紧邻既有线地铁车站深基坑工程稳定与变形特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了解决城市交通拥堵问题,缓解交通压力,适应国民经济发展的需要,城市轨道交通得到快速发展,地铁车站基坑工程也呈现出“大、深、紧、近”等特点。由于深基坑工程事故的多发性及后果的严重性,基坑工程作为一个古老又具有时代特点的结构与岩土工程问题,又逐步引起同行越来越多的关注。本文依托中国铁路工程总公司重点课题——紧邻既有线基坑设计与施工关键技术研究(项目编号:200902),针对深圳地铁5号线民治站和五和站基坑工程纵向全长紧邻既有线铁路或公路的复杂工程背景,综合运用现场试验、室内试验、理论分析和数值模拟等方法,研究了紧邻既有线不对称超载深基坑的稳定性及变形规律,主要研究内容和成果如下:
     (1)针对民治车站和五和车站纵向全长平行高路堤既有线,存在严重不对称静力超载和机车动载影响的问题,开展了现场列车动载试验,基于动载测试结果,采用动力和等效静力分析方法,研究了动、静载作用下不对称超载基坑围护结构体系的静、动力响应,获得了不同工况下围护结构内力、沉降变形、水平位移、既有线沉降等变化规律,评价了不对称超载基坑围护结构设计方案的合理性和适应性。
     (2)分别对等效静载、不考虑机车动载、机车运行时速60km/h、80km/h、120km/h等五种工况进行了参数对比研究。机车运行时速为120km/h时,动载影响系数可达到1.2,对围护结构体系受力和变形影响显著。而机车时速低于60km/h时,动载影响系数小于5%,设计验算时机车动载可简化为等效土柱静载作用。
     (3)为满足既有线路基不均匀沉降变形控制标准和支护结构稳定性的要求,通过现场动载测试及理论分析,明确提出既有线限速60km/h的安全运行标准,确保了基坑开挖施工和既有线运营安全。
     (4)依托民治站和五和站不对称超载基坑工程,选择典型测试断面,进行了连续墙水平位移和沉降、支撑内力、既有线沉降及水平位移等项目的大量现场监测,获得了不对称超载基坑围护结构体系的受力和变形规律,提出了不对称超载基坑围护结构体系的荷载模式和位移模式。不对称超载作用下,基坑开挖深度达到某一“临界深度”,围护结构体系出现整体扭转趋势,超载侧内力和变形明显大于无超载侧,无超载侧地连墙上部发生指向基坑外侧的水平位移,相应该部位主动土压力转变为被动土压力。
     (5)针对不对称超载基坑两侧围护结构受力特性的不同及存在向无超载侧整体偏转的变形特点,提出了不对称超载基坑围护结构体系采取非对称性支护的设计方法,以及对超载侧采取主动加固等技术措施,以平衡单侧高路堤不对称超载的影响。
In order to reduce traffic pressure and to solve the problem of city traffic jam, so as to adapt to the needs of the development of national economy, urban rail traffic has developed rapidly. And then the station foundation pit engineering becomes some new characteristics, such as more larger, deeper, closer and adjacent. Because of the multiple characteristics and serious consequences of the accidents about deep foundation pit engineering, deep foundation pit engineering, as an old structure and geotechnical engineering problems, has some new characteristics, then it gradually cause more and more attention. This paper is finished based on the major project supported by China Railway Engineering Corporation, named Research on Design and construction Key Technology of Foundation Pit near Existing Rail Line (No.200902). The foundation pit of Minzhi station and Wuhe station in Shenzhen subway No.5line, which longitudinal side of foundation pit parallels the existing railway or road line with high embankment. According to the complex engineering background of the foundation pit, research are carried out by field test, laboratory test, theory and numerical analysis, and the characteristics of the stability and deformation features of the foundation pit close to existing lines is studied. The main research contents and results are as follows:
     (1) According to the asymmetric overload of deep foundation pit of Minzhi station and Wuhe station, and its stability influenced by vehicle dynamic load induced by the high embankment existing lines, plenty of dynamic load tests are carried out. Based on the dynamic test results, the static or dynamic response of the supporting structure system for foundation pit are studied by the static and dynamic analysis method. The rules of the internal force, settlement and deformation, horizontal displacement of the supporting structure system, and the settlement of existing line under different conditions are obtained. The rationality and adaptability of the design program about supporting structure of deep foundation pit under action of asymmetric overload is evaluated.
