大跨度空间网格结构的可靠度、敏感性及失效过程研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近来,工程结构的可靠度与敏感性分析得到了前所未有的关注。近年来,尤其在2008年北京奥运会的推动下,国内兴建了大量的大跨度空间结构,同时空间钢结构的事故又接连发生,其可靠度与安全性亟待深入探讨与研究。目前,对大跨度空间结构的可靠度与敏感性研究刚刚起步,国内外可供参考的文献很少,尚没有系统地对空间结构进行可靠度与敏感性研究。
     地震等自然灾害一直困扰着人类,近几十年来,全球多次发生大地震,造成了大量严重的工程破坏和惨重的生命财产损失。大跨度空间结构作为城市标志性建筑(如国家体育馆鸟巢、国家游泳馆水立方等)和灾后的主要应急避难场所(如2011年日本海域9.0级地震中的新泻体育馆、2008年汶川8.0级大地震中的绵阳九州体育馆和2005年美国路易斯安那州新奥尔良市遭受“卡特里娜”飓风袭击中的“超级穹顶”体育馆等)其安全性及抗震性能一直是国内外学术界及工程界共同关注的重要课题。该类结构是人群集合或配置重要设施的场所,一旦发生倒塌,后果不堪设想,因此对空间结构进行可靠度、动力失效及破坏机理的研究意义重大。
     基于此,系统地研究了空间结构的可靠度和敏感性,并对双层网壳结构在静力极限荷载和三维地震动作用下的破坏过程及失效机理进行深入探讨,主要研究内容如下:
     (1)在大跨度空间网格结构的非线性有限元可靠度分析当中,经常会遇到两个问题:特定材料模型会导致不连续的梯度,继而计算不能正常收敛;试算点离失效域过远,导致计算难收敛于正确结果。针对以上两个问题,将光滑的双线性材料模型和Bouc-Wen材料模型引入到空间结构的可靠度计算中解决了第一个问题;除了将改进的HL-RF法、梯度投影法、序列二次规划法,又首次将Polak-He算法引入至空间结构的可靠度计算中解决了第二个问题,且对四种算法的效率、精度和稳定性进行了详细阐述,建议将影响其收敛和计算效率的参数取值在一定范围之内,为空间结构的可靠度分析提供了参考。
     (2)研究了初始缺陷大小对空间网架结构可靠度的影响规律,将七种厚度不同的网架结构作为研究对象,考虑了六种大小不同的初始几何缺陷,将网架结构的最低阶屈曲模态作为初始缺陷分布模态,详细分析了初始缺陷的大小对网架结构变形能力可靠度的影响规律;为全面考察各阈值下网架结构的可靠度,对七种厚度的空问网架结构进行了参数化可靠度分析;选取了随机变量间六种大小不同的相关系数,考察了其值对网架可靠度影响规律。
     (3)敏感性分析是工程结构可靠度分析一个重要方面,其结果可提供失效概率对随机变量的重要性排序。应用直接微分法对空间结构进行敏感性分析,将简单桁架、双层柱面网壳和平板网架作为数值算例,将α、γ、δ和η作为四种重要性度量指标,重点研究了功能函数对各随机变量、及其均值和标准差的敏感性及相关性。对空间网架结构进行了敏感性,将杆件的横截面面积、弹性模量、屈服强度、应变硬化率和外载荷等作为随机变量,应用FORM法对结构进行可靠度与敏感性计算。通常在工程结构的可靠度计算中,将节点坐标作为不变量来处理,这样就会造成一定的误差,因此对空间网架结构进行计算时,考察了节点坐标的变异性对空间结构的可靠性及敏感性的影响。对于大型复杂的空间结构而言,可靠度与敏感性计算量大,为减少计算量,引入了随机变量缩减法,大大提高了计算效率,为大跨度空间结构的可靠度与敏感性计算提供了方便。
     (4)一次可靠度方法具有高效、精度较高等优点而被广泛采用,但当功能函数在设计点附近曲率较大时,在迭代过程中有时会在设计点附近左右摆动致使不收敛;当可靠度指标较大时,数值收敛速度慢。基于此,首次将近年来提出的功能度量法引入到大跨度空间结构的非线性有限元可靠度计算中。与可靠指标法不同的是,在功能度量法中,约束函数评估被处理为搜索具有规定的目标可靠指标的最小功能目标问题。为验证PMA在空间结构可靠度中的高效性与稳定性,分别采用可靠度指标法和功能度量法对四种矢跨比的双层柱面网壳和双层凯威特型球面网壳进行可靠度与敏感性计算,计算表明,功能度量法在空间结构的可靠度计算中具有更高的效率和更好的数值稳定性。
     (5)为考察不同类型及不同部位随机变量对空间结构可靠度及敏感性的影响,分别对四种矢跨比的双层柱面网壳和四种矢跨比的双层球面网壳进行可靠度与敏感性分析,根据随机变量类型和杆件在网壳中的分布状况,分别将荷载、横截面面积、弹性模量和屈服强度作为一个和多个随机变量,从而研究功能函数对各类型及各部位随机变量的敏感程度;考察了不同类型的功能函数对随机变量的敏感性程度及功能函数间的相关性;研究了随机变量对失效概率的敏感性随不同矢跨比的变化规律;考察了随机变量服从不同概率分布时对空间结构可靠度、敏感性和相关性的影响。
     (6)系统地研究了双层球面网壳结构在静力极限荷载及三维地震动作用下的破坏过程及失效机理。以四种不同矢跨比的双层球面作为研究对象,将网壳结构的变形能力、屈服杆件数、总应变能、总弹性应变能、总塑性应变能、总弹性应变和总塑性应变等作为考察指标,深入研究了双层球面网壳结构在静动力载荷作用下的破坏过程,给出了各矢跨比网壳杆件失效的先后次序,研究了各矢跨比网壳结构失效机理异同之处,计算结果可为双层球面网壳结构的设计提供借鉴与参考。
Reliability and sensitivity analysis of engineering structures are paid much attention nowadays. A great number of large-span space structures have been erected in succession, especially with the host of the 2008 Beijing Olympics Games. However, engineering accidents of space steel structures occurred simultaneously. The research on reliability and sensitivity of space structures just started at home and abroad, and even no systematical investigations on them, hence only few of literatures can be referred.
