噪音干扰下的混沌同步分析及支持向量机方法的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要研究了在噪音干扰下的混沌系统或复杂动力系统的同步以及支持向量机方法在动态心电信号的心率变异性分析中的应用。
     第一章介绍了混沌和混沌同步,随机微分方程稳定性和支持向量机方法的研究背景与进展,并给出了本文的结构。
     第二章首先介绍了一类非线性项满足全局Lipchitz条件的泛函微分方程,以及其在白噪音干扰下的响应系统。由于全局Lipchitz条件的存在,我们只需要设计合适的线性耦合项就可以达到混沌同步的目的。于是应用LaSalle不变原理,我们得到了单向耦合方式下混沌同步的充分条件。然后,我们以Hopfield人工神经网络和Chua混沌电路系统为例,进行了具体分析和数值模拟。
     第三章研究的是一类特殊的常微分方程,与第二章不同的是,其非线性项并不满足全局Lipchitz条件。虽然我们讨论的仍然是一类“特殊的”常微分方程,但却涵盖了如Lorenz混沌系统,Chen混沌系统,R(?)sslar混沌系统等多个著名的混沌系统。我们给出了非线性耦合的一般形式,并分析了混沌同步的充分条件,其中涉及到了原始系统的有界性。同时,我们还给针对3个具体的混沌系统设计了特殊的非线性耦合项,以避免对系统界值的估计。
     第四章中,我们讨论了第二章中的系统在双向耦合方式下的同步条件,并从理论上分析了混沌系统在双向耦合的方式下同步到原始系统的可能性。同时,我们还以一个具体的Hopfield神经网络系统和Chua电路混沌系统为例进行具体的实例分析,并给出了相应的数值模拟。
     在第五章中,我们将分别对有色噪音的情形以及平移意义下的广义同步进行讨论和分析,并对噪音干扰下的混沌同步进行小节。
     第六章的目的在于运用支持向量机方法,对动态心电信号按心率变异的量化指标进行分类。多组试验表明,支持向量机方法的准确性和稳定性较传统线性分类方法均具有明显优势。此外,支持向量机方法与综合指标的结合,不仅可以区分自主神经系统功能的正常与不正常样本,甚至还可以对自主神经系统功能的正常与多种不正常样本进行多类划分,为机器自动诊断心电信号提供了一种新的可行性途径。
     最后,我们在第七章中回顾本文的主要工作,并对相关课题的研究工作进行引申和展望。
In this thesis, we mainly investigate chaos synchronization with noise perturbed and the application of support vector machine (SVM) in the Holter ECG monitoring analysis based on the heart rate variability (HRV).
     This thesis is organized as follows: In Chapter 1, we introduce the research background and progress for chaos and chaos synchronization, the stability of stochastic differential equations and support vector machine. Also we display the overall structure of the thesis in this chapter.
     In the second chapter, we firstly introduce a class of functional differential equations, in which the nonlinear terms are satisfied with global Lipchitz conditions, as well as its response systems with noise perturbed. Because of existence of global Lipchitz conditions, we just need to design suitable linear coupling term to achieve chaos synchronization. Then, we employ the LaSalle invariance principle to conclude the sufficient conditions of chaos synchronization with unidirectional coupling method. In succession, we will provide the Hopfield artificial neural network(ANN) and Chua's chaotic circuits as the concrete examples with corresponding analysis and numerical simulations.
     In Chapter 3, we will investigate a spacial class of ordinary differential equations, which covers serval famous chaos system, such as the Lorenz system, Chen system and R(o|¨)sslar system. The most different point with systems discussed in Chapter 2 is that the nonlinear term do not satisfy the global Lipchitz conditions. We give out the ordinary nonlinear coupling terms and deduce the sufficient conditions of chaos synchronization, which require the drive systems boundedness. Besides, we also design special nonlinear coupling terms for 3 concrete chaos systems, by which we can avoid estimating the bound of the drive system.
