粉土海床波流作用下海底管道稳定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
21世纪是海洋的世纪。近年来,我国加快了海洋油气资源的开发和利用,海底管道的铺设量逐年增加。在从近岸平台向陆地的油气输送中,管道输送仍然是目前最重要的运输方式之一。然而,海底管道所处的海洋环境复杂,管道周围底床在波浪、潮流等水动力的作用下极易产生冲刷,造成管道悬跨。悬跨段的管道没有了底床的支持力和摩擦力,在波浪、潮流力的作用下很容易发生振动,对管道的安全稳定性造成极大的破坏。
     本文基于大型物理模型试验,通过水槽中进行的管道试验所观察到的现象以及采集的数据进行整理分析,对管道的受力振动问题进行了系统的研究。
     本文介绍了目前国内外对于海底管道底床冲刷,受力振动问题的研究现状,并提出了本文的研究特点。对物理模型试验的试验条件,试验内容等进行了详细的描述。通过对试验中底床变化的细致观察,将海底管道周围底床冲刷和沙波形成过程进行详细的说明,总结出一定的规律。
     本文针对我国海底管道大都铺设于细颗粒物海床的特点,主要对粉土海床上海底管道的受力情况进行分析。对比不同组次的试验,总结出不同波浪要素,不同埋置深度海底管道的受力特征,并分析了流的作用对管道受力的影响,弥补了国内外关于波流联合作用研究的不足。
     本文通过中砂、极细砂海床与粉土海床的受力进行对比,分析底床对海底管道受力的影响。在此基础上对粉土海床平铺海底管道在波流联合作用下的受力过程进行详细的分析。此外,本文还试探性的引入了“剩余力”的概念,对单个波浪过程的作用进行分析,以便研究管道的振动趋势。
     最后,本文介绍了管道涡流振动的机理,并结合东方1-1管道的测量资料和所在研究区的概况,分析了有无台风两种情况下,海底管道的振动疲劳问题,对该区域的管道施工维护提供参考。
The twenty-first century is ocean century. In recent years, the exploitation of marine oil and gas has developed very fast in our nation. Thus, submarine pipelines have been increasing every year. Pipelines transportation is still one of the important transportation modes, delivering oil and gas from offshore platform to land. However, in complex marine environment, bed around pipelines arouse scour easily under the effect of the hydrodynamic terms, such as wave or tidal current, then result in span. The spanning pipelines will lose the supportive force and friction. When the wave or tidal current force acted on, the pipelines will vibrate. This will break the safety and stability of the pipelines extremely.
     The paper based on physical model tests, studied the force-induced vibration systematically through the phenomenon observed and the data collected in the tests.
     Research status at home and abroad presently is introduced, including scour of the bed and force-induced vibration, then the characteristic of the paper is brought forward. The conditions and content of the physical model tests are described detailedly. The courses of the scour aroud the pipeline and the formation of sand waves are explained in detail through the close observation of the change in bed, and certain rules are summarized too.
     The force acted on submarine pipelines in silty bed is analyzed mainly, because the pipelines are generally layed on fine sediments in our country. Through the contrast of different trials, the characteristic of the force influenced by the differences of the wave elements and the burial depth is summarized. Then the influence of the force under current is also analyzed, making up for the lack of the research at home and abroad about the effect under both wave and current.
     The influence of the force acted on pipelines on different kinds of seabed is studied by the contrast of the three sorts of beds- medium sand, fine sand and silt seabed. The process of the force acted on the submarine pipelines under both wave and current in silty bed is analyzed concretely on above basis. In addition, a new concept- residual force is introduced tentatively, which is used to study the effect in single wave period, in order to explain the development tendency of the pipelines vibration.
     At last, the mechanism of vortex-induced vibration is expounded. And the vibration fatigue of the pipelines is discussed by applying the survey data of DF1-1 GAS LINE and the general situation of the research area, under typhoon or not. This research will help the installation and the maintenance of the pipelines in the area.