     Humankind always suffers from natural disasters, e.g., earthquake. Especially, earthquakes occurred time and again all over the world in recent years, which caused plenty of engineering destruction and loss of life and property. As the symbols of city (e.g., Beijing National Stadium, known as the Bird's Nest, Beijing National Aquatics Center, known as the Water Cube) and emergency shelters (e.g., Niigata Gymnasium in 2011 catastrophic Ms 9.0 earthquake, Mianyang Jiuzhou Stadium in 2008 Wenchuan Ms 8.0 earthquake and New Orleans's Louisiana Superdome in Hurricane Katrina) after disaster's attack, the safety and seismic performance of large-span space structures got much attention in scholar and engineering fields at all times. This kind of structures, accommodating lots of people and important facilities, once destroyed, catastrophic accident will be occurred. Therefore, it is meaningful to research on reliability, dynamic failure and destruction mechanism of space structures.
     Based on above issues, reliability and sensitivity analysis of large-span space structures have been systematically carried out. Failure process and failure mechanism of double-layer reticular dome under static critical loads and three-dimensional earthquake motions have been intensively studied. The main contents in this thesis are concluded as follows:
     (1) Two issues are sometimes come forth when carry out nonlinear FE reliability analysis of large-span space frame structures, one is that certain material models may cause gradient discontinuity, which will lead to failure of the search algorithm to converge; the other is that the search algorithmes may generate trial points too far in the failure domain, which causes difficulties to obtain reasonable results. To settle the above two issues, the former issue is addressed by introducing smoothed bi-liner material model and Bouc-Wen material model, while the latter one is settled by introducing advanced searching algorithms, i.e. improved HL-RF Algorithm, the Gradient Projection Method (GPM), Sequential Quadratic Programming (SQP) and Polak-He algorithm. Furthermore, efficiency, accuracy and robustness are of the above four searching algorithms are elaborately illustrated and extensively compared, and gives some advices on how to choose the value of parameters that influence the computation efficiency and robustness of these algorithms, which can offer some valuable guidance to reliability evaluation in space structures.
     (2) Effect of initial imperfection on reliability of space grid structures is extensively investigated. Seven trusses with different thicknesses and six different magnitudes of initial imperfection are taken into considerations, respectively. Layout of initial imperfection is chosen from the lowest order buckling mode of truss structures. Subsequently, initial imperfection's influence on reliability of grid structures is systematically researched; to comprehensively investigate reliability of truss under different thresholds, parametric reliability evaluations are carried out for these trusses; in order to research the effect of correlation coefficients of random variables on reliability of truss structures, six correlation coefficients are selected.
     (3) Sensitivity analysis is an important aspect in reliability evaluation of engineering structures because its results can rank the random variables based on their relative importance. Different Difference Method (DDM) is adopted in the sensitivity analysis. Three numerical examples (e.g., a simple truss, a double-layer cylindrical reticular shell and a plane truss structure) are demonstrated, Four parameters (α,γ,δandη) are taken as importance measures to identify the sensitivities of random variables, their means and standard deviations. Cross-sectional area, Young's modulus, yielding strength, strain hardening rate and loads etc. are taken as random variables in space truss, and reliability and sensitivity are evaluated by FORM. Nodal coordinates are usually treated as invariants in reliability analysis, which will cause significant error in some cases. Thus, the variations of nodal coordinates are considered into reliability and sensitivity analysis of space grid truss structures. For large and complicated structures, much time and effort have to be paid to carry out reliability and sensitivity analysis. Hence, random variable reduction technique is introduced to reduce computation effort, and it facilitates the reliability and sensitivity analysis in space structures.
     (4) First-order Reliability Method (FORM) is widely applied for its better efficiency and accuracy, however, it will oscillates around the design point and fails to converge in iteration process when the curvature is too large; large reliability index will impedes to converge. To settle the above issues, Performance Measure Approach (PMA) is firstly introduced into nonlinear FE reliability evaluation in space structures. Compared with Reliability Index Approach (RIA), constraint function can be treated as the problem that searching prescribed minimum performance target point in PMA. To verify the efficiency and robustness of PMA, reliability and sensitivity of four cylindrical reticulated shells with different rise-to-span ratios and four spherical reticulated shells with different rise-to-span ratios are evaluated by RIA and PMA, respectively. Numerical results indicate that PMA has better efficiency and robustness in reliability and sensitivity analysis of space structures.
     (5) To identify the influences of different types and parts of random variables on reliability and sensitivity of space structures, four cylindrical reticulated shells with different rise-to-span ratios and four spherical reticulated shells with different rise-to-span ratios are selected. Based on the type and location of random variables, vertical loads, cross-sectional area of members, Young's modulus and yielding strength are treated as one or more random variables, respectively, to identify the sensitivity of these variables; several performance functions are selected to identify the effect of random variables on them and research their correlations; variation rules of sensitivity of all random variables are investigated with the change of rise-to-span ratio; the effect of different probabilistic distribution types of random variables on reliability, sensitivity and correlation is also extensively researched.
     (6) Failure process and destruction mechanism of double-layer spherical reticulated shell under statically critical loads and three-dimensional earthquake motion are systematically investigated. Four double-layer spherical latticed domes with different rise-to-span ratios are selected, and deformation capability, number of yielding members, total strain energy, total elastic strain energy, total plastic strain energy, total elastic strain and total plastic strain of reticular domes are elaborately investigated. Failure processes of these domes under statically critical loads and dynamic excitations are captured, furthermore, failure sequence of members is illustrated in detail. Finally, similarities and differences of failure mechanism of four reticulated shells are developed. Numerical results can give some reasonable suggestions and advices for the design of double-layer spherical reticular shell.
引文
[1]Armen Der Kiureghian, Hong-Zong Lin, Shyh-Jiann Hwang. Second-order reliability approximations [J]. Journal of Engineering Mechanics,1987,113(8):1208-1225.
