基于气路参数样本的航空发动机状态监视方法与系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
航空发动机是飞机的动力核心,其结构复杂、工作环境恶劣,是飞机的主要故障来源,其健康状态的好坏直接影响着飞行安全和航空公司的效益。本文在国家自然科学基金(项目号: 60572174)及中国国际航空公司(国航)科研基金的资助下,研究了基于气路参数的民用航空发动机健康状态监视方法及其系统。
     发动机气路参数样本本质上是一种混有较强随机噪声的时间序列,经常出现孤立突变数据和趋势突变数据等异常。小波变换是一种多尺度时-频分析工具,对于数据点突变和数据趋势突变等局部特征都能很好地描述,十分适合处理非平稳的发动机气路参数时间序列并识别其异常数据。为了提高发动机性能数据的可用性,及时识别发动机的异常状态并准确恢复原数据,论文提出了基于信号连续小波变换模极大曲线搜索的信号突变识别及重构方法,该方法可以在识别数据突变的同时有效地抑制随机噪声,进而有效地恢复真实信号。为了解决采用连续小波变换带来的运算速度问题,给出了基于傅里叶变换的信号连续小波变换与反演的快速算法。通过仿真算例研究了边沿效应及小波变换模极大曲线搜索过程中可能出现的伪模极大曲线等问题的处理方法,籍此提高突变数据识别及信号重构的准确性。发动机气路参数数据预处理的实例表明,所提出的方法能有效地恢复发动机性能参数数据,其信号重构效果优于一般的小波软阈值降噪方法。
     为解决复杂系统状态预测模型难以建立且预测精度难以保证的问题,提出了一种混合递归过程神经网络。设计了网络的拓扑结构,通过引入一组合适的正交基函数对网络的输入函数和连接权函数进行展开,实现了网络的简化。给出了一种基于弹性BP算法的混合递归过程神经网络学习算法。将网络与几种传统神经网络分别应用到Mackey-Glass混沌时间序列预测中,验证了网络的有效性。最后将上述网络分别应用到航空发动机气路参数预测的具体问题中,对比结果表明,混合递归过程神经网络在这一问题中有更好的工程可用性,是一种有效的发动机健康状态监视工具。
     针对基于最小二乘理论的传统数据拟合方法在求解双随机变量间的函数关系时的不适应性问题,提出了一种可同时考虑双拟合变量的随机噪声影响的欧氏距离最小二乘支持向量回归方法,给出了基于Matlab二次规划工具箱的实现算法。通过实例验证了该方法在发动机性能趋势分析中的有效性。另外,由于拟合不同的发动机性能参数的时间序列数据可能需要不同的拟合方法,简要地提出了基于多阶次多项式回归算法的发动机性能参数时间序列数据拟合方法。
     层次分析法是一种实用有效的多准则决策方法,但其判断矩阵的确定需进行一致性检验,同时,其对于评价指标观测值的评分准则一般由专家凭经验给出,带有很强的不确定性。为此,提出一种灰色层次分析法,该方法将判断矩阵的拟优一致化求解方法与灰色聚类评价理论相结合,有效地克服了层次分析法的上述缺点。针对发动机状态综合评价问题,建立了发动机状态综合评价指标体系;基于拟优一致判断矩阵求取了发动机状态的各评价指标综合权值;对发动机状态的各评价指标进行了灰类划分,并基于三角权函数对评价指标所表征的发动机实际状态观测值进行评分。最后给出了一个发动机状态综合评价问题的示例,结果表明了方法的有效性。
     从国航发动机健康状态监视及工程管理这一应用背景出发,进行了软件开发需求分析,系统功能模型、数据模型和体系结构的设计。综合本文提出的几种发动机性能监视和健康状态综合评价方法,开发了面向航空发动机全寿命管理的发动机健康状态监视软件系统。系统包括发动机维护及状态监视信息管理、发动机状态趋势分析、发动机状态参数超限自动报警、发动机状态综合评价及发动机拆换期预报等功能模块。该系统作为“发动机全寿命管理系统”的重要组成部分已被应用于国航的发动机健康状态监视工作中,测试结果表明了系统的有效性。
Aeroengine is the kernel power supply of aircraft, which structure is complex and which operation environment is bad, so it is the main source of aircraft trouble, and its condition is the direct influencing factor of flight safty and airline company benefit. In this dissertation, aeroengine condition monitoring technique and software system based on aeroengine gas path parameters is studied under the supports of the National Natural Science Foundation of China (Grant No. 60572174) and the Air-China Scientific Research Foundation.