     In Chapter 4, we turn to study chaos synchronization with bidirectional coupling method for the systems introduced in Chapter 2. We also investigate the probability that the two coupling systems synchronized to the original systems. As the same time, a concrete Hopfield artificial neural network(ANN) and Chua's chaotic circuits are proposed again as instances with corresponding analysis and numerical simulations.
     In Chapter 5, we discuss the cases of colorful noise and generalized synchronization and provide a summary of chaos synchronization with noise perturbed.
     In Chapter 6, we want to apply the support vector machine to the Holter ECG monitoring analysis to classify the different samples by the quantitative indexes of heart rate variability. Our tests show that the veracity and stability of support vector machine are both obviously superior to the traditional linear classifying methods. In addition, combined with compositive index of HRV, SVM can not only differentiate normal samples and abnormal samples of parasympathetic system, but also classify the normal samples and several abnormal samples of parasympathetic system. It is a new available approach to automatically diagnose the Holter ECG monitoring by computers.
     At the end of this thesis, we review the former results and propose some important topics and prospective work on correlative topics.
引文
[1]R.L.Devaney.An Introduction to Chaotic Dynamical Systems.Addison-Wesley,1989.
    [2]T.Y.Li,J.A.Yorke.Period three implies chaos.Amer.Math.Monthly,1975,82:985-992.
    [3]T.Y.Li,J.A.Yorke.Ergodic transformations from an interval into itself.Trans.Amer.Math.Soc.,1965,235:183-192.
    [4]S.Smale.Diffeomorphisms with many periodic points.Differential and Combinatiorial Topology,Princeton University Press,Princeton,NJ,1965:63-80.
    [5]P.Touhey.Yet another definition of chaos.Amer.Math.Monthly,1997,104(5):411-414.
    [6]R.Bowen.Entropy for group endomorphisms and homogeneous spaces.Trans.Amer.Math.Soc.,1973,153:401-414,erratum 181:509-510.
    [7]M.Misiurewicz.On Bowen's definition of topological entropy.Discrete and Continuous Dynamical Systems,2004,10(3):827-833.
    [8]A.Wolf,J.B.Swift,H.L.Swinney,and A.Vastano.Determining Lyapunov exponents from a time series.Physica D,1985,16:285-317.
    [9]W.Chin,B.R.Hunt,and J.A.Yorke.Correlation dimension for iterated function systems.Trans.Arner.Math.Soc.,1977,349:1783-1796.
    [10]B.Aulbach,B.Kieninger.On three definitions of chaos.Nonlinear Dynamics and Systems Theory,2001,1(1):23-37.
    [11]C.Robinson.Dynarnical Systems:Stability,Symbolic Dynamics,and Chaos,Second Ed..CRC Press,Boca Raton,London New York,Washington,D.C.,1998.
    [12]G.A.Leonov.Lyapunov Exponent Problems of Linearization.From Stability to Chaos.St.Petersburg University Press,St.Petersburg,1997.
    [13]F.R.Marotto.Snap-back repellers imply chaos in R~n.J.Math.Anal.Appl.,1978,63:199-223.
    [14]F.R.Marotto.Perturbations of stable and chaotic difference equations.J.Math.Anal.Appl.,1979,72:716-723.
    [15]Y.Cao,S.Kiriki.The Density of the Transversal Homoclinic Points in the Henon-like Strange Attractors.Chaos,Solitons,Fractals,2002,13:665-671.
    [16]J.Banks,J.Brooks,G.Cairns,G.Davis,P.Stacey.On Devaney's Definition of Chaos.Arner.Math.Monthly,1992,99(4):332-334.
    [17]M.Vellekoop,R.Berglund.On Intervals,Transitivity=Chaos.Amer.Math.Monthly,1994,101(4):353-355.
    [18]陈关荣,吕金虎.Lorenz系统族的动力学分析、控制与同步.科学出版社,2003.
    [19]E.Ott,C.Grebogi,and J.A.Yorke.Controlling chaos[J].Phys.Rev.Lett.,1990,64:1196-1199.
    [20]K.Pyragas.Continuous control of chaos by self-controlling feedback[J].Phys.Lett.A,1992,170:421-428.