    [2]Michael Hohenbichler, Ruediger Rackwitz. Improvement of second-order reliability estimates by importance sampling [J]. Journal of Engineering Mechanics,1988,114(12):2195-2199
    [3]Ying Wei Liu, Fred Moses. A sequential response surface method and its application in the reliability analysis of aircraft structural systems [J]. Structural Safety,1994,16(1-2):9-46
    [4]Michele Barbato, Quan Gu, Joel P. Conte. Extension of the DP-RS-Sim hybrid method to time-variant structural reliability analysis [C]. CP1020,2008 Seismic Engineering Conference:Commemorating the 1908 Messina and Reggio Calabria Earthquake, AIP Conference Proceedings,2008,1020:1693-1700.
    [5]Kiyohiro Imai, Dan M. Frangopol. Geometrically nonlinear finite element reliability analysis of structural systems. Ⅰ:theory [J]. Computers and Structures,2000,77(6):677-691.
    [6]Frangopol D.M., Imai K. Geometrically nonlinear finite element reliability analysis of structural systems. II:applications [J]. Computers and Structures. Computers and Structures,2000,77(6):693-709.
    [7]Yan-Gang Zhao, Tetsuro Ono. A general procedure for first/second-order reliability method (FORM/SORM) [J]. Structural Safety,1999,21 (2):95-112.
    [8]Yan-Gang Zhao, Tetsuro Ono. New approximations for SORM:Part Ⅰ [J]. Journal of Engineering Mechanics,1999,125(1):79-85.
    [9]Yan-Gang Zhao, Tetsuro Ono. New Approximations for SORM:Part Ⅱ [J]. Journal of Engineering Mechanics,1999,125(1):86-93.
    [10]Yan-Gang Zhao, Zhao-Hui Lu, Tetsuro Ono. A simple third-moment method for structural reliability [J]. Journal of Asian Architecture and Building Engineering,2006,5(1):129-136.
    [11]Yan-Gang Zhao, Tetsuro Ono. Third-moment standardization for structural reliability analysis [J]. Journal of Structural Engineering,2000,126(6):724-732.
    [12]Yan-Gang Zhao, Zhao-Hui Lu. Fourth-moment standardization for structural reliability assessment [J]. Journal of Structural Engineering,2007,133(7):916-924.
    [13]Yan-Gang Zhao, Tetsuro Ono. On the problems of the fourth moment method [J]. Structural Safety, 2004,26(2):343-347.
    [14]Yan-Gang Zhao, Tetsuro Ono. Moment methods for structural reliability [J]. Structural safety, 2001,23(1):47-75.
    [15]Yan-Gang Zhao, Tetsuro Ono, Masahiro Kato. Second-order third-moment reliability method [J]. Journal of Structural Engineering,2002,128(8):1087-1090.
    [16]Hasofer A. M., Lind, N. C. Exact and invariant second-moment code format [J]. Journal of Engineering Mechanics,1974,100(1):111-121.
    [17]Armen Der Kiureghian, Taleen Dakessian. Multiple design points in first and second-order reliability [J]. Structural Safety,1998,20(l):37-49.
    [18]S. K. Au, C. Papadimitriou, J. L. Beck. Reliability of uncertain dynamical systems with multiple design points [J]. Structural Safety,1999,21 (2):113-133.
    [19]Y. J. Hong, J. Xing, J. B. Wang. A second-order third-moment method for calculating the reliability of fatigue [J]. International Journal of Pressure Vessels and Piping,1999,76(8)567-570.
    [20]M. K. Chryssanthopoulos, T. D. Righiniotis. Fatigue reliability of welded steel structures [J]. Journal of Constructional Steel Research,2006,62(11):1199-1209.
    [21]H. P. Hong. Simple approximations for improving second-order reliability estimates [J]. Journal of Engineering Mechanics,1999,125(5):592-595
    [22]Quan Qin, Daojin Lin, Gang Mei, et al. Effects of variable transformations on errors in FORM results [J]. Reliability Engineering and System Safety,2006,91(1):112-118.
    [23]Yakov Ben-Haim. A non-probabilistic concept of reliability [J]. Structural Safety, 1994,14(4):227-245.
    [24]Yakov Ben-Haim. A non-probabilistic measure of reliability of linear systems based on expansion of convex models [J]. Structural Safety,1995,17(2):91-109.
    [25]Lev V. Utkin. A second-order uncertainty model for calculation of the interval system reliability [J]. Reliability Engineering and System Safety,2003,79(3):341-351
    [26]Fares Hindie. Evaluation of existing bridges using advanced reliability methods [D]. Department of Civil Engineering and Applied Mechanics, McGill University, Montreal, Canada,1999.
    [27]Per-ling, Liu. Finite element reliability methods for geometrically nonlinear stochastic structures [D]. Department of Civil Engineering, University of California, Berkeley,1999.
    [28]S. K. Au, J. Ching, J. L. Beck. Application of subset simulation methods to reliability benchmark problems [J]. Structural Safety,2007,29(3):183-193.
    [29]J. Ching, J. L. Beck, S. K. Au. Hybrid subset simulation method for reliability estimation of dynamical systems subject to stochastic excitation [J]. Probabilistic Engineering Mechanics 2005,20(3):199-214.
    [30]Siu-Kui Au, James L. Beck. First excursion probabilities for linear systems by very efficient importance sampling [J]. Probabilistic Engineering Mechanics,2001,16(3):193-207.
    [31]S. K. Au. Reliability-based design sensitivity by efficient simulation [J]. Computers and Structures, 2005,83(14):1048-1061.
    [32]Siu-Kui Au, James L. Beck. Application of subset simulation to seismic risk analysis [C]. Proceedings of 15th ASCE Engineering Mechanics Conference, Columbia University, New York, NY. June 2-5, 2002
    [33]Siu-Kui Au, James L. Beck. Estimation of small failure probabilities in high dimensions by subset simulation [J]. Probabilistic Engineering Mechanics,2001,16(4):263-277.
