SPWM电压源供电的永磁直线同步电机特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着永磁材料、电力电子技术、微电子技术的迅猛发展,开关阵列构成的正弦脉宽调制的电压源逆变器(SPWM-VI)与高效节能、结构简单、可靠性强、推力密度大的永磁直线同步电机(PMLSM)为一体的系统受到广大学者的青睐。对具有供电电压源非正弦、工作频率低、行程有限、出入端效应、铁芯开断、端部半填槽等特点的PMLSM的特性开展研究具有重要意义。
     本文以SPWM-VI供电的单初级PMLSM(SPPMLSM)驱动的水平运输系统与不连续初级PMLSM(DPPMLSM)驱动的垂直无绳运输系统为研究对象。建立了SPPMLSM的分区域模型,推导了SPPMLSM气隙及次级区域的磁场解析通解。建立了初级齿槽区域有限元方程,利用初级表面与气隙的交界面条件把解析通解方程与初级齿槽区域的矩阵方程联立,获得解析-有限元混合法的整体矩阵方程。采用解析-有限元混合法与单一有限元法分别求解样机的初级表面与气隙中线上的磁密分布。计算结果表明,本文提出的针对SPPMLSM的解析-有限元混合法,既有解析法的快速性,又具备有限元法的高精度、适应复杂边界条件的特性,是一种具有良好应用前景的磁场求解方法。
     采用有限元法结合间接法研究SPPMLSM磁阻力的端部分量特性,提出了在出入端区域,半无限长初级PMLSM的磁阻力端部分量不满足周期性条件、傅立叶级数分析法不再适用的重要结论。研究了磁阻力的端部分量与永磁体长度、初级铁芯长度间的关系,提出了通过改变初级铁芯端部齿槽形状来减小磁阻力端部分量的有效措施,分析了此措施下磁阻力齿槽分量的影响和变化规律。采用三次B样条函数对SPPMLSM磁阻力的端部分量在出入端区域进行函数逼近,获得其近似解析式。在SPPMLSM的初、次级完全耦合区域,采用三角多项式作最小平方逼近,获得磁阻力的端部分量在初、次级完全耦合区域的解析模型。采用叠加法与有限元法结合分析DPPMLSM的磁阻力分量,获得磁阻力波形及磁阻力的各个分量的周期性和幅值随着次级动子相对位置变化情况,发现多段初级的磁阻力波形正弦度好,在段间切换时由于初级不连续引起扰动非常小。该结论对DPPMLSM性能分析和优化设计具有一定的借鉴意义。
     采用谐波分析法建立了SPWM-VI数学模型,搭建了SPWM-VI的SIMULINK仿真模型。采用状态变量时步有限元法,考虑电机的端部阻抗,建立了SPWM-VI-SPPMLSM的数学模型,提高了二维磁场的计算精度,获得SPPMLSM的三相绕组磁链数据作为样本数据。在搭建初、次级完全耦合的模型时,采用FFT得到磁链对于电流和动子空间位置的偏导数,进行曲线拟合获得磁链的解析式,建立状态空间方程;在初、次级不完全耦合区域,磁链数据作为支持向量回归机函数逼近的样本数据,建立了基于非线性磁链的SPWM-VI-SPPMLSM状态相量数学模型。
     研究了SPWM逆变器供电下SPPMLSM的稳态和动态特性。比较了SPWM-VI、正弦电压源两种供电电源下SPPMLSM的稳态特性及在不同载波频率下的SPPMLSM稳态特性;对SPPMLSM不同负载工况的稳态特性进行深入研究,采用负载角的手段可以清晰得到负载角跟SPPMLSM所加负载大小之间的关系。分析了稳态速度特性振荡的原因,指出SPPMLSM磁阻力的端部分量是影响动子稳态运行速度振荡的主要因素;分析了SPPMLSM考虑绕组电阻影响的低速特性。研究了SPPMLSM的负载突变动态特性,结果表明只要突加负载不超过最大额定负载,数值越大系统进入稳态运行的时间越短,突加负载段的速度波动越小;突卸负载时,易造成系统稳定性变差。
     分析了DPPMLSM的结构特点及段间间隔的设计原则,建立了以非线性磁链为状态变量的DPPMLSM状态方程,运用SIMULINK建立其仿真模型。利用模型研究DPPMLSM的上行电动、下行反接发电回馈制动等工况,仿真数据与试验结果进行比较,验证了所建模型的正确性与精确度。采用有限元法结合运动系统的能量解析式对DPPMLSM垂直提升系统的失电保护过程进行深刻分析,获得DPPMLSM失电后每段初级绕组短接后的仿真和试验曲线,分析发现提升机失电下坠的稳定速度与外接电阻的阻值有关,找出了外接电阻与DPPMLDM失电保护制动性能的关系。动子速度在初级切换的过渡过程中速度突变较大,对系统的发电制动稳态运行不利,分析了发电制动过程中动子速度突变的原因及特点。
     针对PMLSM的特有结构及工作频率低等特点,提出了一种有效测量PMLSM空载电势的新方法。利用微机测试装置完成SPPMLSM驱动的水平运输系统与DPPMLSM驱动的垂直提升系统数据的采集、处理。试验验证了理论的正确性和所建模型的有效性、实用性。
As the rapid development of permanent magnetic materials, power electronics technology and microelectronic technology, the integrated system is favored by the great majority of scholars, which consists of the sinusoidal pulse width modulation voltage source inverter (SPWM-VI) composed with switch arrays and the permanent magnet linear synchronous motor (PMLSM) with high efficiency and energy-saving, simple structure, reliability and thrust density. It attaches much importance to the research of the characteristics of PMLSM whose features are non-sinusoidal power supply, low frequency, limited itinerary, and entry and exit effect, cut cores, half-filled end section and so on.