引文
[1]江怀友,赵文智,闫存章,齐仁理,鞠斌山,王媛.世界海洋油气资源与勘探模式概述.海相油气地质,2008,13(3):5~10
    [2]潘继平.中国油气资源勘探现状与前景展望.地质通报,2006,25(9~10):1055~1059
    [3]李宁.我国海洋石油油气储运回顾与展望.油气储运,2003,22(9):30~32
    [4] Herbich J B. Offshore pipeline design elements. New York: Marcel Dekker, 1981
    [5]冯耀荣,王新虎,赵冬岩.油气输送失效事故的调查与分析.中国海上油气(工程),1999,11(5):11~14
    [6]金伟良,张恩勇,邵剑文,刘德华.海底管道失效原因分析及其对策.科技通报,2004,20(6):529~533
    [7]马良.海底油气管道工程.北京:海洋出版社,1987
    [8]闫澎旺.砂土对管道约束力的模型试验研究.海洋工程,1996,14(1):62~72
    [9]李玉成,陈兵.波浪对海底管线作用的物理模型实验及数值模拟研究.海洋通报,1996,15(4):58~65.
    [10]李玉成,陈兵,J.L.J.Marchal.波浪作用下海底管线的物理模型实验研究.海洋通报,1996,15(5):68~73
    [11]秦崇仁,彭亚.波浪作用下海底裸置管道周围的冲刷.港工技术,1995,3:7~12
    [12]羊皓平.振荡流中的冲蚀及其对管线所受水动力特性的影响,中国科学院力学所硕士学位论文,2001
    [13] Y.M.Chiew. Mechanics of local scour around submarine pipeline. Hydraulic, 1989, 116(4): 515~529
    [14] Y.M.Chiew. Effect of spoilers on wave-induced scour at submarine pipelines. Waterway, Port, Coastal and Ocean Engineering, 1993, 119(4): 417~428
    [15] B.L.Jensen, B.M.Sumer. Flow around and forces on a pipeline near a scoured bed in steady current. Offshore Mechanics and Arctic Engineering, 1990, 112: 206~213
    [16] Foda M A, Chang J Y, Law A W K.. Wave induced breakout of half-burial marine pipes. Coastal and Ocean Engineering, 1990, 116(2): 267~285
    [17] B.M.Sumer, J.Fredsoe. Scour below pipelines in waves. Waterway,Port,Coastal and Ocean Engineering, 1990, 116(3): 307~323
    [18] B.M.Sumer, J.Fredsoe. Onset of scour below a pipeline exposed to waves. International Offshore and Polar Engineering, 1991, 1(3): 189~194
    [19] B.M.Sumer, J.Fredsoe. Wave scour around struetures, Advances in Coastal and Ocean Engineering, 1997, 4: 191~248
    [20] Iwan R.Soedigdo, K.F.Lambrakosb, Billy L.Edgec. Prediction of hydrodynamic forces on submarine pipelines using an improved Wake II Model. Ocean Engineering, 1999, 26(5):431~462
    [21] Said R.Sabag, Billy L.Edge, Iwan Soedigdo. Wake II model for hydrodynamic forces on marine pipelines including waves and currents. Ocean Engineering, 2000, 27(12): 1295~1319
    [22] Ch.Madhu Sudhan, V.Sundar, S.Narasimha Rao. Wave induced forces around buried pipelines. Ocean Engineering, 2002, 29(5):533~544
    [23] Sirisup S., Karniadakis G.E., Saelim N., Rockwell D.. DNS and experiments of flow past a wired cylinder at low reynolds number. European Journal of Mechanics B-Fluids, 2004, 23:181~188
    [24] A.Vijaya Kumar, S.Neelamani, S.Narasimha Rao. Wave pressures and uplift forces on and scour around submarine pipeline in clayey soil. Ocean Engineering, 2003, 30: 271~295
    [25]马良,张日向.海底部分埋设管道在波流作用下水动力效应的实验研究.中国海上油气(工程),1998,10(4):33~37
    [26]李磊岩.海底管线悬跨段动力响应分析及其实验研究.中国海洋大学硕士学位论文,2004
    [27]高福平,顾小芸,吴应湘.考虑波-管-土耦合作用的海底管道在位稳定性分析方法.海洋工程,2005,23(1):6~12
    [28]任艳荣,刘玉标,顾小芸.海底管土相互作用研究概述.中国海洋平台,2004,19(1):26~30
    [29]李玉成.波浪对海上建筑物的作用.北京:海洋出版社,2002
    [30]李玉成,陈兵.海底管线上波浪力的大涡模拟及三步有限元数值模拟.海洋学报,1999,21(6):87~93
    [31]孙昭晨,邱大洪.浅水区海底埋设管线上非线性波浪力.大连理工大学学报,2000,40(S1):95~98
    [32]麦继婷,关宝树.用Morison方程计算分析悬浮隧道所受波浪力初探.石家庄铁道学院学报,2003,16(3):1~4