    [34]P. S. Koutsourelakis, H. J. Pradlwarter, G. I. Schueller. Reliability of structures in high dimensions, part I:algorithms and applications [J]. Probabilistic Engineering Mechanics,2004,19(4):409-417.
    [35]P. S. Koutsourelakis, H. J. Pradlwarter, G. I. Schueller. Reliability of structures in high dimensions, II. Theoretical validation [J]. Probabilistic Engineering Mechanics,2004,19(4):419-423.
    [36]T. Aven, T. E.Nokland. On the use of uncertainty importance measures in reliability and risk analysis [J]. Reliability Engineering and System Safety,2010,95(2):127-133.
    [37]Abhijit Chaudhuri, Subrata Chakraborty. Sensitivity evaluation in seismic reliability analysis of structures [J]. Computer Methods in Applied Mechanics and Engineering.2004,193(1-2):59-68.
    [38]Armen Der Kiureghian. Analysis of structural reliability under parameter uncertainties [J]. Probabilistic Engineering Mechanics,2008,23(4):351-358.
    [39]Bruno Sudreta, Armen Der Kiureghian. Comparison of finite element reliability methods [J]. Probabilistic Engineering Mechanics,2002,17(4):337-348.
    [40]M.A. Hadianfard, R. Razani. Effects of semi-rigid behavior of connections in the reliability of steel frames [J].Structural Safety,2003,25(2)123-138.
    [41]L. A. C. Neves, P. J. S. Cruz, A. A. R. Henriques. Reliability analysis of steel connection components based on FEM [J]. Engineering Failure Analysis,2001,8(1):29-48.
    [42]刘占省,陈志华,闫翔宇.弦支筒壳结构可靠度研究[J].工业建筑,2010,40(8):16-19.
    [43]杜创.平面预应力索拱结构可靠度计算方法及参数分析[J].工程与建设,2010,24(3):327-328.
    [44]白学丽,叶继红.多维多点输入下大跨空间网格结构的可靠度分析[J].工程抗震与加固改造,2005,27(6):1—8.
    [45]董贺勋,叶继红.多点输入下大跨空间网格结构的可靠度分析[J].振动与冲击,2006,25(3):131—137.
    [46]孙建梅,叶继红,程文瀼.多点输入下大跨空间网格结构的可靠度分析[J].应用力学学报,2005,22(4):560-566.
    [47]黄炳生,王文涛,蔡建芬.桁架结构可靠度优化设计的多阶段决策算子法[J].南京建筑工程学院学报,1999,48(1):45-51.
    [48]蔡荫林,顾海涛.桁架结构系统可靠度的敏度分析[J].航空学报,1993,14(7):342-347.
    [49]蒋友宝,冯健,蒋剑锋,等.张弦梁结构若干参数对可靠度的影响分析[J].建筑结构,2008,38(2):54-59.
    [50]张琳琳,李杰.风荷载作用下输电塔结构动力可靠度分析[J].福州大学学报(自然科学版)2005,33(S1):36-41.
    [51]李峰,袁骏,侯建国,等.我国输电线路铁塔结构设计可靠度研究[J].电力建设,2010,31(11):18-23.
    [52]程志辉,刘剑波,张学礼.500kV输电杆塔结构可靠度计算的Matlab实现[J].东北电力大学学报(自然科学版),2009,29(6):15-19.
    [53]贡金鑫.工程结构可靠度计算方法[M].大连:大连理工出版社,2003.
    [54]贡金鑫,钟伟秋,赵国藩.工程结构可靠性基本理论的发展与应用(1)[J].建筑结构学报,2002,23(4):2—9.
    [55]J. P. Conte, P. K. Vijalapura, M. Meghella. Consistent finite-element response sensitivity analysis [J]. Journal of Engineering Mechanics,2003,129(12):1380-1393.
    [56]J. P. Conte, M. Barbato, E. Spacone. Finite element response sensitivity analysis using force-based frame models [J]. International Journal for Numerical Methods in Engineering, 2004,59(13):1781-1820.
    [57]Michele Barbato. Finite element response sensitivity, probabilistic response and reliability analyses of structural systems with applications to earthquake engineering [D]. Department of Structural Engineering, University of California, San Diego,2007
    [58]M. Barbato, J.P. Conte. Finite element response sensitivity analysis:a comparison between force-based and displacement-based, frame element models [J]. Computer Methods in Applied Mechanics and Engineering,2005,194(12-16):1479-1512.
    [59]M. Barbato, J. P. Conte. Finite element response sensitivity analysis using three-field mixed formulation:general theory and application to frame structures [J]. International Journal for Numerical Methods in Engineering,2007,69(1)114-161.
    [60]Barbato M., Gu Q., Conte J.P. Probabilistic pushover analysis of structural and geotechnical systems [J]. Journal of Structural Engineering (ASCE),2010,136(11):1330-1341.
    [61]Quan Gu, Michele Barbato, Joel P. Conte. Handling of constraints in finite-element response sensitivity analysis [J]. Journal of Engineering Mechanics (ASCE),2009,135(12):1427-1438.
    [62]Quan Gu, Joel P. Conte, Ahmed Elgamal, et al. Finite element response sensitivity analysis of multi-yield-surface J2 plasticity model by direct differentiation method [J]. Computer Methods in Applied Mechanics and Engineering,2009,198(30-32):2272-2285.
    [63]Quan Gu, Joel P. Conte. Response sensitivity analysis of soil-structure interaction (SSI) systems [C]. Fourth Decennial Geotechnical Earthquake Engineering and Soil Dynamics Conference (GEESD IV), Sacramento, California.2008:1-11.
    [64]Quan Gu. Finite element response sensitivity and reliability analysis of soil foundation structure interaction (SFSI) systems [D]. Department of Structural Engineering, University of California, San Diego,2008.
    [65]Quan Gu, M. Barbato, J.P. Conte. A new sensitivity and reliability analysis framework for structural and geotechnical systems [C]. The 14th World Conference on Earthquake Engineering, October 12-17, 2008, Beijing, China. St Louis:Mira Digital Publishing,2008
    [66]Michal Kleiber. Parameter sensitivity in nonlinear mechanics theory and finite element computations [M]. Publisher:John Wiley & Sons, Ltd.1997.
