种植体数目对单冠种植修复骨界面应力分布的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:通过建立不同数目种植体支持的单个过大种植磨牙三维有限元模型,采用三维有限元法,分析不同数目种植体支持的单个过大种植磨牙种植体骨界面应力分布,为临床种植修复提供设计依据。
    方法: 1.三维有限元模型建立:CT扫描下颌第一磨牙自然缺失的成人下颌骨标本,将CT扫描结果导入AutoCAD中,建立三维模型,导出为ACIS文件,再导入ANSYS进行计算。种植体的三维模型在ANSYS中建立,并在ANSYS中模拟建立三种种植模型:1、单个4.8mm直径种植体单冠修复,单个直径(4.8mm)种植体支持下颌单个磨牙缺失;2、两个3.5mm直径种植体单冠修复,双种植体(直径均为3.5mm)支持下颌单个磨牙缺失,两种植体长轴平行,长轴垂直于牙合面,均位于颌骨颊舌向中线上; 3、单个7mm直径种植体单冠修复,单个大直径(7mm)种植体支持下颌单个磨牙缺失。采用ALGOR有限元分析程序自动划分节点和单元,种植体骨界面上的单元有六面体和四面体,完成三维有限元模型,节点数和单元数如下:单个直径为4.8mm种植体,划分有限元网格,得到22121个单元,5863个节点;两个直径均为3.5mm种植体,划分有限元网格,得到23800个单元,5720个节点;单个直径为7mm种植体,划分有限元网格,得到26161个单元,7146个节点。 2、加载:给予
    
    
    垂直集中加载160N,斜向加载100N,载荷方向自颊侧向舌向与牙合面成45度角。3、分析方法:采用美国ALGOR大型通用有限元分析系统软件进行分析。
    结果:1、在垂直加载下,三组种植模型的应力分布规律是大致相同的,均在种植体的颈部周围的骨皮质和根尖部的骨松质出现应力集中。2、在斜向加载下,三组种植模型的应力分布规律是大致相同的,种植体的舌侧颈部骨皮质出现应力集中,种植体的舌侧颈部骨松质出现应力集中。3、在垂直加载下,三组种植模型的皮质骨Von Mises等效应力值范围分别为:单个直径为4.8mm种植体单冠修复(0.3~7.7Mpa),两个直径为3.5mm种植体单冠修复(0.2~6.0MPa), 单个直径为7.0mm种植体单冠修复(0.2~4.7MPa)。4、在斜向加载下,三组种植模型的皮质骨Von Mises等效应力值范围分别为:单个直径为4.8mm种植体单冠修复(0.1~20.5Mpa),两个直径为3.5mm种植体单冠修复(0.1~18.2MPa), 单个直径为7.0mm种植体单冠修复(0.1~10.0Mpa)。5、在垂直加载下,三组种植模型的松质骨Von Mises等效应力值范围分别为:单个直径为4.8mm种植体单冠修复(0.1~0.94MPa),两个直径为3.5mm种植体单冠修复(0.08~0.94MPa), 单个直径为7.0mm种植体单冠修复(0.05 ~0.71 MPa)。6、在斜向加载下,三组种植模型的松质骨Von Mises等效应力值范围分别为:单个直径为4.8mm种植体单冠修复(0.01~1.41MPa), 两个直径为3.5mm种植体单冠修复(0.01~1.22MPa),单个直径为7.0mm种植体单冠修复(0.01~ 0.86MPa)。7、在垂直加载下,单个直径为4.8mm种植体单冠修复时种植体骨界面最大应力值为
    
    
    7.7Mpa;两个直径为3.5mm种植体单冠修复时种植体骨界面最大应力值6.0 Mpa,单个直径为7.0mm种植体单冠修复时最大应力值为4.7Mpa;在斜向加载下,单个直径为4.8mm种植体单冠修复时种植体骨界面最大应力值为20.5Mpa;两个直径为3.5mm种植体单冠修复时种植体骨界面最大应力值为18.2Mpa,单个直径为7.0mm种植体单冠修复时最大应力值为10.0Mpa,从实验结果看,单个直径为7.0mm种植体单冠修复时种植体骨界面应力分布最好,两个直径为3.5mm种植体单冠修复时种植体骨界面应力分布较好,单个直径为4.8mm种植体单冠修复的种植体骨界面应力值最大,不利于应力分布。
    结论:1种植体数目及种植体直径对单冠种植修复骨界面应力分布有影响。2两个种植体直径的和大于单种植体直径时,两个种植体支持单冠修复骨界面应力值及应力分布优于单个种植体支持固位单冠。3两个种植体直径的和等于单种植体直径时,单个种植体支持固位单冠修复骨界面应力值及应力分布优于两个种植体支持固位单冠修复。4 种植体数目及种植体直径对骨界面应力集中的部位没有影响。应力集中均发生在颈部及根尖部。
Objective: Different implant quantity was applied to restore wide-distanced molar. Three-dimensional finite element models were built up. The aim of this experiment is to study the effects of different implants in single wide-distanced molar implant restoration on the stress distribution of implant-bone interface and to provide theory for clinical application.
    Method: Three implant designs restored single wide-distanced molar: odel1, ingle small implant (diameter:4.8mm) restoration; model 2, two implants (diameter:3.5mm*2) restoration; model 3, single big implant(diameter:7.0mm).Computed Tomography was used to build up a three-dimensional finite element model. Three-dimensional finite element models were built up on computer with the ALGOR finite-element-analyzing software. After the nodes of the implant-to-bone interface were selected, he stress average values were analyzed.When an axial load of 160N and an oblique load of 100N were applied, the stress distribution of three implant designs was compared.
    Result: 1.When an axial force was loaded, he maximal stress areas were formed at the neck and root tip region of implants. 2. When an oblique force was loaded, the maximal
    