     (2) The parameter study about the stability of supporting structure system of foundation pit under the five conditions, such as the equivalent static load, no locomotive dynamic load and locomotive speed of60km/h,80km/h,120km/h is carried out. when locomotive running speed is120km/h, dynamic load effect coefficient reaches1.2, its effects on the deformation and internal force of supporting structure system of foundation pit is prominent. But when the Locomotive speed is less than60km/h, dynamic load has little influence, and the dynamic load influence coefficient is less than5%. During the design analysis, locomotive dynamic load can be simplified as equivalent soil column static load when the Locomotive speed is less than60km/h.
     (3) Based on the results of test and theoretical analysis, the safe standards of the60km/h limited speed is put forward to meet the requirement of the settlement deformation standard for the existing line and the stability of supporting structure, and to ensure the safety of the foundation pit excavation construction and the existing line.
     (4) Relying on the foundation pit project of Minzhi station and Wuhe station, site tests including the displacement and internal force of the diaphragm wall or the braces, and settlement of the existing line. The characteristics of internal force and deformation for supporting structure system of deep foundation pit with asymmetric overload is summarized by the tests of the typical section. Based on the test and theoretical analysis results, the load and displacement model of the retaining structure of the foundation pit with asymmetric overload are proposed. Under action of the asymmetric overload, supporting structure system will appear the overall reverse trend when the foundation pit excavation depth reaches a ritical depth, the internal forces and deformations of the diaphragm wall at overloading side is significantly greater than the results of no overloading side. After the excavation depth reaches a ritical depth, the deformation direction of the upside of the diaphragm wall at no overloading side will point to outside of foundation pit. At the same time, the original active earth pressure in this region of diaphragm wall, which deformation direction pointing to outside of foundation pit, changes to passive earth pressure.
     (5) Based on the great difference such as the stress of supporting structure and the deformation direction of retaining structure system points to no overloading side of foundation pit, the asymmetric design method of the foundation retaining structure and the technical measuresis, such as take the initiative reinforcement for The overload side, etc, are put forward to balance asymmetric overload induced by high embankment.
引文
[1]刘建航,侯学渊.基坑工程手册[M].北京:中国建筑工业出版社,1997.
    [2]夏明耀,曾进伦.地下工程设计施工手册[M].北京:中国建筑工业出版社,1999.
    [3]赵锡宏.高层建筑深基坑围护工程实践与分析[M].上海:同济大学出版社,1996.
    [4]唐业清.基坑工程事故分析于处理[M].北京:中国建筑工业出版社,1999.
    [5]中华人民共和国建设部.JGJ 120-99建筑基坑支护技术规程[S].北京:建筑工业出版社,1999
    [6]中华人民共和国冶金工业部.YB 9258-97建筑基坑工程技术规范[S].北京:冶金工业出版社,1998.
    [7]深圳市建设局.SJG 05-96深圳地区建筑深基坑支护技术规范[S].深圳:深圳市勘察测绘院,1996.
    [8]潘昌实,Pande G N黄土隧道列车动荷载响应有限元初步数定分析研究[J].土木工程学报,1984,17(4):19-28.
    [9]梁波,蔡英.不平顺条件下高速铁路路基的动力分析[J].铁道学报,1999,21.(2):84-87.
    [10]李军世,李克训.高速铁路路基动力反应的有限元分析[J].铁道学报,1995,17(1):66-75.
    [11]刘维宁,夏禾等.地铁列车振动的环境响应[J].岩石力学与工程学报,1996,15(增刊):586-593.
    [12]刘维宁,张晌青.轨道结构在移动荷载作用下的周期解析解[J].工程力学,2004,21(5):100-102.
    [13]罗雁云.移动载荷作用下铁路柔性道口板动力分析[J].上海铁道大学学报,1998,19(6):11-16.
    [14]Rdcker, W. Measurement and evaluation of random vibration[C], Proceeding DMSR 77 Karlsruhel,1977,1:407-421.
    [15]潘昌实,谢正光.北京地铁列车振动对环境影响的探讨[C].隧道及地下工程学会第七届年会论文集,北京:1992.424-431.
    [16]潘昌实,谢正光.地铁区间隧道列车振动测试与分析[J].土木工程学报,1990,23(2):21-27.
    [17]潘昌实,谢正光.北京地铁列车振动对环境影响的探讨[J].振动与冲击,1995, 14(4):29-33.
    [18]李德武,高峰.隧道基底结构列车振动现场测试与分析[J].甘肃科学学报.1999,11(1):52-54.
    [19]李德武,高峰.金家岩隧道列车振动现场测试与分析[J].兰州铁道学院学报,1997,16(3):7-11.
    [20]张玉娥.地铁列车振动对隧道结构激振荷载的模拟[J].振动与冲击,2000,19(3):68-76.