    [67]Heonsang Koo. FORM, SORM and simulation techniques for nonlinear random vibrations [D]. Department of Civil & Environmental Engineering, University of California, Berkeley,2003.
    [68]Smitha Devi Koduru. Performance-based earthquake engineering with the first-order reliability method [D]. Department of Civil Engineering, University of British Columbia,2008.
    [69]Hongzong Lin. Methods for structural system reliability analysis [D]. Department of Civil Engineering, University of California, Berkeley,1990.
    [70]Matthew John Skokan. Reliability-based seismic performance evaluation of steel frame building using nonlinear static analysis methods [D]. Department of Civil engineering, University of California, Berkeley,2000.
    [71]H. S. Gopalakrishna. System reliability assessment with nonlinear finite element analysis [D]. Deparment of Civil Engineering, Iowa State University, Ames, Iowa,1986.
    [72]R. E. Melchers, M. Ahammed. A fast approximate method for parameter sensitivity estimation in Monte Carlo structural reliability [J]. Computers and Structures,2004,82(1):55-61.
    [73]Zhenzhou Lu, Shufang Song, Zhufeng Yue, et al. Reliability sensitivity method by line sampling [J]. Structural Safety,2008,30(6):517-532.
    [74]Chonggang Xu, George Zdzislaw Gertner. A general first-order global sensitivity analysis method [J]. Reliability Engineering and System Safety,2008,93(7):1060-1071.
    [75]E. P. Petrov. Analysis of sensitivity and robustness of forced response for nonlinear dynamic structures [J]. Mechanical Systems and Signal Processing,2009,23(1)68-86.
    [76]Enrique Castillo, Roberto Mi'nguez, Carmen Castillo. Sensitivity analysis in optimization and reliability problems [J]. Reliability Engineering and System Safety,2008,93(12)1788-1800
    [77]Matthijs Langelaar, Fred van Keulen. Sensitivity analysis of shape memory alloy shells [J]. Computers and Structures,2008,86(9):964-976.
    [78]Yanglin Gong, Lei Xu, Don E. Grierson. Sensitivity analysis of steel moment frames accounting for geometric and material nonlinearity [J]. Computers and Structures,2006,84(7)462-475.
    [79]Zdenek Kala. Sensitivity assessment of steel members under compression [J]. Engineering Structures, 2009,31(6):1344-1348.
    [80]高博青,谢忠良,梁佶,等.拉索对肋环型索穹顶结构的敏感性分析[J].浙江大学学报(工学版),2005,39(11):1685-1689.
    [81]彭伟贤,吴慧.拉索对索一桁穹顶结构的敏感性影响分析[J].空间结构,2004,10(3):35—39.
    [82]金晓飞,范峰,沈世钊.巨型射电望远镜(FAST)反射面支承结构参数敏感性分析[J].土木工程学报,2010,43(2):12-19.
    [83]田广宇,郭彦林,张博浩,等.宝安体育场车辐式屋盖结构施工误差敏感性试验及误差限值控制方法研究[J].建筑结构学报,2011,32(3):11—18.
    [84]郭彦林,王小安,田广宇,等.车辐式张拉结构施工随机误差敏感性研究[J].施工技术,2009,38(3):35-39.
    [85]王洁,武清玺.杆系结构蒙特卡罗法计算及敏感性分析[J].山西建筑,2006,32(3):46-47.
    [86]顾志福,李燕,张文宏,等.风荷载对膜顶结构形状改变的敏感性研究[J].建筑结构,2002,32(9):59-60.
    [87]李海锋,郭小农,罗永峰,等.摩天轮结构的缺陷敏感性分析[J].结构工程师,2010,26(2):24-30.
    [88]李林,朱宏平,陈欢等.剪切型框架模态参数的损伤敏感性分析[J].华中科技大学学报(城市科学版),2007,24(3):35-39.
    [89]侯颖,霍达,腾海文,等.半刚接钢框架系统刚度可靠性对随机变量的敏感性分析[J].工程抗震与加固改造,2010,32(2):20-24.
    [90]侯颖,霍达,腾海文,等.半刚接钢框架系统强度可靠性对随机变量的敏感性分析[J].河南科学,2010,28(1):54-58.
    [91]朱宏平,周建峰.基于模态参数敏感性分析的多层建筑[J].振动、测试与诊断,2005,25(4):256-259.
    [92]徐安,石碧青,赵若红,等.超高层建筑结构风致振动的动力参数敏感性研究[J].广州大学学报(自然科学版),2011,10(1):54-59.
    [93]刘燕,周瑞林,赵胜利,等.基础隔震结构水平剪切刚度的敏感性分析[J].河北农业大学学报,2006,29(5):111—113.
    [94]刘燕,赵胜利,郑小平,等.叠层橡胶隔震支座阻尼的敏感性分析[J].河南大学学报(自然科学版),2007,37(2):214-216.
    [95]李红梅,徐晓,魏建国,等.隔震结构复位弹簧刚度的敏感性分析[J].河北农业大学学报,2002,25(4):170一172.
    [96]徐晓,李红梅,郝文秀,等.基础摩擦滑移隔震结构摩擦系数敏感性分析[J].河北农业大学学报,2002,25(4):164-166.
    [97]唐冕,韩艳,陈政清,等.大跨自锚式悬索桥颤振稳定性的敏感性分析[J].湖南大学学报(自然科学版),2008,35(7):7-11.
    [98]刘英富,周可夫.PC斜拉桥参数敏感性分析研究[J].公路工程,2009,34(5):109-111.
    [99]范立础,袁万城,张启伟.悬索桥结构基于敏感性分析的动力有限元模型修正[J].土木工程学报,2000,33(1):9-14.
    [100]严爱国,刘振标,罗世东.宜万铁路宜昌长江大桥主桥结构敏感性分析[J].桥梁建设,2006,(S2):83-89.