    
    stress areas were formed at lingual neck region of implants. 3. When an axial force was loaded, the Von Mises stress quantities scope of three model in cortical bone were as follow: single small implant(diameter:4.8mm) restoration:0.3~7.7Mpa; two implants(diameter:3.5mm*2) restoration: 0.2~6.0Mpa; single big implant(diameter:7.0mm) restoration: 0.2~4.7Mpa.4. When an oblique force was loaded, the Von Mises stress quantities scope of three model in cortical bone were as follow: single small implant(diameter:4.8mm) restoration: 0.1~20.5Mpa; two implants(diameter:3.5mm*2) restoration: 0.1~18.2MPa; single big implant(diameter:7.0mm) restoration: 0.1~10.0Mpa. 5. When an axial force was loaded, the Von Mises stress quantities scope of three model in cancellous bone were as follow: single small implant(diameter:4.8mm) restoration: 0.1~0.94MPa; two implants(diameter:3.5mm*2) restoration: 0.08~0.94MPa; single big implant(diameter:7.0mm) restoration: 0.05 ~0.71 MPa. 6. When an oblique force was loaded, the Von Mises stress quantities scope of three model in cancellous bone were as follow: single small implant(diameter:4.8mm) restoration: 0.01~1.41MPa ; two implants(diameter:3.5mm*2) restoration: 0.01~1.22MP; single big implant(diameter:7.0mm) restoration: 0.01~ 0.86MPa. 7. When an axial force was loaded,the maximal stress quantity of single small implant(diameter:4.8mm) restoration was 7.7Mpa;the maximal stress quantity of two implants(diameter:3.5mm*2) restoration was 6.0 Mpa; the maximal stress quantity of single big implant(diameter:7.0mm)
    
    
    restoration was 4.7Mpa. When an oblique force was loaded, the maximal stress quantity of single small implant(diameter:4.8mm) restoration was 20.5Mpa; the maximal stress quantity of two implants(diameter:3.5mm*2) restoration was 18.2Mpa ; the maximal stress quantity of single big implant(diameter:7.0mm) restoration was 10.0Mpa.The stress distribution of single big implant(diameter:7.0mm) restoration was best, The stress distribution of two implants(diameter:3.5mm*2) restoration was better, and the stress distribution of single small implant(diameter:4.8mm) restoration was not good.
    Conclusion: 1.Implant quantity and diameter had influenced stress distribution between bone and implant.2.When area of two implant was bigger than that of one implant, stress distribution of two implants was better than that of one implant. 3. When area of two implant equaled to that of one implant, stress distribution of one implan was better than that of two implants.4. Implant quantity and diameter hadn’t influenced stress distribution place, the maximal stress areas were formed at the neck and root tip region of implants.
引文
陈安玉主编。口腔种植学。成都:四川科学技术出版社,1991,69
    Lazzara R.Criteria for implant selection. J Pract Periodontics Aesthet Sent ,1994,6:56-62
    Becker W, Becker BE. Replacement of maxillary and mandibular molars with single endosseous implant restorations: A trespective study. J prosthet dent, 1995, 74:51-55
    Meijier HJA, Kuiper JH, Starmans FJM,et al.Stress distribution around dental implants:Influence of superstructe,length of implants and height of mandible,J Prosthet Dent,1992,6(8):96
    Misch CE.Endosteal implants for posterior single tooth replacement:alternative,indications,contraindications and limitation. J Oral Implantol, 1999,25(2):80-89
    Ko CC, ohn DH, ollister SJ. icromechancs of implant/tissue interfaces.J Oral Implantol,1992,18(3):220-30
    赵云风等,口腔生物力学,北京医科大学中国协和医科大学联合出版社,1996年9月
    Seong WJ, Korioth TW, Hodges JS. Experimentally induced abutment strains in three types of single-molar implant restorations.J Prosthet dent, 2000,84(3):318-326
    李湘霞,韩科等,单个下颌磨牙缺失种植修复的三维有
    
    
    限元分析,口腔颌面修复学杂志,2000,1(1):32-35
    Balshi TJ, Hernandez RE,Pryszlak MC, et al.A comparative study of one implant versus two replacing a single molar. Int J Oral Maxillofac Implants,1996,11(3):372-378
    张铁,马轩祥,张少锋等。种植体数目对支持组织应力分布的影响,实用口腔医学杂志,1999,15(3):230-231
    Sato Y, Shindoi N, Hesckawa R, et al.Biomechanical effects of double or wide implants for single molar replacement in the posterior mandibular. Oral Rehabil, 2000,27(10): 842-845
    王丽君,章德农等。第一磨牙缺失后宽间隙的牙种植体修复设计,中国口腔种植学杂志,1998,3(3):28-30
    Hertel RC, Kalk W.Influence of the dimensions of implant superstructure on periimplant bone loss. Int Journal of Prosthodontics.1993,6(1):18-23

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700