     Aeroengine gas path parameter sample is a non-stationary time series blending stochastic noise essentially, of which there are frequently singularity data such as isolated mutational data and trend mutational data, etc. Wavelet transform is a kind of multi-scales time-frequency analysis tool, which can extract the characteristics of isolated data point mutation and data trend mutation excellently, consequently, wavelet is adapt to process non-stationary aeroengine gas path parameter data and of which to identify the data singularity. In order to improve the usability of aeroengine performance data and identify the abnormal condition of aeroengine in time, and to reconstruct original data accurately, signal mutation identifying and reconstruction techniques are proposed based on modulus local maxima curves searching of continuous wavelet transform coefficients of signal, which can identify signal mutation and denoise at the same time, thus, the original signal can be resumed effectively. To resolve the problem that the computing speed of continuous wavelet transform method is very low, discrete Fourier transform based the continuous wavelet transform and inverse transform algorithms of signal are proposed. To further improve the accuracy of the mutational data identify and original data reconstruction, a simulation example is presented to research the processing methods of edge effect and false modulus local maxima curves which may come forth in the searching process of modulus local maxima curves of continuous wavelet transform coefficients. The data preprocess instance of aeroengine gas path performance parameter indicates the technique proposed can reconstructe efficientlly aeroengine performance parameter original data and the reconstruction effect is better than the effect of wavelet soft threshold denoising.
     A Hybrid Recurrent Process Neural Network is proposed to resolve the problems that building the prediction model of complex system condition is hard and the prediction precision is hard to be guaranteed. Concretely, the topological structure of this network is designed, and the network is simplified by introducing a set of appropriate orthogonal basis functions to expand the input functions and the connection weight functions of the network. And a learning algorithm base on resilient backpropagation is proposed for the network. The validation of this technique is proved by a benchmark of the Mackey-Glass chaos time series prediction using the network proposed and several tradition artificial neural networks. A practical utilization of the aeroengine gas path performance parameter data prediction by above networks demonstrates this point in terms of aeroengine condition monitoring too, the prediction results indicate Hybrid Recurrent Process Neural Network is an efficient aeroengine condition monitoring tool.
     Because tradition data fitting techniques based on least square procedure have inadaptabilities in fitting two aeroengine performance parameters which are both random variable, a Euclidean Distance Least Squares Support Vector Regression technique is proposed, which processes the random noise of two fitting variables at the same time, and a corresponding realization algorithm based on quadratic programming toolbox of Matlab is presented. The validity of the Euclidean Distance Least Squares Support Vector Regression technique is proved by a instance of aeroengine fleet trend analysis. In addition, A technique fitting aeroengine performance parameter time series is proposed summarily based on multi-order polynomial regression method to resolve the problem that fitting the time series of the different aeroengine performance parameter may need different fitting method.
     Analytic Hierarchy Process is a practical effective multiple criteria decision making method, But the consistency check is needed to determine its judgment matrix, and the grading criterions of its evaluating indicators observed values are generally determined by expert experience so that the non-determinacy comes forth. Therfore, a Grey Analytic Hierarchy Process based on Grey Cluster Evaluating Theory is proposed, and for aeroengine, the comprehensive evaluating indicators system of aeroengine condition is built. And the synthetic weight and the grey classification of every aeroengine condition evaluating indicator is computed or is present, and the triangle-type weight fuctioin based the parameters observed values of aeroengine condition evaluating indicators are graded. Finally, a instance of aeroengine condition comprehensive evaluation is presented.
     Orienting the application background of the aeroengine condition monitoring and the engineering management of Air-China, software system requirement is analyzed, and the function model and the data model and the architecture of the system are designed in turn. Subsequently, based on the aeroengine performance monitoring and condition evaluation techniques proposed, a aeroengine condition monitoring system orienting aeroengine life-cycle management is developed. The system includes serveral function modules such as the information management module of maintenance and condition monitoring of aeroengine; the aeroengine condition trend analysis module; the autoalarm module monitoring aeroengine condition parameters; the aeroengine condition comprehensive evaluation module; and the aeroengine removal time prediction module, etc. As one significant part of the aeroengine cycle-life management system, the aeroengine condition monitoring system has been applied to the project of aeroengine condition monitoring in Air-China, and the system validition is proved by the test run effects.
引文
1 L.J. Jaw Recent Advancements in Aircraft Engine Health Management (EHM) Technologies and Recommendations for the Next Step. Reno-Tahoe, Nevada: Proceeding of Turbo Expo 2005, 50th ASME International Gas Turbine & Aeroengine Technical Congress. ASME Paper No. GT-2005-68625
    2《航空发动机设计手册》总编委会编.航空发动机设计手册第3册:可靠性及维修性.北京:航空工业出版社, 2002: 315~316
    3范作民,孙春林,白杰.航空发动机故障诊断导论.北京:科学出版社, 2004: 3~4, 35~36, 37, 62
    4王帅,康力平.航空发动机综合权值排队系统的建立与应用.中国民航学院学报, 2004, 22(6): 157~158
    5郝红勋.人工神经网络在航空发动机故障诊断中的应用.中国民用航空学院硕士学位论文, 2006, 3: 35~42
    6朱建东.飞机发动机的监控技术及其发展趋势.飞机设计, 2003, (1): 58~61
    7方昌德.发动机状态监视和故障诊断系统的发展.国际航空, 2005, (6): 66~68
    8曹霞,黄圣国. ACMS的飞机状态监控新概念.江苏航空, 2000, (3): 33~34.