    [101]桂婢.大跨径斜拉拱桥结构受力的敏感性分析[J].铁道勘测与设计,2005,(5):25-28.
    [102]刘涛.大跨度连续刚构桥参数敏感性及结构强健性分析[J].水科学与工程技术,2010,(6):63-64.
    [103]张治成.桥梁施工控制中的结构设计参数敏感性分析[J].武汉理工大学学报,2006,28(10):77-81.
    [104]岳刚.斜拉桥梁重偏差对结构力学性能的敏感性分析[J].公路与汽运,2010,139(4):168-171.
    [105]张俊光,刘永健,姚晓荣,等.刚性悬索加劲钢桁梁桥结构参数敏感性分析[J].郑州大学学报(工学版),2010,31(5):55-59.
    [106]王立峰,纪世奎,孙勇.龙华松花江特大桥结构参数敏感性分析[J].东北林业大学学报,2010,38(2):91-92.
    [107]刘沐宇,孙向东,涂开智,等.四塔单索面矮塔斜拉桥结构参数敏感性分析[J].华中科技大学学报(城市科学版),2009,26(4):10-14.
    [108]邓建,韩斌.不等跨连拱隧道衬砌结构可靠度及敏感性分析[J].地下空间与工程学报,2005,1(6):841-847.
    [109]孙文瑾,顾浩声,应惠清.基坑支护结构设计参数的敏感性分析[J].施工技术,2009,38(S1):12-14.
    []10]张存义,高志通.深基坑支护结构的敏感性分析[J].长春工程学院学报(自然科学版)2005,6(2):6-8.
    [111]AskinSaribas, FuatErbatur,池淑兰.支挡结构的最优化和敏感性[J].路基工程,1998,76(1):66-77.
    [112]吴坤铭,王建国,谭晓慧,等.基于可靠度敏感性的神经网络法研究边坡稳定性[J].皖西学院学报,2010,26(5):102-105.
    [113]王东,陈建康.重力坝可靠度参数敏感性探讨[J].四川大学学报(工程科学版),2001,33(4):1-5.
    [114]焦莉,王东时.结构响应与损伤识别敏感性探讨[J].中国安全科学学报,2008,18(11):103-106.
    [115]朱宏平,何波.基于敏感性分析的周期结构损伤检测[J].工程力学,2003,20(3):108-114.
    [116]肖剑强.曲率模态和柔度曲率对损伤的敏感性研究[J].兰州交通大学学报,2007,26(1):78-81.
    [117]Budiansky, B. and Roth. R. S. Axisymmetric dynamic buckling of clamped shallow spherical shells. Collected papers on instability of shell structures-1962, NASA Langley Research Centre TN D-1510, 1962:597-600.
    [118]Hsu, C. S. On dynamic stability of elastic bodies with prescribed initial conditions [J]. International Journal of Engineering Science,1966,4(1):1-21.
    [119]Hsu, C. S. The effects of various parameters on the dynamic stability of shallow arch [J]. Journal of Applied Mechanics,1967,34(2):349-356.
    [120]Hsu, C. S. Equilibrium configurations of a shallow arch of arbitrary shape and theory dynamic stability character [J]. International Journal of Nonlinear Mechanics,1968,3(2):113-136.
    [121]Hsu, C. S., W.H. Cheng, H.C. Yee. Steady-state response of a non-linear system under impulsive periodic parametric excitation [J]. Journal of Sound and Vibration,1977,50(1):95-116.
    [122]Simitses, G. J. Dynamic snap-through buckling of low arches and shallow spherical caps [D]. Ph.D. dissertation, Department of Aeronaut and Astronaut, Stanford University, June 1965.
    [123]Simitses, G. J. Suddenly-loaded structural configurations [J]. Journal of Engineering Mechanics, ASCE.1984,110(9):1320-1334.
    [124]Simitses. G. J. Instability of dynamically-loaded structures [J]. Applied Mechanics Review, 1987,40(10):1403-1408.
    [125]Gioncu V, Lenza P. Propagation of local buckling in reticulated shells [C]. Proceedings of the 4th International Conference on Space Structures. Guildford,1993:147-155.
    [126]Koichiro Ishikawa, Shiro Kato. Elastic-plastic dynamic buckling analysis of reticular domes subjected to earthquake motion [J]. International Journal of Space Structures,1997,12(3&4):205-215.
    [127]Koichiro Ishikawa, Shoji Okubo, Yujiro Hiyama, et al. Evaluation method for predicting dynamic collapse of double layer latticed space truss structures due to earthquake motion [J]. International Journal of Space Structures,2000,15(3&4):249-258.
    [128]Dov Shilkrut. Stability of nonlinear shells, Volume 48:On the example of spherical shells (Studies in Applied Mechanics 48) [M], Publisher:Elsevier Science, Editors Selvadurai and Boulon,2002.
    [129]Kumaga I. T., Ogawa T. Dynamic buckling behavior of single layer lattice domes subjected to horizontal step wake [J]. Journal of the International Association for Shell and Spatial Structures, 2003,44(3):167-174.
    [130]Shiro Kato, Murata M. Dynamic elasto-plastic buckling simulation system for single layer reticular domes with semi-rigid connections under multiple loadings [J]. International Journal of Space Structures,1997,12(3&4):161-172.
    [131]Shiro Kato, Shoumura M, Mukaiyama M. Study on dynamic behavior and collapse acceleration of single layer reticular domes subjected to horizontal and vertical earthquake motions [J]. Journal of Structural and Construction Engineering,1995,47(7):89-96.
    [132]Shiro Kato. Dynamic response and collapse acceleration of single layer reticular domes under earthquake motions [C]. Proc. of Asia-Pacific Conference on Shell and Spatial Structures 1996. Beijing, China.1996:704-711.
    [133]Koichiro Ishikawa, Shiro Kato. Dynamic buckling behavior of single and double layer latticed domes due to vertical earthquake motions [C], Park, G.A.R. ed., Space Structures 4:Proceedings of the Fourth International Conference of Space Structures, Vol.1, Thomas Telford,1993:466-475.