    [21]K.Pyragas.Experimental contron of chaos by dylayed self-controlling feedback[J].Phys.Lett.A,1993,180:92-102.
    [22]J.E.Socolar.Stabilizing unstable periodic orbits in fast dynamical systms[J].Phys.Rev.Lett.,1994,50:3245-3248.
    [23]J.Ruan,E.G.Gu,and W.R.Zhao.Nonlinear measures and its application to the chaos control[J].Chaos,Solitons and Fractals,2004,20:219-226.
    [24]L.M.Pecora,T.L.Carroll.Synchronization in chaotic systems[J].Phys.Rev.Lett.,1990,64:821-824.
    [25]X.X.Liao,G.R.Chen.Chaos Synchronization of general Lur'e systems via time-delay feedback control[J].International Journal of Bifurcation and Chaos,2003,13(1):207-213.
    [26]S.T.Liu,Guanrong Chen.Nonlinear feedback-controlled generalized synchronization of spatial chaos[J].Chaos,Solitons and Fractals,2004,22:35-46.
    [27]J.H.Park.Chaos synchronization of a chaotic system via nonlinear control[J].Chaos,Solitons and Fractals,2005,25:579-584.
    [28]T.Yang,L.O.Chua.Impulsive stabilization for control and synchronization of chaotic systems:theory and application to secure communication[J].IEEE Trans.Circuits Syst.,Ⅰ:Fundam.Theory Appl.,1997,44(10):976-988.
    [29]W.X.Xie,C.Y.Wen,and Z.G.Li.Impulsive control for the stabilization and synchronization of Lorenz systems[J].Physics Letters A,2000,275:67-72.
    [30]A.Khadra,X.Z.Liu,and X.M.Shen.Application of impulsive synchronization to communication security[J].IEEE Trans.Circuits Syst.,Ⅰ:Fundam.Theory Appl.,2003,50(3):341-351.
    [31]A.L.Fradkov,A.Yu.Markov.Adaptive synchronization of chaotic systems based on speed gradient method and passification[J].IEEE Trans.Circuits Syst.,Ⅰ:Fundarn.Theory Appl.,1997,44(10):905-912.
    [32]X.Han,J.A.Lu,and X.Wu.Adaptive feedback synchronization of Lu system[J].Chaos,Solitons and Fractals,2004,22:221-227.
    [33]J.H.Park.Adaptive synchronization of hyperchaotic Chen system with uncertain parameters[J].Chaos,Solitons and Fractals,2005,26:959-964.
    [34]M.T.Yassen.Feedback and adaptive synchronization of chaotic Lu system[J].Chaos,Solitons and Fractals,2005,25:379-386.
    [35]J.T.Sun.Global synchronization criteria with channel time-delay for chaotic time-delay system[J].Chaos,Solitons and Fractals,2004,21:967-975.
    [36]C.D.Li,X.F.Liao,and R.Zhang,A unified approach for impulsive lag synchronization of chaotic systems with time delay,Chaos,Solitons and Fractals,2005,23:1177-1184.
    [37]S.T.Liu,G.R.Chen.Nonlinear feedback-controlled generalized synchronization of spatial chaos[J].Chaos,Solitons and Fractals,2004,22:35-46.
    [38]M.G.Rosenblum,A.S.Pikovsky,and J.Kurths.Phase synchronization in driven and coupled chaotic oscillators[J].IEEE Transactions on Circuits and Systems—Ⅰ:Fund.Theory and Applications,1997,44(10):874-881.
    [39]M.Zhan,X.G.Wang,X.F.Gong,G.W.Wei,and C.H.Lai.Complete synchronization and generalized synchronization of one-way coupled time-delay systems[J]Phys.Rev.E,2003,68:036208.
    [40]F.Black and M.Scholes.The Pricing of Options and Corporate Liability.J.Polit.Economy,1973,81:637-659.
    [41]A.Friedman.Stochatic Differential Equations and Applications.Academic Press,Volume 1,1975.