    9方新.中国国际航空公司飞机状态监控系统研究.北京航空航天大学硕士学位论文, 2000: 31~42
    10 K. Mathioudakis, A. Stamatis, A. Tsalavoutas, et al. Combining Advanced Data Analysis Methods for the Constitution of an Integrated Gas Turbine Condition Monitoring and Diagnostic System. Proceedings of ASME Turbo Expo 2000, Munich, Germany. ASME Paper No. 2000-GT-34
    11 T. Zoller. Advanced Engine Monitoring and Diagnosis Systems: Actual System for the EJ200 Engine of the EuroFighter 2000 Aircraft and Future Trends. NATO AVT Symposium on Aging Mechanism and Control, Manchester, UK, 2001: 32~33
    12 P.M. Doane. F/A-18A Inflight Engine Condition Monitoring System( IECMS). AIAA28321237, 1983: 3~4
    13蒋世奇.航空发动机试验关键参数测试与状态监测系统研制.电子科技大学硕士学位论文, 2003: 38~40
    14李本威,高国胜,胡国才,等.涡轴发动机状态监测系统的研究.燃气涡轮试验与研究, 2002, 15(1): 42~46
    15康文雄,李华聪,杨勇柯.航空发动机状态监测系统设计研究.计算机测量与控制, 2004. 12(10): 914~917
    16 M.J. Roemer. Engine Health Monitoring System for Advanced Diagnostic Monitoring for Gas Turbine Engines. AFRL-PR-WP-TR-1998-2120
    17郝英,孙健国,白杰.航空燃气涡轮发动机气路故障诊断现状与展望.航空动力学报, 2003, 18(6): 753~760
    18林兆福,范作民.发动机状态监控和故障诊断系统的研究.中国民航学院学报, 1993. 11(3): 1~11
    19吴月伟.基于径向基神经网络的飞机发动机故障诊断研究.中国民用航空学院硕士学位论文, 2006, 2: 20~42
    20张津.民用航空发动机状态监视和故障诊断系统研究.航空动力学报, 1994, 9(4): 339~341
    21孙斌,张津.发动机气路参数故障诊断法在EMS中的应用.航空发动机, 1997, 4: 15~20
    22涂群章,左洪福,李艳军,等.污染油液内颗粒图像在线监测系统开发.南京航空航天大学学报, 2003, 35(5): 505~509
    23于辉,左洪福,陈果.基于立体视觉的孔探分析系统及其应用.南京航空航天大学学报, 2002, 34(3): 293~296
    24费逸伟,姜旭峰,朱焕勤,等.基于油液分析的航空发动机状态监控与故障诊断系统研究.润滑与密封, 2004, (5): 74~77
    25龚烈航,徐延军,韩寿松.基于多Agent和网络的航空发动机滑油系统故障监测与诊断系统研究.润滑与密封, 2003, (1): 25~27
    26张加圣,应英,应勇.航空发动机故障监控系统的设计与软件实现.测控技术, 2008, 27(2): 65~68
    27徐维江.实时监控软件及数据采集系统综合研究.西北工业大学硕士学位论文, 2007, 3: 19~43
    28 L.A. Urban. Gas Path Analysis Applied to Turbine Engine Condition Monitoring. AIAA-72-1082: 1~8
    29孔瑞莲,等.航空发动机可靠性工程.北京:航空工业出版社, 1996: 529~530
    30严寒松.航空发动机故障诊断.南京航空航天大学硕士学位论文, 1996:15~35
    31陈大光.多状态气路分析法诊断发动机故障的分析.航空动力学报, 1994, 9(4): 339~343.
    32朱之丽,孟凡涛.模型辨识法诊断发动机故障的分析.温州:航空学会第十一届动力控制学术会议论文集, 2002: 148~152.
    33 A. Stamatis. Jet Engine Fault Detection with Discrete Operating Points Gas Path Analysis. Journal of Propulsion and Power, 1991, 7(6): 1043~1048
    34郝英,孙健国,白杰.航空燃气涡轮发动机气路故障诊断现状与展望.航空动力学报, 2003, 18(6):753~760
    35范作民,孙春林,林兆福.发动机故障诊断的主因子模型.航空学报, 1993, 14(12): 588~595.
    36 J. Bai, Z.M. Fan, C.L. Sun. Consistence Criterion for Engine Fault Diagnosis Decision. Proceedings of the Third Asian-Pacific Conference on Aerospace Technology and Science, Yunnan China, Oct, 2000: 407~413.
    37冯正平,孙健国.航空发动机小偏差状态变量模型的建立方法.推进技术, 2001, 22(1): 54~57.
    38范作民,孙春林,林兆福.发动机故障方程的建立与故障因子的引入.中国民航学院学报, 1994, 12(1): 1~14.