    [134]A. S. Karamanos, S. A. Karamanos. Seismic design of double-layer space grids and their supports [C], Park, G.A.R. ed., Space Structures 4:Proceedings of the Fourth International Conference of Space Structures, Vol.1, Thomas Telford,1993:466-475.
    [135]Koji Kitamura, Haruo Kunieda. FEM analysis of cylindrical roof shells subjected to Kobe earthquake [C]. Proc. of Asia-Pacific Conference on Shell and Spatial Structures 1996.Beijing, China. 1996:720-727.
    [136]Arjang Sadeghi. Horizontal earthquake loading and linear/nonlinear seismic behavior of double layer barrel vaults [J]. International Journal of Space Structures,2004,19(1):21-37.
    [137]Taniguchi Yoshiya, Gould Phillip L., Kurano Masahiro. Earthquake input energy at dynamic collapse for double-layer cylindrical lattice roofs [J]. Journal of the International Association for Shell and Spatial Structures,2008,49(2):89-96.
    [138]Kawaguchi Kenichi. Report on large roof structures damaged by the great Hanshin-Awaji earthquake [J]. International Journal of Space Structures,1997,12 (3&4):137-147.
    [139]Koichiro Ishikawa, Shiro Kato. Elastic-Plastic dynamic buckling analysis of reticular domes subjected to earthquake motion [J]. International Journal of Space Structures,1997,12(3&4):205-215.
    [140]Kato Shiro, Yamashita Tetsuo. Evaluation of buckling load of two-way single layer grid shells [J]. Journal of the International Association for Shell and Spatial Structures,2010,51(164):109-123.
    [141]Shiro Kato, Takashi Ueki, Yoichi Mukaiyama. Study of dynamic collapse of single layer reticular domes subjected to earthquake motion and the estimation of statically equivalent seismic forces [J]. International Journal of Space Structures,1997,12 (3&4):191-204.
    [142]Kassimal A, Bidhendi E. Stability of trusses under dynamic loads [J]. Computer and Structures, 1988,29(3):381-392.
    [143]S.D. Kim, T. Tanami, Y. Hangai. Direct and indirect snapping behaviors of shallow truss models [C]. Bull.ERS 23,1990:73-86.
    [144]Yang Dabin, Zhang Yigang, Wu Jinzhi. Computation of Rayleigh damping coefficients in seismic time-history analysis of spatial structures [J]. Journal of the International Association for Shell and Spatial Structures,2010,51(164):125-135.
    [145]Lan Tian, Qian Ruojun. Analysis of the failure of a space truss subjected to earthquake [J]. Proc. of Asia-Pacific Conf. on Shell and Spatial Structures, Beijing, China,1996.
    [146]YU Xiaoye, FAN Feng, ZHI Xudong, et al. Damage mechanism of single-layer reticulated domes under severe earthquakes [J]. Journal of Harbin Institute of Technology (New Series), 2009,16(1):121-130.
    [147]Shen Shizhao, Xing Jihui, Fan Feng. Dynamic behavior of single-layer latticed cylindrical shells subjected to seismic loading [J]. Earthquake engineering and engineering vibration, 2003,2(2):269-279.
    [148]YU Xiaoye, FAN Feng, SHEN Shizhao. Preliminary analysis of mode truncation of single-layered reticulated domes under earthquakes [J]. Journal of Harbin Institute of Technology (New Series), 2007,14(5):613-618.
    [149]Li Zhongxue, Shen Zuyan. Shaking table tests of two shallow reticulated shells [J]. International Journal of Solids and Structures,2001,38(44-45):7875-7884.
    [150]孙建恒,夏亨熹.网壳结构非线性动力稳定分析[J].空间结构,1994,1(1):25-31.
    [151]张其林,Udo Peil.任意激励下弹性结构的动力稳定分析[J].土木工程学报,1998,31(1):26-32.
    [152]沈祖炎,叶继红.运动稳定性理论在结构动力分析中的应用[J].工程力学.1997,14(3):21-28.
    [153]叶继红,沈祖炎.单层网壳结构在简单荷载下动力稳定分析[J].哈尔滨建筑大学学报,1997,30(1):24-31.
    [154]叶继红,沈祖炎.结构阻尼对网壳结构动力稳定性的影响[J].工业建筑,1997,27(3):33-37.
    [155]叶继红,沈祖炎.初时缺陷对网壳结构动力稳定性的影响[J].土木工程学报,1997,30(1):37-42.
    [156]王策,沈世钊.单层球面网壳结构动力稳定分析[J].土木工程学报,2000,33(6):17-24.
    [157]王策,沈世钊.球面网壳阶跃荷载作用动力稳定性[J].建筑结构学报,2001,22(1):62-68.
    [158]沈世钊,郭海山.单层网壳结构动力稳定性分析方法[J].建筑结构学报,2003,24(3):1-9.
    [159]王林安,沈世钊,郭海山.水平阶跃荷载作用下单层球面网壳结构的动力稳定性[J].哈尔滨建筑大学学报,2002,35(5):17-22.
    [160]郭海山,钱宏亮,沈世钊.地震作用下单层球面网壳结构的动力稳定性[J].2003,23(1):31-37.
    [161]郭可.单层球面网壳在冲击荷载作用下的动力响应分析[D].太原:太原理工大学硕士学位论文,2005.
    [162]杜文风,高博青,董石麟,等.一种判断杆系结构动力稳定的新方法[J].浙江大学学报(工学版).2006,40(3):506-510.
    [163]李林.扁球面网壳在复合载荷作用下的非线性动力稳定性与混沌运动分析[D].兰州理工大学理学院硕士学位论文,2008.
    [164]金晓东.爆炸荷载作用下单层球面网壳结构的动力稳定性研究[D].天津大学建筑工程学院硕士学位论文,2007.
    [165]刘蒲云.带有几何缺陷局部双层网壳的动力稳定分析[D].东南大学硕士学位论文,2007.
    [166]郭海山.单层球面网壳结构动力稳定性及抗震性能研究[D].哈尔滨工业大学土木工程学院博士学位论文,2002.