     The main target of this dissertation is the horizontal transport system driven by SPWM-VI-powered single primary PMLSM (SPPMLSM) and the ropeless vertical transport system driven by the non-continuous primary PMLSM (DPPMLSM).This dissertation proposes a fast, high-precious analysis-finite-element mixed method for SPPMLSM magnetic field, set up a partitioned model of SPPMLSM, deduce the analytic general solution of air space of SPPMLSM and secondary regional magnetic field, put up with the finite-element formula of primary spline region, combine the analytic general formula with the matrix equation of primary spline region by using the interface of primary surface and air space to get the whole matrix formula of analytic-finite-element mixed method, calculate the magnet distribution between the primary surface of the sample and the midline of air space with the analytic-finite-element mixed method and single-finite-element method, respectively. With concrete calculation, it is very promising that the analytic-finite-element mixed method for magnet field solution show that the analysis is fast and the finite-element method is highly precious and versatile for the complicated marginal conditions.
     Characteristics of the end region of SPPMLSM detent force is researched employing the finite-element method incorporated with indirect method, and that Fourier analysis method is not available is found out when at the entry and the outer, the detent force in the end region of half-infinite long primary PMLSM do not meet the periodicity. Then the dissertation goes to the relation between the detent force in the end region and the length of permanent magnet and primary core, come up with the efficient solution to reduce the detent force of the end region by altering the shape of tooth-slot component on the end of the primary core and analyze the effect and rule of tooth-slot component of the detent force under by using this solution, deduce the approximate analysis formula with the function approximating the end region of the SPPMLSM detent force by cubic B-spline function. And in the primary and secondary absolute coupling areas of SPPMLSM, the trigonometric polynomial as minimum square approximation is taken, and the analytic model of the detent force of the end region is worked out in the primary and secondary absolute coupling areas, then the periodicity of the waveform of the detent force and all the elements of the detent force and amplitude by the analysis of all the elements of the detent force of DPPMLSM is elicited with the combination of the method of superposition and method of finite-element. As the relative position of secondary mover changes, that the multi-end primary detent force approach to sine is found, and is simply perturbed by the non-continuous primary in the short-time, which cast the practical meaning for the analysis of the capability of DPPMLSM and optimizing the design.
     For the building-up of nonlinear model of SPWM-VI-PMLSM, firstly, the mathematic model of SPWM-VI by the harmonic analysis is set up and the simulate model of SPWM-VI’s SIMULINK is put up, secondly, the mathematic model of SPWM-VI-SPPMLSM is established with state variable by time-stepping finite element method considering the impedance of the end of motor. As result, the precision of two-dimension magnet field is improved and the three-phase winding flux linkage data of PMLSM is collected as the sample datum. In the course of putting up the primary and secondary absolute coupling model, the flux linkage is fit the curve based on the partial derivative of the current and location of mover and lead to the analytic formula of flux linkage, so the equations of state space are accomplished. At the outer and entry zone, the flux linkage as the sample data of supporting vector machine regression function approximation set up the state phasor mathematic model of the nonlinear SPWM-VI-SPPMLSM.
     The dissertation goes to the research of stability and dynamism of SPPMLSM supplied by SPWM voltage source inverter, comparative researching the stability of SPPMLSM powered by the sinusoidal voltage source and SPWM-VI respectively and the stability of SPPMLSM on different carrier frequency, in-depth studying the stability of SPPMLSM on different load condition, using the load angle to analyze the relationship between the load angle and the volume of the load on SPPMLSM, inspecting the cause of oscillation of the steady velocity, pointing out that the end region-component of the detent force of SPPMLSM play the main part in the mover steady velocity oscillation, and construing the characteristic of low speed interfered by the winding resistance of SPPMLSM . Then the research results of the dynamic charactersitics of load suddenly changing are shown that the bigger the numerical value is, the shorter time the system runs stably, the softer the speed fluctuation of shock load is, and given that shock load is less than the maximum of rated load. When uninstall the load, the system is easily to go to low-stability.