    39 D.L. Doel. Assessment of Weighted-Least-Squares Based Gas Path Analysis. ASME Paper No. 93-GT-119
    40 M.D. Green, A. Duyar, J.S. Litt. Model-Based Fault Diagnosis for Turboshaft Engine. Prepr. IFAC Symposium on Fault Detection. Supervision and Safety for Technical Processes (SAFEPROCESS’97). 1997, 1: 71~76.
    41 D.L. Doel. Temper. A Gas Path Analysis Tool for Commercial Jet Engines. Transactions of the ASME Journal of Engineering for Gas Turbines and Power, 1994, 116: 82~89
    42毛景立,李鸣,林健.某型涡轮轴发动机稳态气路故障诊断方法.航空动力学报, 2002, 17(1): 69~74
    43海雯炯,张家峰,赵树峰.基于飞参数据的发动机状态监控方法研究.装备制造技术, 2006, (3): 5~7
    44 M. Pinelli, P.R. Spina. Gas Turbine Field Performance Determination: Sources of Uncertainties. Journal of engineering for gas turbines and power, 2002, 124: 155~160
    45 M. Zedda, R. Singh. Gas Turbine Engine and sensor Fault Diagnosis Using Optimization Techniques. AIAA 99-2842.
    46 R. Bettocchi, P.R. Spnia. Diagnosis of Gas Turbine Conditions by Means of the Inverse Cycle Calculation. ASME Paper No. 99-GT-185
    47 C.R. Davison, A.M. Birk. Steady State Performance Simulation of Auxiliary Power Unit with Faults for Component Diagnosis. ASME Paper No. 2000-GT-623
    48 C.R. Davison, A.M. Birk. Development of Fault Diagnosis and Failure Prediction Techniques for Small Gas Turbine Engines. ASME Paper No. 2001-GT-548
    49叶志锋,孙健国.应用神经网络诊断航空发动机气路故障的前景.推进技术, 2002, 23(1): 1-4.
    50陈大光,刘福生.燃气涡轮发动机故障诊断的人工神经网络法.航空动力学报, 1994, 9(4).
    51张明川.人工神经网络技术在民用涡扇发动机故障诊断中的应用.航空工程与维修, 2000, 2: 29-31.
    52杨蔚华.航空发动机建模及故障诊断.南京航空航天大学硕士学位论文, 2000: 13~41.
    53 G. Denney. F216 jet engine trending and diagnostics with neural networks. Application of Neural Networks, SPIE 1993, 1965(4): 419~422.
    54叶志锋,孙健国.基于概率神经网络的发动机故障诊断.航空学报, 2002, 23(2): 155~157
    55 D.F. Specht. Probabilistics neural networks. Neural Networks, 1990, 3: 109~118
    56 T. Kohonen. Self-organization and Associative Memory. Berelin: Springer-Verlag, 1989, 8: 312~325
    57范作民. Kohonen网在发动机故障诊断中的应用.航空动力学报, 2000, 15(1): 89~92.
    58陈恬,孙健国,杨蔚华,等.自组织神经网络航空发动机气路故障诊断.航空学报, 2003, 24(1): 46~48
    59陈恬,孙健国,郝英.基于神经网络和证据融合理论的航空发动机气路故障诊断.航空学报, 2006, 27(6): 1014~1017
    60 B. Sun, J. Zhang, S.J. Zhang. An Investigation of Artificial Network (NN) inQuantitative Diagnosis for Turbofan Engine. ASME Paper No. 2000-GT-32
    61孙斌,张津,张绍基. BPN在涡扇发动机气路故障诊断中的应用.航空动力学报, 1998, 13(3): 323~326.
    62孙斌,张津,张绍基.涡扇发动机气路故障定量诊断的BP网研究.推进技术, 1999, 20(4): 48-52.
    63 R. Eustace, G. Merrington. Fault diagnosis of fleet engines using neural networks. ISABE 9527085: 926~936.
    64钱建阳.航空发动机气路智能故障诊断.南京航空航天大学硕士学位论文, 2000: 21~42
    65 M. Zedda, R. Singh. Fault Diagnosis of a Turbofan Engine Using Neural Network: A Quantitative Approach. AIAA 98-3602
    66郭风,王思远,崔红军.基于RBF神经网络的航空发动机故障诊断研究.航空计算技术, 2007, 37(2): 23~26
    67 M. Ryshetsky, S. Ortmann, M. Glester. Support Vector Approaches for Engine Knock Detection. IJCNN’99 International Joint Conference on Neural Networks, 1999: 969~974
    68王旭辉,黄圣国,舒平.基于最小二乘支持向量机的航空发动机故障远程诊断.机械科学与技术, 2007, 26(5): 595~599
    69陈恬,孙健国.粗糙集与神经网络在航空发动机气路故障诊断中的应用.航空动力学报, 2006, 21(1): 207~212
    70 H.R. DePold, F.D.Gass. The Application of Expert System and Neural Networks to Gas Turbine Prognostics and Diagnostics. ASME Paper No. 98-GT-101
    71 S.M. Hargrave, P.J.Fleming. The Use of Cased-Based Reasoning Technology to Aid Fault Isolation in a Modern Gas Turbine Engine Design. ASME Paper No. 98-GT-61
    72 G. Torella, R. Torella. Probabilistic Expert System for the Diagnostics and Trouble-Shooting of Gas Turbine Apparatuses. AIAA 99-2842.