    [21]夏禾,吴首,于大明.城市轨道交通系统引起的环境振动问题[J].北方交通大学学报,1999,23(4):1-7.
    [22]Volberg G. Propagation of Ground Vibrations near Railway Tracks[J]. J. of Sound and Vibration,1983,87(2):371-376.
    [23]Rucker W. Dynamic Behavior of Rigid Foundations of Arbitrary Shape on a Half Space[J]. Earthquake Engineering and Structural Dynamics,1982,66(5): 674-690.
    [24]Dawn T M. Ground Vibration from Passing Trains[J]. J. of Sound and Vibration, 1979,66(3):355-362
    [25]Dinning M G. Ground Vibration from Railway Operations [J]. J. of Sound and Vibration,1983,87(2):387-389.
    [26]Wilson G P. Control of Ground-Borne Noise and Vibration[J]. J. of Sound and Vibration,1983,87(2):339-350.
    [27]Bata Miloslav. Effects on Buildings of Vibrations Caused by Traffic[J]. J. of Buildings and Science,1977, (6):221-246
    [28]魏国成.曹妃甸一号路跨纳潮河大桥基坑防护设计概述[J].科技创新导报,2008,26:32-33.
    [29]蒋晔.地铁车站施工对铁路路基的影响分析[J].铁道标准设计(隧道地下工程),2008(6):73-75.
    [30]卢庆练.活荷载作用下的深基坑支护技术[J].铁道建筑技术(岩土工程),2004(5):41-42.
    [31]郅友成.既有铁路旁基坑开挖对高填方路堤稳定性的影响研究[J].公路交通科技,2006,3(26):31-34.
    [32]阎韩生,崔平宇等.既有铁路下框架顶进工作基坑的稳定性分析[J].地下空间与工程学报,2007,8(3):1438-1441.
    [33]孙鹏,夏景仁等.较大动荷载作用下深基坑的支护[J].辽宁建材,2005,(4):40-41.
    [34]张海彬,马伟等.临近铁路深基坑开挖防护技术[J].北方交通,2007,11:70-72.
    [35]陈东杰.上海铁路南站相邻基坑开挖变形影响研究[J].建筑科学,2005,5(21):59-63.
    [36]王江华,安彦鹏等.沿既有线深基坑支护设计与施工[J].路基工程,2008,2:169-170.
    [37]林驰,罗元方等.移动荷载下基坑支护结构响应与监测分析[J].武汉理工大学学报,2007,29(11):112-114.
    [38]毕湘利,周顺华等.列车振动荷载对邻近深基坑的既有站变形影响[J].同济大学学报,2004,12(32):1599-1602.
    [39]高华东.北京某深基坑开挖监测实例[J].岩土工程学报,2006,28:1853-1857.
    [40]谭峰屹,汪稔等.超大型基坑开挖过程中的信息化监测[J].岩土工程学报,2006,28(增刊):1834-1837.
    [41]潘培强.地铁深基坑施工中支护结构监测分析[J].湘潭大学自然科学学报,2004,4(26):105-108.
    [42]赵占厂,杨虹等.基坑支护系统受力计算与动态监测[J].长安大学学报,2002,6(22):50-52.
    [43]肖武权,冷伍明等.某深基坑支护结构内力与变形研究[J].岩土力学,2004,25(8):1271-1274.
    [44]廖鸿雁.珠海广场地铁车站基坑施工监测数据的研究分析[J].世界隧道,2000,37(5):23-27.
    [45]张定邦.某地下连续墙墙体位移与支撑结构内力分析[J].铁道标准设计,2001,21(11):34-35
    [46]李俊,张小平.某基坑位移、沉降和内力实测结果及预警值讨论[J].岩土力学,2008,29(4):1045-1052.
    [47]刘兴旺.软土地区基坑开挖变形性状研究[J].岩土工程学报,1999,21(4):456-460.
    [48]Peck R B. Deep Excavation and Tunneling in Soft Ground[C]. Proceedings.7th ICSMKFE. State-of-the-Art-Volume. Mexico City:1969.225-290.
    [49]徐浩峰,应宏伟等.某深基坑工程监测与流变效应分析[J].工业建筑,2003,33(7):11-14.
    [50]亓乐,施建勇等.南京地铁中和村车站基坑监测分析[J].工业建筑,2007,33(增刊):11-14.
    [51]毛巨省,唐筱慧等.地铁车站基坑围护结构内力与变形规律分析[J].西安科技 大学学报,2007,27(2):205-209.
    [52]丁勇春,王建华等.上海软土地区某深基坑施工监测分析[J].西安建筑科技大学学报,2007,39(3):333-338.