     The dissertation builds up the nonlinear model of SPPMLSM whose state variable is composed with nonlinear flux linkage, analyzing the structure of SPPMLSM and the designating rule of intersegment interval, forming the space state equations of SPPMLSM, and the emulate model with SIMULINK. Lastly, the dissertation testifies the validity and precision of the models by comparing the simulated data and the experimental results, working over the conditions like the uplink electric of SPPMLSM and the power generation regeneration baking by downlink reverse connect. The dissertation gives the systematic research on the feature of braking operation of DPPMLSM when lose power, studied the blackout protection of vertical hoisting system of DPPMLSM with the combination of finite-element method and the energy analytic-formula of motion system, analyzed the emulate and trial curve when every primary winding is short circuited after the blackout of DPPMLSM ,found out the steady falling-down speed of hoister lossing power which is related with the resistance value of external resistance and the relation between external resistance and the protection breaking performance of DPPMLSM when in power off. And the motor speed change greatly in the transition of primary switch, and has bad effect on the steady operation of the electrical generation braking of the system. The dissertation also generalizes the reason and the feature of speed mutation of mover.
     Experimental research is focused on the characterstics of PMLSM such as specific structure and limited displsce in low-frequency operation condition, and a new way to measure the no-load electromotive force of PMLSM is proposed, the collecting and dealing with the datum of the horizontal transportation system are finished driven by SPPMLSM and the vertical ropeless hoisting system driven by DPPMLSM, which are detected by the person computer, the validity of the theory and the efficiency and practicality of the established models is demonstrated.
引文
[1]唐任远.现代永磁电机理论与设计[M].北京:机械工业出版社,1997.
    [2]胡敏强,黄学良等.电机运行性能数值计算方法及其应用[M].南京:东南大学出版社,2003.
    [3]叶云岳.直线电机原理与应用[M].北京:机械工业出版社,2002.
    [4]林忠岳.现代电力电子应用技术[M].北京:科学出版社,2007.
    [5] Bimal K.Bose.现代电力电子学与交流传动[M]机械工业出版社,2002.
    [6]王凤翔.交流电机的非正弦供电[M].机械工业出版社,1997.
    [7] Aston, T.R . 25 years of linear motoring. Electrical Machines and Drives[C]. 1993. Sixth International Conference on (Conf. Publ. No. 376), 8-10 Sep 1993: 353 - 358.
    [8] Oyama, J.; Higuchi, T.; Akashi, H.; Yamada, E.; Nagatomo, N.; Yoshinaga, I. Application of linear motor on artificial satellite fuel pump system[C]. Industry Applications Society Annual Meeting, 1992, Conference Record of the 1992 IEEE, 4-9 Oct. 1992: 156 - 161
    [9] Patterson, Dean; Monti, Antonello; Brice, Charles W.; et al. Design and simulation of a permanent-magnet electromagnetic aircraft launcher [J]. IEEE Transactions on Industry Applications, 41(2), March/April, 2005: 566-575
    [10] Stumberger, G.; Zarko, D.; Timur Aydemir, M.; Lipo, T.A. Design and comparison of linear synchronous motor and linear induction motor for electromagnetic aircraft launch system[C]. Electric Machines and Drives Conference, 2003. IEMDC'03. IEEE International, Volume: 1, 1-4 June 2003: 494 - 500
    [11]Stumberger, Gorazd; Aydemir, Mehmet Timur; Zarko, Damir; Lipo, Thomas A. Design of a linear bulk superconductor magnet synchronous motor for electromagnetic aircraft launch systems[J]. IEEE Transactions on Applied Superconductivity, 14(1), March, 2004: 54-62
    [12] Bon-Gwan Gu; Kwanghee Nam. A vector control scheme for a PM linear synchronous motor in extended region[J]. Industry Applications, IEEE Transactions on, 39(5), Sept.-Oct. 2003: 1280– 1286
    [13] Bon-Gwan Gu; Kwanghee Nam. A vector control scheme for a PMLSM considering a nonuniform flux distribution[J]. Applied Power Electronics Conference and Exposition, 2000. APEC 2000. Fifteenth Annual IEEE, Volume: 1, 6-10 Feb. 2000: 393 - 396
    [14] Seok-Myeong Jang; Sung-Ho Lee. Comparison of three types of permanent magnet linear eddy-current brakes according to magnetization pattern[J]. Magnetics, IEEE Transactions on, 39(5), Sept. 2003: 3004– 3006