    73 P.R. Spina, G. Torella, M. Venturini. The Use of Expert Systems for Gas Turbine Diagnostics and Maintenance. Proceedings of ASME Turbo Expo 2002, Amsterdam, the Netherlands. ASME Paper No. GT-2002-30033
    74 R. Ganguli. Application of Fuzzy Logic for Fault Isolation of Jet Engines. Proceedings of ASME Turbo Expo 2001, New Orleans, USA. ASME Paper No.2001-GT-0013.
    75 L.J. Yu, D.J. Cleary, P.E. Cuddihy. A Novel Approach to Aircraft Engine Anomaly Detection and Diagnostics. Proceedings of IEEE Aerospace Conference, Big Sky, Montana, March 2004.
    76 J. Litt. D.L. Simon. NASA Aviation Safety Program Aircraft Engine Health Management Data Mining Tools Roadmap. SPIE Proceeding of Data Mining and Knowledge Discovery: In Data Mining and Know ledge Disco Theory, Tools, and Technology. 2000: 292-298.
    77 V.Y. Arkov, G.G. Kulikov, T.V. Breikin. Application of Markov Chains to Identification of Turbine Engine Dynamic Models. Proceedings of ASME Turbo Expo 2002, Amsterdam, the Netherlands. ASME Paper No. GT-2002-30148
    78 S. Menon. Incipient Fault Detection and Diagnosis in Turbine Engines using Hidden Markov Models. Proceedings of ASME Turbo Expo 2003, Atlanta, USA. ASME Paper No. GT-2003-38589.
    79 G.G. Kulikov, T.V. Breikin, V.Y. Arkov, et al. Gas Turbine Engine Fault Detection Using Markov Simulation Technique. IEE International Conference on Simulation. 1998: 69~72
    80胡金海,谢寿生,陈卫.基于核函数主元分析的航空发动机故障检测方法.推进技术, 2008, 29(1): 79~83
    81 M.J. Roemer, G.J. Kacprzynski, M.H. Schoeller. Improved Diagnostic and Prognostic Assessments Using Health Management Information Fusion . Autotestion Proceedings, IEEE Systems Readiness Technology Conference. 2001: 365~377
    82 T. Brotherton. eSTORM: Enhanced Self Tuning On-board Real-time Engine Model. Proceedings of IEEE Aerospace Conference, Big Sky, Montana, March 2003. Symposium, Vol 5: 1572~1584
    83罗俊,何立明,陈超.基于小波分形和一类辨识的航空发动机故障诊断.推进技术, 2007, 28(2): 82~85
    84 P.Y. Peng, M.T. Yang. Neural Networks Based Diagnostics for Mistuned Bladed Disk. Proceedings of ASME Turbo Expo 2000, Munich, Germany. ASME Paper No. 2000-GT-0035
    85杨建国,孙扬,郑严.基于小波和模糊神经网络的涡喷发动机故障诊断.推进技术, 2001, 22(2): 114~117.
    86 D.M. Ghiocel. Refined Stochastic Field Models for Jet Engine Vibration and Fault Diagnostics. Proceedings of ASME Turbo Expo 2000, Munich, Germany. ASME Paper No. 2000-GT-0023
    87 T. Brotherton. A Testbed for Data Fusion for Helicopter Diagnostics and Prognostics. Proceedings of IEEE Aerospace Conference, Big Sky, Montana, March 2003. Symposium, Vol 7: 3012~3023
    88 R.F. Orsagh, J. Sheldon, C.J. Klenke. Prognostics/Diagnostics for Gas Turbine Engine Bearings. Proceedings of IEEE Aerospace Conference, Big Sky, Montana, March 2003. Symposium, Vol 7: 3095~3103
    89 G. Modgil, R.F. Orsagh, M.J. Roemer. Advanced Vibration Diagnostics for Engine Test Cells. Proceedings of IEEE Aerospace Conference, Big Sky, Montana, March 2004. Symposium, Vol 7: 2981~2990
    90 P. Hayton, B. Schoelkopf, L. Tarassenko, et al. Support Vector Novelty Detection Applied to Jet engine Vibration Spectra. Colorado: Fourteenth Annual Neural Information Processing Systems (NIPS) Conference. 2000: 946~952.
    91姜旭峰,费逸伟,李华强.航空发动机滑油综合监测技术研究.润滑与密封, 2005, (2): 110~115.