    [53]王建华,徐中华等.上海软土地区深基坑连续墙的变形特性浅析[J].地下空间与工程学报,2005,1(4):485-489.
    [54]汪中卫,刘国彬.复杂环境下地铁深基坑变形行为的实测研究[J].岩土工程报,2006,28(10):1263-1266.
    [55]杨有海,王建军等.杭州地铁秋涛路车站深基坑信息化施工监测分析[J].岩土工程学报,2008,30(10):1550-1554.
    [56]吴小将,刘国彬等.地铁车站地下连续墙裂缝控制标准的优化探讨[J].岩石力学与工程学报2005,24(增刊)2:5395-5399.
    [57]吴小将,刘国彬等.基于深基坑工程测斜监测曲线的地下连续墙弯矩估算方法研究[J].岩土工程学报2005,27(9):1086-1090.
    [58]刘国彬,王印昌等.实测钢筋计应力推算地下连续墙弯矩方法探讨[J].地下工程与隧道,2003,(1):6-12.
    [59]毛朝辉.基于监测数据的围护墙弯矩反分析及安全评估研究[D].上海:同济大学,2006.
    [60]李文广,张修成.基于监测数据的围护墙弯矩反分析研究[J].山东理工大学学报2006,20(3):31-39.
    [61]焦志斌,刘永绣.地下连续墙测试中弯矩的计算方法探讨[J].岩土工程学报,2006,28(增刊):1485-1488.
    [62]裴颖洁.地下连续墙的静力分析及m值讨论[D].天津:天津大学,2003.
    [63]王印昌.地下连续墙变形—内力的反分析方法[J].中国市政工程,2008(Z):59-62.
    [64]石钰锋,阳军生.石钰锋.紧邻铁路地铁车站基坑围护结构稳定性研究[D].中南大学,2010.
    [65]Simpson, B. Thirty-second Rankine lecture:Retaining structures Displacement and design[J]. Geotechnique.1992,42(4),541-576.
    [66]Cooke, R.W.,and Price,G. Horizontal inclinometers for the measurement of vertical displacement in the soil around experimental foundations[J]. Field Instr. in Geot. Eng.,1974,112-125.
    [67]Burland, J.B., and Hancock, R.J.R. Underground car park at the House of Commons[J]. Geotechnical aspects.Struct.Engr.1977,55(2),87-100.
    [68]Burland,J. B.,Simpson,B.,and St. John,H. D. Movements around excavations in London clay[J]. Soil Mech.1979,13-19.
    [69]Simpson, B., O'Riordan- N. J.,and Croft. D. D. A computer model for the analysis of ground movements in London clay[J]. Geotechnique.1979,29(2).149-175.
    [70]O'Rourke,T.D.Ground movements caused by braced excavations[J]. Geotech.Engrg. ASCE,1981,107(9),1159-1178.
    [71]Tedd, P Chard, B. M., Charles, J. A.,and Symons, I. F. Be haviour of a propped embedded retaining wall in stiff clay at Bell Common Tunnel[J]. Geotechnique 1984,34(4),513-532.
    [72]Finno, R.J.,Atmatzidis, D. K., and Perkins, S. B. Observed performance of a deep excavation in clay[J]. J. Geotech. Engrg.,ASCE,1989,115(8),1045-1064.
    [73]Hansmire, W. H., Russeil, H. A., Rawnsley, R.P, and Abbott, E. L. Field Performance of swctural slurry wall[J]. J. Geotech. Engrg., ASCE,1989,115(2), 141-156.
    [74]Ulrich, E. J. Internaily braced cuts in overconsolidated soils[J]. Geotech.Engrg., ASCE,1989,115(4),504-520.
    [75]Clough, R. W., and O'Rourke, T. D. Construction induced movements of insitu walls[C]. Proc.,ASCE Conf. on Des. and Performance of Earth Retaining struct., Geot.Spec.Publ.,Cornell Univ.,Ithaca, N.Y.,1990,25,439-470.
    [76]Lings, M. L., Nash, D.F T., Ng, C. W. W., and Boyce, M. O. Observed behavior of a deep excavation in Gault clay:a preliminary appraisal[C]. Proc.,10th Eur.Conf. Soil Mech., Vol.2, A.A.Balkema, Rotterdam, The Netherlands,1991,467-470.
    [77]Ng, C.W.W., Lings, M.L., and Nash, D. A T. Back analysing the bending moment in a concrete diaphragm wall[J]. Struct. Engr.,1992,70(23&24),421-426.
    [78]Lings, M. L., Nash, D. R T.,and Ng,C. W. W. Reliability of earth pressure Measurements adjacent to a multi-propped diaphragm wall[J]. Retaining structures, Thomas Telford,London,England,1993,258-269.