    [15] Seok-Myeong Jang; Sung-Ho Lee. Comparison of two types of PM linear synchronous servo and miniature motor with air-cored film coil[J]. Magnetics, IEEE Transactions on, 38(5), Sept. 2002: 3264–3266
    [16] Leidhold, Roberto; Mutschler, Peter. Speed sensorless control of a long-stator linear synchronous-motor arranged by multiple sections[C]. IECON Proceedings (Industrial Electronics Conference), v 2005, IECON 2005: 31st Annual Conference of IEEE Industrial Electronics Society, 2005, p 1395-1400
    [17] Slemon, G.; Turton, R.; Burke, P. A linear synchronous motor for high-speed ground transport[J]. Magnetics, IEEE Transactions on, 10(3), Sep 1974: 435– 438
    [18] Platen, M.; Kenneberger, G. Controller design for a linear drive of a hoisting system[C]. Industrial Electronics Society, 1999. IECON '99 Proceedings. The 25th Annual Conference of the IEEE, Volume: 3, 29 Nov.-3 Dec. 1999: 1477 - 1480
    [19] Barkand, T.D.; Helfrich, W.J. Application of dynamic braking to mine hoisting systems[J]. Industry Applications, IEEE Transactions on, 24(5), Sept.-Oct. 1988: 884– 896
    [20] Slemon, G.; Burke, P.; Terzis, N. A linear synchronous motor for urban transit using rare-earth magnets[J]. Magnetics, IEEE Transactions on, 14(5), Sep 1978: 921– 923
    [21] Ikeda, Y.; Sakai, R.; Mizumura, S.; Kubo, M. Basic considerations on the linear motor drive by permanent magnet poles mounted on vehicles[C]. Power Electronics Specialists Conference, PESC '94 Record. 25th Annual IEEE , 20-25 June 1994:992 - 997
    [22] Yamaguchi, H.; Osawa, H.; Watanabe, T.; Yamada, H. Brake control characteristics of a linear synchronous motor for ropeless elevator[C]. Advanced Motion Control, 1996. AMC '96-MIE. Proceedings, 1996 4th International Workshop on, Volume: 2 , 18-21 March 1996:441 - 446
    [23] Yoshida, Kinjiro; Cao, Yi. Motion analysis of vertical-type PM LSM rocket launcher[C]. Research Reports on Information Science and Electrical Engineering of Kyushu University, 8(2), September, 2003: 177-182
    [24] Yoshida, Kinjiro; Cao, Yi. Three dimensional motions control simulation for radial displacements in vertical-type PM LSM rocket launcher[C]. Conference Proceedings - IPEMC 2004: 4th International Power Electronics and Motion Control Conference, v 2, Conference Proceedings - IPEMC 2004: 4th International Power Electronics and Motion Control Conference, 2004: 761-765
    [25] Yoshida, K.; Cao, Y. Rocket launching simulation in vertical-type PM LSM rocket launcher system[J]. WSEAS Transactions on Systems, 4(7), July, 2005: 1126-1133
    [26] Gore, V.C.; Cruise, R.J.; Landy, C.F. Considerations for an integrated transport system using linear synchronous motors for ultra-deep level mining[C]. Electric Machines and Drives, 1999. International Conference IEMD‘99, 9-12 May 1999: 568– 570
    [27] Cruise, R.J.; Landy, C.F. Reduction of cogging forces in linear synchronous motors[C]. IEEE AFRICON Conference, v 2, 1999: 623-626
    [28] Bodika, N.; Cruise, R.J.; Landy, C.F. Design of a PI controller to counteract the effect of cogging forces in a permanent magnet synchronous linear motor[C]. IEEE AFRICON Conference, v 2, 1999: 893-896
    [29] Jeans, Carl G.; Cruise, Rupert J.; Landy, Charles F. Static and dynamic force characteristics of paramagnetic shields in linear synchronous motors[C]. IEEE AFRICON Conference, v 2, 1999: 631-634
    [30] Ye Yunyue. Application of linear electric motors in the postal mechanical systems. Electrical Machines and Systems[C]. ICEMS 2001. Proceedings of the Fifth International Conference on, Volume: 2, 18-20 Aug. 2001: 964 - 967
    [31] Wang Limei; Guo Qingding. Sensorless control of permanent magnet linear synchronous motor based on nonlinear observer[C]. Advanced Motion Control, 2004 8th IEEE International Workshop on. AMC, March 25-28, 2004: 619– 622
    [32]肖文生,周小稀,谷玉洪等.直线电机抽油机研制[J].石油学报,2006,27(5):112-114
    [33]阎治安,高小斌等.压缩机驱动用直线永磁电动机的研究.西安交通大学学报,2005.39(2):191-195
    [34]焦留成.垂直运动永磁直线同步电动机电磁参数及特性计算[D].中国矿业大学电气工程系. 1998.
    [35]焦留成,汪旭东.袁世鹰.垂直运行永磁直线同步电动机运行特性分析[J].中国电机工程学报,2002, 22(4):37-40
    [36]焦留成,袁世鹰.恒流源供电对垂直运动永磁直线同步电动机电磁推力的影响[J].煤炭学报,2000,25(4): 420-422
    [37]汪旭东.永磁直线同步电动机统一解析理论及应用研究[D].西安交通大学电气工程学院. 2002.