    92 A Model to Predict the Residual Life of Aircraft Engines Based upon Oil Analysis Data. Naval Research Logistics, 2005, 52: 276~284
    93姜旭峰,费逸伟,钱坤,等.滑油监测技术在航空发动机预防性维修中的应用.润滑与密封, 2004, (2): 56~58.
    94 J.L. Miller, D. Kitaljevich. In-Line Oil Debris Monitor for Aircraft Engine Condition Assessment. IEEE 0-7803-5846-5/00: 49~56
    95 J.W. Gao, P.L. Zhang. Z.J. Wang, et al. A New Engine Fault Diagnosis Method Based on Spectrometric Oil Analysis. Proc. of SPIE Vol. 6357: 635753 (2006): 1~6
    96萧汉梁.铁谱技术及其在机械监测诊断中的应用.北京:人民交通出版社, 1993: 53~54
    97王广,李军.基于神经网络的航空发动机滑油监测分析.润滑与密封, 2005, (5): 123~125.
    98尉询楷,李应红,王硕.基于支持向量机的航空发动机滑油监控分析.航空动力学报, 2004, 19(3): 392~397.
    99 Gan Minliang, Yang Zhong. Time-Series Modeling and Fault Forecast Study on Spectral Analysis of Lubricating Oil. Transactions of Nanjing University of Aeronautics & Astronautics, 2001, 18(1): 86~90.
    100吴振锋.基于磨粒分析与信息融合的发动机磨损故障诊断技术研究.南京航空航天大学博士学位论文, 2002
    101吴振锋,左洪福,孙有朝.航空发动机磨损故障的常用监控手段及其对比.航空工程及维修, 2000.5: 25 ~27
    102 L.M. Gelman, P.R. White, J.K. Hammond. A Comparison of Nonlinear Techniques for Structural Health Monitoring. AIAA-2006-2112, 2006
    103李长有,马齐爽,姚红宇.基于小波变换的孔探图像边缘粗糙度分析.北京航空航天大学学报, 2007, 33(6): 705~708
    104 M.P. Enright, S.J. Hudak, R.C. McClung, et al. Application of Probabilistic Fracture Mechanics to Prognosis of Aircraft Engine Components. AIAA Journal, 2006, 44(2): 311~316
    105 P. Honor, N. Ari. Gas Path Debris Monitoring for F-35 Joint Strike Fighter Propulsion System PHM. IEEE 0-7803-9546-8/06: 1~8
    106 L.I. Zhang, H.W. Tao, C.E. Holt, et al. A Critical Window for Cooperation and Competition among Developing Retinotectal Synapses. Nature, 1998, 395(6697): 37~44
    107欧阳楷,刘卫芳.基于生物的神经网络的理论框架—神经元模型.北京生物医学工程, 1997, 16(2): 93~101
    108何新贵,梁久祯.过程神经元网络的若干理论问题.中国工程科学, 2000, 2(12): 40~44
    109 X.G. He, J.Z. Liang. Process neural networks. The 16th World Computer Congress 2000, Proceedings of the Conference on Intelligent Information Processing. Beijing: Publishing Houses of Electronics Industry, 2000: 143~146
    110许少华.过程神经元网络理论及其应用研究.北京航空航天大学博士学位论文, 2004: 6~106
    111许少华,何新贵.基于函数正交基展开的过程神经网络学习算法.计算机学报, 2004, 7(5): 645~650
    112葛利.一种基于混合遗传算法学习的过程神经网络.哈尔滨工业大学学报, 2005, 37(7): 986~988
    113李盼池.基于过程神经网络的市场需求预测分析.情报杂志, 2003, 3: 44~45
    114何新贵,梁久祯,许少华.过程神经元网络的训练及其应用.中国工程科学, 2001, 3(4): 31~35
    115何新贵,许少华.输入输出均为时变函数的过程神经网络及应用.软件学报, 2003, 14(4): 764~769
    116许少华,何新贵,李盼池.自组织过程神经网络及其应用研究.计算机研究与发展, 2003, 40(11): 1612~1615
    117许少华,何新贵,李盼池.一类用于连续过程逼近的过程神经元网络及其应用.信息与控制, 2004, 33(1): 116~119
    118许少华,何新贵,尚福华.基于基函数展开的双隐层过程神经元网络及其应用.控制与决策, 2004, 19(1): 36~39
    119许少华,何新贵.一种级联过程神经元网络及其应用研究.模式识别与人工智能, 2004, 17(2): 207~211
    120许少华,何新贵.径向基过程神经网络及其应用研究.北京航空航天大学学报, 2004, 30(1): 14~17
    121何新贵,许少华.一类反馈过程神经元网络模型及其学习算法.自动化学报, 2004, 30(6): 801~806
    122许增福,梁静国,李盼池,等.一种基于Walsh变换的反馈过程神经网络模型及学习算法.信息与控制, 2004, 33(4): 404~412
    123李盼池.用过程神经网络和遗传算法实现系统逆向求解.控制理论与应用, 2004, 22(6): 895~899
    124许少华,何新贵,王兵.一种分式过程神经元网络及其应用研究.计算机研究与发展, 2006, 43(12): 2088~2095
    125 S.S. Zhong, Y. Li, G. Ding. Continuous Wavelet Process Neural Network and its Application. Neural Network world, 2007, 16(5): 483~495
    126 G. Ding, S.S. Zhong. Approximation Capability Analysis of Parallel Process Neural Network with Application to Aircraft Engine Health Condition Monitoring. Lecture Notes in Computer Science, 2007, 4493:66~72
