Guidelines for the Seismic Rehabilitation of Buildings[C]. Building Seismic Safety Council, Washington, D.C.,1997
    [48]Sergio Brena-Presenter, Onur Ihtiyar, Assessment of FEMA 356 Performance Level Criteria for Orthogonally Reinforced Coupling Beams Through Experimental Testing, SEI(Structural Engineering Indtitute) Congress, May 16-19, 2007
    [49]Jon Heintz-Presenter, Eduardo Miranda, Overview of FEMA 440 Recommendations and Improvement of Modeling of Nonlinear Degrading Response, SEI(Structural Engineering Indtitute) Congress, May 16-19, 2007
    [50]Applied Technology Council(ATC). Improved Seismic Design Criteria for California Bridges: Provisional Recommendations[C]. ATC-32, Redwood City, Calif,1996
    [51]Applied Technology Council(ATC). Seismic Evaluation and Retrofit of Existing Concrete Buildings[C]. ATC-40, Redwood City, Calif,1996
    [52]HAZUS99. Earthquake Loss Estimation Methodology[R]. Technical Manual, National Institute of Building for the Federal Emergency Management Agency, Washington(DC),1999
    [53]中国工程建设标准化协会CECS160-2004,建筑工程抗震性态设计通则(试用)[S].北京:中国计划出版社.2004
    [54]FEM-A445. Next-Generation Performance-Based Seismic Design Guidelines, Program Plan for New and Existing Buildings, 2006.8

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700