    [38]汪旭东,袁世鹰等.永磁直线同步电动机的二维傅里叶解析[J].煤炭学报,1999,24(4): 411-415
    [39] Wang Xudong; Yuan Shiying; Jiao Liucheng; Wang Zhaoan. Analysis of salient-pole permanent magnet linear synchronous motors using a unified integrity analytical method[C]. Electric Machines and Drives Conference, 2003. IEMDC'03. IEEE International, Volume: 1, 1-4 June 2003: 395 - 400 vol.1
    [40]上官璇峰.分段初级永磁直线同步电机理论与试验研究[D].博士学位论文,西安:西安交通大学,2006-11
    [42] Haller, T.; Mischler, W. A comparison of linear induction and linear synchronous motors for high speed ground transportation. Magnetics, IEEE Transactions on, 14(5), Sep 1978: 924– 926
    [43] Woo-Seok Kim; Sang-Yong Jung; Ho-Yong Choi; Hyun-Kyo Jung; Ji Hoon Kim; Song-Yop Hahn. Development of a superconducting linear synchronous motor[J]. Applied Superconductivity, IEEE Transactions on, 12(1), March 2002: 842– 845
    [44] Atherton, D. A magnetic circuit analysis of the iron-cored homopolar linear synchronous motor[J]. Magnetics, IEEE Transactions on, 17(3), May 1981:1305– 1310
    [45] Zesheng Deng; Boldea, I.; Nasar, S. Fields in permanent magnet linear synchronous machines. Magnetics, IEEE Transactions on, Volume: 22, Issue: 2 Mar 1986: 107– 112
    [46] Zhu, Z.Q.; Howe, David; Bolte, Ekkehard; Ackermann, Bernd. Instantaneous magnetic field distribution in brushless permanent magnet dc motors. Part I: Open-circuit field[J]. IEEE Transactions on Magnetics, 29(1), Jan, 1993: 124-135
    [47] Boldea, Ion; Nasar, S.A.; Fuk, Zhenxing. Fields, forces, and performance equations of air-core linearself-synchronous motor with rectangular current control[J]. IEEE Transactions on Magnetics, 24(5), Sep, 1988: 2194-2203
    [48] Xiong, G.; Nasar, S.A. Analysis of fields and forces in a permanent magnet linear synchronous machine based on the concept of magnetic charge[J]. Magnetics, IEEE Transactions on, 25(3), May 1989: 2713– 2719
    [49] Bianchi, N. Analytical computation of magnetic fields and thrusts in a tubular PM linear servo motor[C]. Industry Applications Conference, 2000. Conference Record of the 2000 IEEE, Volume: 1, 8-12 Oct. 2000: 21 - 28
    [50] Jiabin Wang; Jewell, G.W.; Howe, D. A general framework for the analysis and design of tubular linear permanent magnet machines[J]. Magnetics, IEEE Transactions on, 35(3), May 1999: 1986– 2000
    [51] Cheng-Tsung Liu; Jyh-Wei Chen; Kun-Shian Su. Analytical modeling of a new disc permanent magnet linear synchronous machine for electric vehicles[J]. Magnetics, IEEE Transactions on, 35(5), Sept. 1999: 4043– 4045
    [52] Trumper, D.L.; Won-Jong Kim; Williams, M.E. Design and analysis framework for linear permanent-magnet machines[J]. Industry Applications, IEEE Transactions on, 32(2), March-April 1996: 371– 379
    [53] Yoshida, K.; Weh, H. Method of Modeling Permanent Magnets for Analytical Approach to Electrical Machinery[J]. Archiv fuer Elektrotechnik (Berlin), 68(4), 1985: 229-239
    [54] Cheng-Tsung Liu; Jyh-Wei Chen; Kun-Shian Su. Analytical modeling of a new disc permanent magnet linear synchronous machine for electric veiecles[C]. Magnetics Conference, 1999. Digest of INTERMAG 99. 1999 IEEE International, May 18-21, 1999: EE07 - EE07
    [55] Bianchi, N. Analytical field computation of a tubular permanent-magnet linear motor[J]. Magnetics, IEEE Transactions on, 36(5), Sept 2000: 3798– 3801
    [56] Cheng-Tsung Liu; Hong-Ren Pan. Electromagnetic force analyses of a disc permanent magnet linear synchronous machine for electric vehicle application[C]. Electric Machines and Drives, 1999. International Conference IEMD‘99, 9-12 May 1999: 425– 427
    [57] Yamaguchi, T.; Kawase, Y.; Yoshida, M.; Saito, Y.; Ohdachi, Y. 3-D finite element analysis of a linear induction motor[J]. Magnetics, IEEE Transactions on, 37(5), Sept. 2001: 3668– 3671
    [58] Yoshida, K.; Ju Lee; Young Jung Kim. 3-D FEM field analysis in controlled-PM LSM for Maglev vehicle[J]. Magnetics, IEEE Transactions on, 33(2), March 1997: 2207– 2210
    [59] Tounzi, A.; Henneron, T.; LeMenach, Y.; Askour, R.; Dumetz, E.; Piriou, F. 3-D Approaches to Determine the End Winding Inductances of a Permanent-Magnet Linear Synchronous Motor[J]. Magnetics, IEEE Transactions on, 40(2), March, 2004: 758– 761