    127 G. Ding, S.S. Zhong. Time series prediction by parallel feedforward process neural networks with time-varied input and output functions. Neural Network World, 2005, 15(2): 137~147
    128 G. Ding, S.S. Zhong. Parallel feedforward process neural networks withtime-varied input and output functions. Lecture Notes in Computer Science, 2005, 3496: 473~478
    129丁刚,钟诗胜.基于时变阈值过程神经网络的太阳黑子数预测.物理学报, 2007, 56(2): 1224~1230
    130边肇祺,张学工等.模式识别,第2版.北京:清华大学出版社, 2000
    131阎平凡,张长水.人工神经网络与模拟进化计算.北京:清华大学出版社, 2000
    132 B. Boser, L. Guyon, V.N. Vapnik. A training algorithm for optimal margin classifiers. Fifth Annual Workshop on Computational Learning Theory, Pittsburgh. Baltimore, MD: ACM Press, 1992: 144~152
    133 C. Cortes, V.N. Vapnik. The soft margin classifier. Technical memorandum 11359-931209-18TM, AT&T Bell Labs, 1993.
    134 B. Scholkopf, C. Burges, V.N. Vapnik. Extracting support data for a given task. In: Fayyad UM, Uthurusamy R.(eds.). Proceedings of First International Conference on Knowledge Discovery and Data Mining, AAAI Press, 1995: 262~267
    135 V.N. Vapnik. The nature of statistical learning theory. New York: Springer, 1995
    136张学工.关于统计学习理论与支持向量机.自动化学报, 2000, 26(1): 32~42
    137 V.N. Vapnik. The nature of statistical learning theory, the 2nd edition. New York: Springer, 1999: 85~88
    138 C. Angulo, X. Parra, A. Catala. K-SVCR: A support vector machine for multi-class classification. Neurocomputing, 2003, 55: 57~77
    139冉启文.小波变换与分数傅里叶变换理论与应用.哈尔滨:哈尔滨工业大学出版社, 2006
    140 B.P. Donald, A.T. Walden.时间序列分析的小波方法.程正兴,等译.北京:机械工业出版社, 2006
    141 S. Mallat, S.F. Zhong. Characterization of Signal from Multiscale Edges. IEEE Trans. On Pattern Analysis and Machine Intelligence. 1992, 14(7): 710~732
    142陈德智,唐磊,盛剑霓.由小波变换的模极大值快速重构信号.电子学报. 1998, 26(9): 82~85
    143 F.A. Cheikh. A. Quddus, M. Gabbouj. Multi-level Shape Recognition Based on Wavelet-trransform Modulus Maxima. Proceedings of 4th IEEE SouthwestSymposium Imgae Analysis and Interpretation, Austin USA. April 2000, 8~12
    144 P.A. Regalia. A Finite-intevral Constnat Modulus Algorihtm. IEEE International Coneference Acoustics, Speech, and Singnal Proeessing, 2002. Proceedings of ICASSP’02, Miami USA. May 2002, 3: 2285~2288
    145张茁生,刘贵忠,刘峰.一种新的信号二进小波变换模极大值重构信号的迭代算法.中国科学(E辑). 2003, 33(6): 545~553
    146 C. Sumi. Our Recent Srtain Measurement Based Shear Modulus Renocsturction. IEEE Trans. on Ultrasonics Symposimu. 2005, 3(9): 1771~1776
    147杨福生.小波变换的工程分析与应用.北京:科学出版社, 1999: 1~14
    148胡广书.现代信号处理教程.北京:清华大学出版社, 2004
    149杨巧林.复变函数与积分变换.北京:机械工业出版社, 2002
    150 S. Mallat, W.L. Hwang. Singularity Detection and Processing with Wavelets. IEEE Trans. on Information Theory, 1992, 38(2): 617~643
    151刘毅.非平稳信号的小波分析与拟合问题研究.山东大学博士学位论文, 2006
    152 I. Daubechies.Ten Lectures on Wavelets. SIAM, Philadelphia, PA, l992
    153 S. Mallat.信号处理的小波导引.杨力华,等译.第二版北京:机械工业出版社, 2002
    154 T. Kijewski, A. Kareem. Wavelet transforms for system identification in civil engineering. Computer Aided Civil and Infrastructure Engineering, 2003, 18(5): 339~355
    155奚梅成.数值分析方法.安徽:中国科技大学出版社, 1994: 98~101
    156张明川.基于人工神经网络技术的民用涡扇发动机故障诊断研究.北京航空航天大学博士后出站报告, 1999: 12~45
    157 G. P. Zhang. Time series forecasting using a hybrid ARIMA and neural network model. Neurocomputing, 2003, 50: 159~175.