    [33]马良编译.部分埋入海底的管道上的波浪力.国外油气储运,1992,10(6):25~27
    [34]唐友刚,项忠权,李长升.悬空管线涡激振动强度分析.天津大学学报,1996,29(2):247~252
    [35]方华灿,隋信众.海底管道管跨的流激涡旋振动的试验研究与安全可靠性分析.中国海上油气(工程),1998,10(2):20~23
    [36]孟昭瑛,杨树耕,王仲捷.水下管道涡激振动的实验研究.水利学报,1994,7:43~50
    [37]肖芳淳.河底管道悬空段状态矩阵分析.石油规划设计,2001,12(3):16~20
    [38]余建星,罗延生,方华灿.海底管线管跨涡激振动响应的实验研究.地震工程与工程振动,2001,21(4):93~97
    [39]郭海燕,吴世明,王优龙.输液管道地震反应分析.地震工程与工程振动,1997,17(1):219~224
    [40] Coutanceau M. On the role of high order separation on the onset of the secondary instability of the circular cylinder wake boundary. C.R.Acad.Sci., 1988, 306:1259~1263
    [41] Katinas V., Perednis E., Svedoscius V. Vibrations of smooth and finned tubes in crossflows of viscous fluids with different turbulence levels. Heat Transfer-Soviet Research, 1991, 23:844~851
    [42] G.K.Furnes, J.Berntsen. On the response of a free span pipeline subjected to ocean currents. Ocean Engineering, 2003, 30:1553~1577
    [43] S.Hong, Y.R.Choi. Experiment study on the vortex-induced vibration of towed pipes. Journal of Sound and vibration, 2002, 249(4):649~661
    [44] Matteoluca F., Emmanuel D.L.. Coupling of structure and wake oscillators in vortex induced vibrations. Journal of Fluids and Structures, 2004, 1:116~133
    [45] Bruschi R, Vitali L.. Large-amplitude oscillations of geometrically nonlinear elastic beams subjected to hydrodynamic excitation. Journal of Offshore Mechanics and Arctic Engineering, 1991, 113(2):92~104
    [46] Housner G.W. Bending vibration of pipeline containing flowing fluid. Journal of Applied Mechanics, 1952, 19:205~208
    [47] Tao Xu, Bo Lauridsen, Yong Bai. Wave-induced fatigue of multi-span pipelines. Marine Struetures, 1999, 12:83~106
    [48] Paidoussis M.P., Issid N.T.. Dynamic stability of pipes conveying fluid. Journal of Sound and Vibration, 1974, 33(3):267~294
    [49]中华人民共和国行业标准.海岸与河口潮流泥沙模拟技术规程.人民交通出版社,1999
    [50]中华人民共和国行业标准.水工(常规)模型试验规程.中国水利水电出版社,1995
    [51]钱宁,万兆惠.泥沙运动力学.北京:科学出版社,2003
    [52] Andrew C.Palmer, Roger A.King. Subsea Pipeline Engineering. Tulsa Oklahoma of American: PennWell, 2004
    [53]李广雪.中国海洋石油总公司科技课题(项目)可行性研究报告.2005
    [54] Nath, J. H., T. Yamamoto. Force from fluid flow around objects. Proc.14th Coastal Eng. Conf., 1974, 3:1808~1827
    [55] Zhi-Peng Zanga, Bin Tenga, Wei Baib, Liang Cheng. A finite volume solution of wave forces on submarine pipelines. Ocean Engineering, 2007, 34:1955~1964
    [56] A.Vijaya kumar, S.Neelamani, S.Narasimha Rao. Wave interaction with a submarine pipeline in clayey soil due to random waves. Ocean Engineering, 2005, 32:1517~1538
    [57]方华灿.油气长输管线的安全可靠性分析.北京:石油工业出版社,2002
    [58]徐进.海底管道的疲劳可靠性评估,西南石油大学硕士学位论文,2006。
    [59] Boyun Guo. Offshore Pipelines. Oxford: Gulf Professional Publishing, 2005
    [60]刘贞飞,海底管道冲刷及波浪力试验研究,中国海洋大学硕士学位论文,2007
    [61]姚铁,海底管跨极限跨长的确定及其振动中同向横向的耦合作用,天津大学硕士学位论文,2004
    [62]陈涛.输油输气管道工程设计与施工技术及验收规范实用手册.广州:中国科技文化出版社,2006
    [63]樊晓,陈忠范.钢管混凝土抗弯刚度的分析及应用.常州工学院学报,2005,18:64~68

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700