    [60] Wang Xudong; Yuan Shiying; Jiao Liucheng; Wang Zhaoan. 3-D analysis of electromagnetic field andperformance in a permanent magnet linear synchronous motor[C]. Electric Machines and Drives Conference, 2001. IEMDC 2001. IEEE International , 2001:935– 938
    [61] El-Nahas, I.; Szabados, B.; Poloujadoff, M.; Findlay, R.; Wu, X. A three-dimensional electromagnetic field analysis technique utilizing the magnetic charge concept[J]. Magnetics, IEEE Transactions on, 23(5) , 1987:3853– 3859
    [62] Jung Ho Lee; Dong Seok Hyun; Seok-Myeong Jang. Analysis of synchronous reluctance motor using FEM coupled electromagnetic field of Preisach model & thermal field[C]. Magnetics Conference, 2002. INTERMAG Europe 2002. Digest of Technical Dissertations. 2002 IEEE International, 28 April-2 May 2002: AU7
    [63] Bianchi, N.; Canova, A. FEM analysis and optimisation design of an IPM synchronous motor[C]. Power Electronics, Machines and Drives, 2002. International Conference on (Conf. Publ. No. 487), 4-7 June 2002 : 49-54
    [64] Platen, M.; Henneberger, G. Examination of leakage and end effects in a linear synchronous motor for vertical transportation by means of finite element computation[J]. Magnetics, IEEE Transactions on, 37(5), 2001: 3640– 3643
    [65] In-Soung Jung; Sang-Baeck Yoon; Jang-Ho Shim; Dong-Seok Hyun. Analysis of forces in a short primary type and a short secondary type permanent magnet linear synchronous motor [J]. Energy Conversion, IEEE Transactions on, 14(4), 1999: 1265 - 1270
    [66] In-Soung Jung; Dong-Seok Hyun. Dynamic characteristics of PM linear synchronous motor driven by PWM inverter by finite element analysis[J]. Magnetics, IEEE Transactions on, 35(5), Sept. 1999:3697– 3699
    [67]章跃进,张东.旋转电机磁场计算中转子的自由转动[J].电工技术学报, 2006(8), 21(8), 2006: 1-4
    [68] Bi Chao, Chen S X, Liu Z J, et al. Electromagnetic field analysis in rotational electric machines using finite element-analytical hybrid method[J]. IEEE Trans. on Mag., 1994, 30 (6): 4314 4316
    [69] Lee K, DeBortoli M J, Lee M J, et al. Coupling finite elements and analytical solution in the airgap of electric machines [J]. IEEE Trans. on Mag., 1991, 27 (5): 3955 3957
    [70] Hur, Jin; Yoon, Sang-Baeck; Hwang, Dong-Yun; Hyun, Dong-Seok. Analysis of PMLSM using three dimensional equivalent magnetic circuit network method[C]. IEEE Transactions on Magnetics, 33(5), Sep, 1997: 4143-4145
    [71] In-Soung Jung; Jin Hur; Dong-Seok Hyun. Analysis of permanent magnet linear synchronous motor for servo system using 3-D equivalent magnetic circuit network method. Electric Machines and Drives, 1999. International Conference IEMD '99 , 9-12 May 1999:132– 134
    [72] Gyu-Hong Kang, Jin Hur, Byoung-Kuk, et al.“Force Characteristic Analysis of PMLSMs for Magnetic Levitation Stage Based on 3-Dimensional Equivalent Magnetic Circuit Network,”IAS 2004, Institute ofElectrical and Electronics Engineers Inc., Piscataway, United States, 2004: 2099-2104
    [73]盛剑霓.电磁场与波分析中半解析法的理论与应用[M].北京:科学出版社,2006.
    [74]韩社教.无界域磁场问题分析的有限元——解析结合解法研究及其应用[D].博士学位论文,西安:西安交通大学,2002-9
    [75] Wang Xudong, Yuan Shiying, Jiao Liucheng et al. 3-D analysis of electromagnetic field and performance in a permanent magnet linear synchronous motor[C]. IEMDC 2001, IEEE International, 2001, Cambridge, Massachusetts, USA, 2001: 445-447
    [76] Sanada, M.; Morimoto, S.; Takeda, Y.Interior permanent magnet linear synchronous motor for high-performance drives[J]. IEEE Transactions on Industry Applications, 33(4), July-Aug. 1997: 966– 972
    [77] Sang-Yong Jung; Jang-Sung Chun; Hyun-Kyo Jung,“Performance evaluation of slotless permanent magnet linear synchronous motor energized by partially excited primary current[J]. IEEE Transactions on Magnetics, 37(5), Part 1, Sept. 2001: 3757 - 3761
    [78] Sang-Yeop Kwak, Jae-Kwang Kim, Hyun-Kyo Jung. Characteristic Analysis of Multilayer-Buried Magnet Synchronous Motor Using Fixed Permeability Method[J]. IEEE Transaction on Energy Conversion, 20(3), September 2005: 549-555
    [79] Gyu-Hong Kang, Jin Hur, Byoung-Kuk, et al. Force Characteristic Analysis of PMLSMs for Magnetic Levitation Stage Based on 3-Dimensional Equivalent Magnetic Circuit Network[C]. IAS 2004, Institute of Electrical and Electronics Engineers Inc., Piscataway, United States, 2004: 2099-2104