    158 Y. Kajitani, K.W. Hipel, A. I. Mcleod. Forecasting nonlinear time series with feed-forward neural networks: A case study of Canadian lynx data. Journal of forecasting, 2005, 24(2): 105~117.
    159 W.J. Freeman. Mass Action in the Nervous System. New York: Academic Press, 1975.
    160 D.T. Pham, D. Karaboga. Training Elman and Jordan networks for systemidentification using genetic algorithms. Artificial Intelligence in Engineering, 1999, 13(2): 107~117.
    161 D.T. Pham, X. Liu. Training of Elman networks and dynamic system modeling. Int. Journal of Systems Science, 1996, 27(2): 221~226.
    162 K.S. Narendra, K. Parthasaxathy. Identification and control of dynamical systems using neural networks. IEEE Transactions on Neural Networks, 1990, 1(1): 4~27.
    163 M.I. Jordan. Attractor dynamics and parallelism in a connectionist sequential machine. Proc. Eighth Annual Conf. of the Cognitive Science Society, Amherst, MA. 1986: 531~546.
    164 J.L. Elman. Finding structure in time. Cognitive Science, 1990, 14: 179~211.
    165 M. Riedmiller. Advanced Supervised Learning in Multi-layer Perceptions: from Backpropagation to Adaptive Learning Algorithms. Int. Journal of Computer Standards and Interfaces, 1994, 16(3): 265~278.
    166 M.C. Mackey, L. Glass. Oscillations and chaos in physiological control systems. Science, 1977, 197(4300): 287~289.
    167 B.A. Pearlmutter. Gradient Calculations for Dynamic Recurrent Neural Networks: A Survey. IEEE Transactions on Neural Networks, 1995, 6(5): 1212~1228
    168 P. Campolucci, A. Uncini. On-line Learning Algorithms for Locally Recurrent Neural Networks. IEEE Transactions on Neural Networks, 1999, 10(2): 253~271
    169丛爽,高雪鹏.几种递归神经网络及其在系统辨识中的应用.系统工程与电子技术, 2003, 25(2): 194~197
    170孔瑞莲等.航空发动机可靠性工程.北京:航空工业出版社, 1995, 12
    171 V.N. Vapnik, S. Gokowich and A. Smola. Support vector method for function approximation, regression estimation, and signal processing. In: Adavances in Neural Information processing Systems 9, Cambridge. MA: MIT Press, 1997: 281~287
    172邓乃扬,田英杰.数据挖掘中的新方法:支持向量机.北京:科学出版社, 2004
    173林飞,曾五一.对自变量为随机变量的回归模型估计方法的探讨.统计研究, 1999, 12: 22~27
    174牛常胜.基于几何距离的数据拟合优化方法研究.北京科技大学硕士学位论文, 2007: 30~46
    175陈基伟.工业测量数据拟合研究.同济大学博士学位论文, 2005: 82~86
    176 J.A.K. Suykens, J. Vandewalle. Least squares support vector machine classifiers. Neural Processing Letter, 1999, (9): 293~300
    177 R. E. Fan, P. H. Chen, and C. J. Lin. Working Set Selection Using Second Order Information for Training SVM. Journal of Machine Learning Research, 2005, (6): 1889~1918
    178 T.L. Saaty. The Analytic Hierarchy Process. New York: McGraw Hill, 1980
    179刘思峰,郭天榜,党耀国等.灰色系统理论及其应用,第2版.北京:科学出版社, 1999: 89~101
    180王英明,徐南容.群体判断矩阵及权向量的最优传递矩阵求法.系统工程理论与实践, 1991.4: 70~74
    181 D. Ann, O. David. Multiple Criteria Decision Making Models in Group Decision Support. Group Decision and Negotiation, 1998, 7: 55~75
    182 R.C. Van. Decisional Power in Group Decision Making: A Note on the Allocation of Group Members’Weights in the Multiplicative AHP and SMART. Group Decision and Negotiation, 2001, 10: 275~286
    183宋兆泓,陈光,张景武,等.航空发动机典型故障分析.北京:北京航空航天大学出版社, 1993
    184郭亚军.综合评价理论与方法.北京:科学出版社, 2002: 96~112
    185金菊良,魏一鸣,丁晶.基于改进层次分析法的模糊综合评价模型.水利学报, 2004, (3): 65~70
    186王明哲.层次分析法的序相关分析.华中理工大学学报, 2000, 28(10): 80~82
    187陈禹六. IDEF建模分析和设计方法.北京:清华大学出版社, 1999: 44~45

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700