    [42]D.W.Stroock and S.R.S.Varadhan.Multidimensional Diffusion Processes.Springer-Verlag,1979.
    [43]Bernt Φksendal.An Introduction with Applications:Stochastic Diferential Equations.Springer-Verlag,1985.
    [44]X.R.Mao.Exponential stability of stochastic differential equations.Marcel Dekker In C,New York,1994.
    [45]X.R.Mao.Differential Equations and Applications.Horwood Publishing,1997.
    [46]A.Friedman.Stochastic Differential Euqations and Applications.Academic Press,New York,1976.
    [47]廖晓昕.动力系统的稳定性理论和应用.国防工业出版社,2000.
    [48]X.R.Mao.LaSalle-type theorems for stochastic differential delay equations.Journal of Mathematical Analysis and Applications,1999,236(2):350-369.
    [49]X.R.Mao.A note on the LaSalle-type theorems for stochastic differential delay equations.Journal of Mathematical Analysis and Applications,2002,268(1):125-142.
    [50]X.R.Mao.Stability and Stabilisation of Stochatic Differential Delay Equations.IET Control Theory Appl.,2007,1(6):1551-1566.
    [51]A.Maritan,J.R.Banavar.Chaos,noise,and synchronization[J].Phys.Rev.Lett.,1994,72:1451-1454.
    [52]A.S.Pikovsky.Comment on "Chaos,Noise,and Synchronization"[J].Phys.Rev.Lett.,1994,73:2931.
    [53]G.Malescio.Noise and synchronization in chaotic systems[J].Phys.Rev.E,1996,53:6551-6553.
    [54]L.Longa,E.M.F.Curado,and F.A.Oliveira.Roundoff-induced coalescence of chaotic trajectories[J].Phys.Rev.E,1996,54:2201-2204.
    [55]W.Lin,Y.B.He,Complete synchronization of the noise-perturbed Chua's circuits,Chaos,2005,15:023705.
    [56]M.S.Wang,Z.H.Hou,and H.W.Xin.Internal noise-enhanced phase synchronization of coupled chemical chaotic oscillators[J].J.Phys.A:Math.Gen.,2005,38:145-152.
    [57]W.Lin and G.R.Chen.Using white noise to enhance synchronization of coupled chaotic systems.Chaos,2006,16:013134.
    [58]Z.Chen,W.Lin,and J.Zhou.Complete and generalized synchronization in a class of noise pertured chaotic systems.Chaos,2007,17:023106.
    [59]M.Behzad,H.Salarieh and A.Alasty.Chaos synchronization in noisy environment using nonlinear filtering and sliding mode control.Journal of Chaos Solitons Fractals,2006,in press.
    [60]S.Boyd,L.Ghaoui,E.Feron,V.Balakrishnan,Linear matrix inequalities in system and control theory,SIAM,Philadephia,1994.
    [61]姚慕生.高等代数学.复旦大学出版社.1999:324.
    [62]J.T.Tou and R.C.Gonzalez.Pattern Recognition Principles.Addison-Wesley,Reading,Massachusetts,1974.
    [63]R.O.Duda and P.E.Hart.Pattern Classification and Scene Analysis.Wesley,New York,1973.
    [64]V.N.Vapnik.The Nature of Statistical Learning Theory.Springer-Verlag,New York,1995.
    [65]C.Cortes and V.Vapnik.Support vector networks.Machine Learning,1995,20(3):273-293.
    [66]P.A.Flach.On the state of the art in machine learning:A personal review.Artificial Intelligence,2001,131(1):199-222.
    [67]V.D.Sanchez.Advanced support vector machines and kernel methods.Neurocomputing,2003,55(1):5-20.
    [68]张学工.关于统计学习理论与支持向量机.自动化学报,2000,26(1):32-42.
    [69]J.Platt.Sequential minimal optimization:A fastalgorithm for training support vector machines.Advances in Kernel Methods-Support Vector learning.Cambridge,MA:MIT Press,1999,pp.185-208.