    [80]夏永明.永磁同步电动机机理分析及逆系统控制[D].焦作:河南理工大学,2003
    [81] Yongiae Kim, Masaya Watada, Susumu Torii, et al. Constant load angle control of the discontinuous primary linear synchronous motor without position feedback[C]. Processing of the 4th International Symposium on Linear Drives for Industry Application. 2003, UK: 113-116
    [82] Mei, T.X.; Goodall, R.M. Motor-generator control operation of a double sided linear motor [A]. Proceedings of the 1995 IEEE Conference on Control Applications[C]. Albany, NY, USA: IEEE, Piscataway, NJ, USA, 1995: 593-598
    [83] Kwon, Byung Il; Woo, Kyung Il; Kim, Duck Jin; Park, Seung Chan. Finite element analysis for dynamic characteristics of an inverter-fed PMLSM by a new moving mesh technique[J]. IEEE Transactions on Magnetics, 36(41), Jul, 2000: 1574-1577
    [84] Kang, Gubae; Kim, Junha; Nam, Kwanghee. Parameter estimation of a linear induction motor with PWM inverter[C].IECON Proceedings (Industrial Electronics Conference), v 2, 2001: 1321-1326
    [85] Willis, Johnny R.; Brock, Gregory J.; Edmonds, James S.Derivation of induction motor models from standstill frequency response tests[J]. IEEE Transactions on Energy Conversion, 4(4), Dec, 1989: 608-615
    [86] Moon, Seung-III; Keyhani, Ali. Estimation of induction machine parameters from standstill time-domain data[J]. IEEE Transactions on Industry Applications, 30(6), Nov-Dec, 1994: 1609-1615
    [87] Tulasi Ram Das, G.; Subrahmanyam, Vedam. On the analysis of current source inverter fed permanent magnet synchronous motor[J]. Proceedings of the IEEE International Conference on Power Electronics, Drives & Energy Systems for Industrial Growth, PEDES, v 1, 1996: 286-292
    [88] Kerkman, Russel J.; Thunes, Jerry D.; Rowan, Timothy M.; Schlegel, David W. Frequency-based determination of transient inductance and rotor resistance for field commissioning purposes[J]. IEEE Transactions on Industry Applications, 32(3), May-Jun, 1996: 577-584
    [89] Morimoto, Shigeo; Sanada, Masayuki; Takeda, Yoji; Taniguchi, Katsunori. Optimum machine parameters and design of inverter-driven synchronous motors for wide constant power operation[C]. Conference Record - IAS Annual Meeting (IEEE Industry Applications Society), v 1, 1994: 177-182
    [90] Benkhoris, M.F.; Le Doeuff, R.; Saadate, S. Modeling and simulation of a synchronous motor supplied by a GTO voltage inverter[C]. IEE Conference Publication, n 324, 1990: 190-195
    [91] Yamamoto, Kichiro; Shinohara, Katsuji; Nagahama, Takahiro. Characteristics of permanent-magnet synchronous motor driven by PWM inverter with voltage booster[J]. IEEE Transactions on Industry Applications, 40(4), July/August, 2004: 1145-1152
    [92] Chengdong, Du; Xiaofeng, Zhang; Hua, Lin; Xiaodong, Gao. Improvement of low-speed operation performance of DTC for three-level inverter-fed multi-phase synchronous motor[C]. ICEMS 2005: Proceedings of the Eighth International Conference on Electrical Machines and Systems, v 1, ICEMS 2005: Proceedings of the Eighth International Conference on Electrical Machines and Systems, 2005: 132-137
    [93] Efthimiators, P.; Safacas, A. Critical study on the operational characteristics synchronous motor drive fed via a voltage inverter using a new triggering logic[C]. IEEE International Symposium on Industrial Electronics, v 1, 1995: 290-296
    [94] Faucher, J.; Xhuvani, A.P.; Anvari, H.A.; De Lara, S.Identification of machine parameters in converter-fed synchronous motor drive systems[J]. IEE Conference Publication, 5(377), Drives I, 1993: 323-326
    [95]司纪凯,汪旭东,焦留成等.永磁直线同步电机暂态建模及起动过程仿真[J].煤炭学报,2006, 31(6):819-823
    [96]谢德馨.三维涡流场的有限元分析[M].北京:机械工业出版社,2008
    [97] Kim Y J,Watada M,Dohmeki H.Reduction of the cogging force at the outlet edge of a stationary discontinuous primary linear synchronous motor[J].IEEE Transactions on Magnetics,2007,43(1):40-45.
    [98] Shangguan Xuanfeng,Li Shiying,Yuan, ShiYing.Study on cogging force of permanent magnet linear synchronous motor[J].Journal of Coal Science and Engineering,2005,11(1):89-92.