    [79]Ng, C. W. W., Lings, M. L., Simpson, B., and Nash, D. F. T. An approximate analysis of the three dimensional effects of diaphragm wall installation[J]. Ceotechnique, London,England,1995,45(3),497-507.
    [80]Ng, C. W. W., Simpson, B., Lings, M. L., and Nash, D. F T. Analysis of a multipropped excavation in stiff clay[J]. Can. Geotech. J., Ottawa, Canada 1998,35,115-130.
    [81]Charles, W. W. Ng. Observed Performance of Multipropped Excavation in Stiff Clay[J]. J Geotech and Geoenvir Engrg, ASCE,1998,127(3):889-905.
    [82]Long M. Database for retaining wall and ground movements due to deep excavations[J]. J Geotech and Geoenvir Engrg,ASCE,2001,127(3):203-224.
    [83]綦春明,聂春龙等.逐层开挖对支护结构体系工作性状影响数值分析方法研究[J].铁道科学与工程学报,2008,3(5):46-50.
    [84]蒋晔.大型地下车站基坑施工对周边环境的影响分析[J].学术专论,2008,6:27-30.
    [85]李艳华.反分析方法在基坑工程中的应用[J].广东水利水电,2000,3:17-20.
    [86]商东旭,祁萌等.多支撑地下连续墙稳定性分析[J].华北水利水电学院学报,2008,2(29):26-28.
    [87]李筱毅,潘威等.深圳地铁3号线老街站地下连续墙数值分析[J].山西建筑,2008,20(34):29-30.
    [88]高盟,高广运等.基坑开挖引起紧贴运营地铁车站的变形控制研究[J].岩土工程学报,2008,6(30):818-823.
    [89]刘庭金,莫海鸿等.深基坑逆作法动态施工数值模拟[J].铁道建筑,2008,6:62-64.
    [90]裴颖洁,郑刚等.两侧铰接地下连续墙的试验研究及数值分析[J].岩土力学,2008,1(29):279-284.
    [91]范巍,王建华等.连续墙与土体接触特性对深基坑变形分析的影响[J].上海交通大学学报,2006.
    [92]张鸿儒,侯永峰等.深基坑逆作开挖的三维效应数值分析[J].岩土工程学报,2006,28(增刊):279-284.
    [93]白永学.支护结构与土体共同作用的深基坑二维有限元分析[J].四川建筑,2006,5(26):75-76.
    [94]李刚.地铁车站深基坑地下连续墙变形特征分析[J].房屋建筑,100-102.
    [95]王晓妮.多支撑支护深基坑开挖得数值模拟[D].南京:河海大学,2006.
    [96]周波.基坑工程变形及支护结构与土相互作用研究[D].成都:成都理工大学,2006.
    [97]艾鸿涛.临近地铁隧道的深基坑开挖分析[D].上海:同济大学,2008.
    [98]焦清杰.墙锚式支护技术研究及其数值模拟[D].北京:中国地质大学,2008.
    [99]冉菲菲.软土地区深基坑地下连续墙变形预测研究[D].上海:上海交通大学船舶海洋与建筑工程学院,2007.
    [100]高峰.深基坑开挖对相邻建筑结构内力影响的研究[D].北京:北京工业大学,2007.
    [101]米然.深基坑开挖支护结构刚度变化对近邻建筑影响的研究[D].北京:北京 工业大学,2007.
    [102]王瑞科.深基坑支护结构变形的研究[D].西安:西安建筑科技大学,2007.
    [103]黄耿彩.受扰动地铁隧道土体在列车周期性振动荷载下位移规律的研究[D].上海:同济大学,2007.
    [104]卢萌盟.预应力锚索加固基坑的三维数值研究[D].焦作:河南理工大学,2005.
    [105]武亚军.基坑工程中土与支护结构相互作用及边坡稳定性的数值分析[D].大连:大连理工大学,2003.
    [106]徐中华.上海地区支护结构与主体地下结构相结合的深基坑变形性状研究:[D].上海:上海交通大学,2007.
    [107]沈细中.深基坑工程基本过程数值模拟及实时优化研究[D].武汉:武汉大学,2004.
    [108]中华人民共和国铁道部.10001-2005铁路路基设计规范[S].北京:中国铁道出版社,2005.
    [109]Itasca Consulting Group Inc. FLAC2D. Users manual[M].USA:Itasca Consulting Group Inc.,2005.
    [110]中华人民共和国建设部.GB50010-2002混凝土结构设计规范[S].北京:建筑工业出版社,2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700