    [70] T. Joachims. Making Large-Scale SVM Learning Practical[C]. In:Schoolkopf B,Burges C J C,Smola A eds. Advances in Kernel Methods Support Vector Learning. Cambridge, MA MIT Press, 1998: 169-184
    [71] C.J.C. Burges and B. Scholkopf. Improving the Accuracy and Speed of Support Vector Machines. Neural Information Processing Systems, Vol. 9, M. Mozer, M. Jordan, & T. Petsche, eds. Cambridge, MA MIT Press, 1997.
    [72] O.L. Mangasarian and D.R. Musicant. Successive Overrelaxation for Support Vector Machines. IEEE Trans. on Neural Networks, 1999, 10(5): 1032-1037.
    [73] M. Hu, Y. Zhou, G.Z. Liang and et al. Support vector machine applied in QSAR modeling. Chinese Science Bulletin, 2005, 50(20): 2291-2296.
    [74] G.Z. Liang, S.B. Yang, Y Zhou and et al. Using scores of amino acid topo-logical descriptors for quantitative sequence-mobility modeling of peptides based on support vector machine. Chinese Science Bulletin, 2006, 51(22): 2700-2705.
    [75] R. Burbidge, M. Trotter, B. Buxton and et al. Drug design by machine learning: Support Vector Machines for pharmaceutical data analysis. Computers and Chemistry, 2001, 26(1): 5-14.
    [76] D. Thukaram and H.P. Vijaynarasimha. Artificial Neural Network and Suppor Vector Machine Approach for Locating Radial Distribution Systems. IEEE Trans. of power Delivery, 2005, 20(2):710-721.
    [77]李俊宏,李柏毅,徐丰智.一个以Support Vector Machines为主之中文文件自动分类系统的建构与特征选取策略之分析.工程技术与教育学刊,2003,2(1):67-89.
    [78]L.O.Chua,M.Komuro and T.Matsumoto.The double scroll family.Part Ⅰ:Rigorous proff of chaos.IEEE Trans.Circuits.Syst.,1986,33:1072-1096.
    [79]G.Chen and X.Dong.From Chaos to Order:Methodologies,Perspectives and Applications.Singapore:World Scientific,1998.
    [80]Z.Chen,W.Lin,and J.Zhou,Complete and generalized synchronization in a class of noise perturbed chaotic systems,Chaos,2007,17:023106.
    [81]J.H.Lu,G.R.Chen,D.Z.Cheng,and S.Celikovsky,Bridge the gap betweem the Lorenz system and the Chen system,International Journal of Bifurcation and Chaos,2002,12(12):2917-2926.
    [82]Z.Y.Yan,A new scheme to generalized(lag,anticipated,and complete)synchronization in chaotic and hyperchaotic systems,Chaos,2005,15:013101.
    [83]J.H.Lu,G.R.Chen and D.Z.Cheng.A new chaotic system and beyond the generalized Lorenz-like system,International Journal of Bifurcation and Chaos,2004,14(5):1507-1537.
    [84]邓乃扬,田英杰.数据挖掘中的新方法:支持向量机.科学出版社,2004.
    [85]边肇祺,张学工.模式识别(第二版).清华大学出版社,2000.
    [86]阎平凡,张长水.人工神经网络与模拟进化计算(第2版).清华大学出版社,2005.
    [87] Hsu W, et al. A Comparison of Methods of Multiclass SVM. IEEE Trans. NN, 2002, 13: 415-425.
    [88] S. Amari and S. Wu. Improving support vector machine classifiers by modifying kernel functions. Neural Networks, 1999.
    [89] A. Scholkopf, A.J. Smola and K.R. Muler. Kernel principal component analysis. In: Advances in Kernel Methods-Support Vector Learning. MIT Press, 1999: 327-352.
    [90] C. Watkins. Dynamic alignment kernels. In: Advances in Large Margin Classifiers. MIT Press, 1999.
    [91] C. Watkins. Kernels from matching poerations Technical Report CSD-TR-98-07, Royal Holloway, University of London, Computer Science Department, July 1999.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700