    [167]英金贵.单层球面网壳结构在地震作用下的动力稳定性研究[D].南昌大学建筑工程学院,2006.
    [168]钱宏亮.单层球面网壳在地震作用下的动力稳定性[D].哈尔滨工业大学土木工程学院博士学位论文,2002.
    [169]叶继红.单层网壳结构的动力稳定分析[D].同济大学土木工程学院博士学位论文,1995
    [170]姚洪涛.单层柱面正交异型网壳结构的非线性动力稳定分析[D].河北农业大学城乡建设学院硕士学位论文,2005.
    [171]徐闻.单层柱面正交异型网壳自振特性及非线性动力稳定分析[D].河北农业大学城乡建设学院硕士学位论文,2004.
    [172]黄瑞新.单双层肋环型球面网壳在地震作用下的动力稳定性能研究[D].东南大学土木工程学院硕士学位论文,2007
    [173]李忠学.杆系钢结构的非线性动力稳定性分析[D].同济大学土木工程学院博士学位论文,1998.
    [174]李忠学,沈祖炎,邓长根,等.钢网壳模型的动力稳定性振动台试验研究[J].实验力学.1999,14(4):485-491.
    [175]杜文风.基于性能的空间网壳结构设计理论研究[D].浙江大学建筑工程学院空间结构研究中心博士学位论文,2007.
    [176]卢家森,张其林.基于可靠度的单层网壳稳定设计方法[J].建筑结构学报,2006,27(6):108-113.
    [177]Terje Haukaas. Finite element reliability and sensitivity methods for performance-based engineering [D]. PhD Dissertation, Department of Civil and Environmental Engineering, University of California, Berkeley,2003
    [178]Haukaas T. and Der Kiureghian, A. Finite element reliability and sensitivity methods for performance-based engineering [R]. Report No. PEER 2003/14, Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA,2003
    [179]Terje Haukaas, Michael H. Scott. Shape sensitivities in the reliability analysis of nonlinear frame structures [J]. Computers and Structures,2006,84(15-16):964-977.
    [180]Terje Haukaas, Armen Der Kiureghian. Parameter sensitivity and importance measures in nonlinear finite element reliability analysis [J]. Journal of Engineering Mechanics,2005,131(10):1013-1026.
    [181]Terje Haukaas, Armen Der Kiureghian. Strategies for finding the design point in non-linear finite element reliability analysis [J]. Probabilistic Engineering Mechanics,2006,21(2):133-147.
    [181]Scott, M.H., Haukaas, T. Modules in OpenSees for the next generation of performance-based engineering [C]. Proceedings of the 17th Analysis and Computation Specialty Conference, ASCE Structures Congress, St. Louis, MO 2006:1-12.
    [182]Liu P. L, Der Kiureghian. A finite element reliability of geometrically nonlinear uncertain structures [J]. Journal of Engineering Mechanics,1991,17(8):1806-1825.
    [183]Polak E. Optimization, Algorithms and consistent approximations, Vol.124 of Applied mathematical sciences [M]. Springer Verlag, New York, NY,1997.
    [184]Polak E., He L. A unified steerable phase i-phase ii method of feasible directions for semi-infinite optimization. Journal of Optimization Theory and Applications,1991,69(1):83-107.
    [185]高谦等.土木工程可靠性理论及其应用[M].北京:中国建材工业出版社,2007.
    [186]Seung-Kyum Choi, Ramana V. Grandhi, Robert A. Canfield. Reliability-based structural design [M]. London:Springer, c2007.
    [187]蒋友宝.斜拉双层柱面网壳结构可靠度计算及设计方法探讨[D].南京:东南大学博士学位论文,2006.
    [188]赵国藩.工程结构可靠性理论与应用[M].大连:大连理工大学出版社,1996.
    [189]罗永峰,韩庆华,李海旺.建筑钢结构稳定理论与应用[M].北京:人民交通出版社,2010.
    [190]沈世钊,陈昕.网壳结构稳定性[M].北京:科学出版社,1999.
    [191]Abhijit Chaudhuri, Subrata Chakraborty. Sensitivity evaluation in seismic reliability analysis of structures [J]. Comput. Methods Appl. Mech. Engrg.2004,193(1-2):59-68.
    [192]Eden Bojorquez, Sonia E.Ruiz, Amador Teran-Gilmore. Reliability-based evaluation of steel structures using energy concepts [J]. Engineering Structures,2008,30(6):1745-1759.
    [193]Hohenbichler M, Rackwitz R. Sensitivities and importance measures in structural reliability [J]. Civil Engineering Systems,1986,3(4):203-209.
    [194]Madsen H. O. Omission sensitivity factors [J]. Structural Safety,1988,5(1):35-45.
    [195]Bjerager P, Krenk S. Parametric sensitivity in first order reliability theory [J]. ASCE Journal of Engineering Mechanics,1989,115(7):1577-1582.
    [196]Karamchandani A, Cornell C A. Sensitivity estimation within first and second order reliability methods [J]. Structural Safety,1992,11(2):95-107.
    [197]吕大刚,李晓鹏.钢框架结构抗震可靠度的概率重要性分析[J].建筑结构学报,2008,28(Suppl.):156—164.
    [198]秦权,临到锦,梅钢.结构可靠度随机有限元-理论及工程应用[M].北京:清华大学出版社,2006.
    [199]易平.概率结构优化设计的高效算法研究[D].大连:大连理工大学运载工程与力学学部博士学位论文,2007.
    [200]Youn B. D., Choi K. K. An investigation of nonlinearity of reliability-based design optimization approaches [J]. ASME Journal of Mechanical Design,2004,126(5):403-411.
    [201]Youn B. D., Choi K. K, Du L. Enriched performance measure approach for reliability-based design optimization [J]. AIAA Journal,2005,43(4):874-884.
    [202]Jae-Ohk Lee, Young-Soon Yang, Won-Sun Ruy. A comparative study on reliability-index and target-performance-based probabilistic structural design optimization [J]. Computers and Structures, 2002,80(4):257-269.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700