    [99] Kim Y,Dohmeki H,Ebihara D.Investigation of velocity ripple suppression for the discontinuous permanent magnet linear synchronous motor by open loop[C].Proceedings of the International Conference on Power Electronics and Drive Systems,Kuala Lumpur , Malaysia, 2005:349-354.
    [100] Jung I S,Hur J,Hyun D S.Performance analysis of skewed PM linear synchronous motor according tovarious design parameters[J].IEEE Transactions on Magnetics,2001,37(5I):3653-3657.
    [101] Kim Y,Watada M,Torii S,et al.A smooth drive investigation of the discontinuous primary linear synchronous motor in the re-accelerator without position feedback[C].IECON Proceedings,v 3,IECON 2004 -30th Annual Conference of IEEE Industrial Eelctronics Society,Busan, South Korea, 2004.
    [102] Inoue, M.; Sato, K. An approach to a suitable stator length for minimizing the detent force of permanent magnet linear synchronous motors [J]. Magnetics, IEEE Transactions on, 2000, 36(4): 1890– 1893
    [103] In-Soung Jung; Sang-Baeck Yoon; Jang-Ho Shim, et al. Analysis of forces in a short primary type and a short secondary type permanent magnet linear synchronous motor [J]. Energy Conversion, IEEE Transactions on, 1999, 14(4): 1265– 1270
    [104] Zhu, Z.Q.; Hor, P.J.; Howe, D., et al. Calculation of Cogging Force in a Novel Slotted Linear Tubular Brushless Permanent Magnet Motor [J]. IEEE Transactions on Magnetics, 1997, 5(2):4098-4100
    [105] Zhu, Z.Q.; Xia, Z.P.; Howe, D.; et al. Reduction of cogging force in slotless linear permanent magnet motors [J]. IEE Proceedings: Electric Power Applications, 1997, 144(4): 277-282
    [106] In-soung Jung,Jin Hur,Dong-seok, Performance Analysis of Skewed PM Linear Synchronous Motor According to Various Design Parameters[J].IEEE Transactions on Magnetics, 2001,37(5): 3653-3657
    [107] Martinez G.,Atencia J.,Martinez-Iturralde M., et al. Reduction of detent force in flat permanent magnet linear synchronous machines by means of three different methods[C]. IEEE International electric Machines and Drives Conference,Wisconsin,USA,2003: 1105-1110
    [108] Ki-Chae Lim; Joon-Keun Woo; Gyu-Hong Kang; et al. Detent force minimization techniques in permanent magnet linear synchronous motors [J]. IEEE Transactions on Magnetics, 2002, 38(2): 1157– 1160
    [109] Yoshimura, T.; Kim, H.J.; Watada, M.; et al. Analysis of the reduction of detent force in a permanent magnet linear synchronous motor. Magnetics [J], IEEE Transactions on Magnetics, 1995, 31(6): 3728– 3730
    [110] Masaya Inoue,Kenji Sato. An approach to a suitable stator length for minimizing the detent force of permanent magnet linear synchronous motors[J].IEEE Transactions on Magnetics,2000,36(4):1890-1893.
    [111] Otten G,Devries J A,Amerongen J,et al.Linear motor control using a learning feedforward controller[J].IEEE Transactions on Mechanics,1997,2(3):179-187.
    [112]张航,黄云,龚良甫.基于三次样条函数拟合公路平面线形方法研究[J].武汉理工大学学报,2007,31(5):925-927
    [113]马社祥,刘铁根.基于三次样条插值的图像多尺度方向边缘重构[J].光学与光电技术,2005,3(6):5-8
    [114]马泳,王广君等.基于三次B样条函数的地形重构方法研究[J].华中科技大学学报,2002,30(11):31-33
    [115]杨丰,肖平,余英林.基于三次B -样条小波变换的汉字字形无级放大算法[J].计算机学报,1998,21(12):1141-1145
    [116]王省富.样条函数及其应用[M].西安:西北工业大学出版社, 1989
    [117] Yang, Fan; Kraemer, Bernd; Wang, Zhimei. An novel e-learner community construction algorithm in point view of learning interests [J]. WSEAS Transactions on Computers, 2006, 5(12):3097-3103
    [118] Sebald, Daniel J. ; Bucklew, James A. Support vector machine techniques for nonlinear equalization[J]. IEEE Transactions on Signal Processing, 2000, 48(11):3217-3226
    [119]尹伊君,周传伟,汪玉凤.直线振荡电机支持向量机非参数建模[J].辽宁工程技术大学学报,2006,25(6):882-884
    [120]李赣平,阎威武,邵惠鹤.Iterative optimal control based on support vector machine modeling within the Bayesian evidence framework[J].上海大学学报:英文版,2007,11(6):591-596
    [121]王莉.电励磁双凸极电机高压直流发电系统研究[D].南京:南京航空航天大学,2006
    [122]邢文训,谢金星.现代优化计算方法[M].北京:清华大学出版社,1999
    [123]司纪凯,陈昊,汪旭东等.永磁直线同步电机磁阻力的端部分量分析及减小方法[J].中国电机工程学报,2007, 27(suppl):132-136

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700