基于局部特征的鲁棒图像水印技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在以信息数字化和传播网络化为主要特征的比特时代,信息传播的深度和广度得到了前所未有的扩展,信息表达的效率和准确性也得到了显著的提高。但随之而来的还有一些负面影响,比如这些数字产品有可能在没有得到作品所有者许可的情况下被随意拷贝、篡改和传播,这将给数字产品的作者和生产者带来巨大的经济损失。因此如何在当前网络环境中实施对数字产品的有效版权保护、确保信息安全已经成为一个亟待解决的现实问题,也成为企业界和学术界共同关注的热点问题之一。为此,一门新兴的交叉学科——数字水印应运而生,作为解决数字产品版权保护的一种重要技术,如今正得到广泛的研究与应用。
     虽然经历了十多年的发展,但是数字水印远未成熟,在理论和实际应用中还有许多开放的问题。本文在第二代数字水印的框架下,以静止图像作为研究对象,通过构建几何不变的局部特征区域并寻求有效的水印嵌入和检测策略,为抗几何攻击图像水印技术的理论发展和面向版权保护的实际应用提供有效的解决方案。论文的主要创新点概括如下:
     (1)考虑到在基于图像特征的数字水印方案中局部特征区域的稳定性及分布直接影响水印系统的鲁棒性,提出了一种新的水印嵌入基准点选择策略。针对尺度空间特征点的多类属性,将图论聚类算法引入其中,有效地解决了特征区域稳定性和分布均匀性之间的矛盾。实验结果表明该选择策略不仅适用于不同的尺度空间特征检测算子和不同类型的图像,而且具有较好的稳定性。
     (2)鉴于目前第二代图像水印方案不能抵抗诸如局部随机扭曲、裁剪,纵横比改变等几何攻击的问题,提出了一种基于仿射协变区域的抗几何攻击水印算法。利用Harris-Affine特征检测算子提取仿射协变区域,这些区域具有很好的空间局部性、方向选择性、多样性以及协变性。将二维圆形水印仿射变换为特征区域的相应形状后,通过空域叠加的方式实现水印嵌入。实验结果表明该算法能有效抵御包括全局几何攻击和局部几何攻击在内的多类攻击。
     (3)为了进一步增强图像水印系统对几何攻击的抵抗能力,提出了一种基于归一化仿射协变区域的水印算法。在深入分析仿射变换前后同一协变区域之间关系的基础上,利用局部区域归一化将协变区域之间的仿射变换关系约简为旋转变换关系;利用方向归一化进一步消除协变区域之间存在的角度差异,从而得到了具有几何不变特性的局部特征区域。与基于仿射协变区域的水印算法相比,新算法的鲁棒性得到了显著提高。
     (4)针对现有基于图像特征的数字水印方案对常规图像处理和几何攻击不能同时获得较高的水印检出率这一问题,提出了一种基于局部不变性的变换域鲁棒水印算法。文中利用SIFT算子提取局部不变特征区域,水印的嵌入和检测是在局部区域的DFT变换域中进行。大量的实验结果表明,将局部不变特征提取技术与变换域水印嵌入和检测策略有机结合不仅增强了该算法的整体鲁棒性,而且提高了水印的检测精度。
     (5)为了更好地解决由常规图像处理和几何攻击产生的移位以及插值误差等问题,提出了一种基于局部Tchebichef矩的鲁棒水印算法。利用Tchebichef矩提取局部不变区域的全局特征,使之相对独立于图像像素的位置偏移和数值计算误差,从而实现水印系统抵抗几何攻击的目的;此外,Tchebichef矩对噪声和压缩的良好抑制力又进一步增强了水印系统对常规图像处理的抵抗力。与同类算法相比,该算法嵌入容量大,不可见性好,且抵御常规图像处理和几何攻击的能力强。
     总之,本文在有效解决局部特征区域稳定性和分布均匀性之间矛盾的基础上,将构建几何不变的局部特征区域与设计水印嵌入、检测策略有机结合,设计的水印方案能充分抵御常规图像处理、几何攻击以及组合攻击,为抗几何攻击图像水印技术的理论研究和应用推广提供了新思路。
With the rapid development of digital technologies and Internet, the scope and depth of information dissemination have been greatly expanded. Moreover, the efficiency and accuracy of information expression have been significantly improved. On the other hand, digital media can be easily copied, manipulated and redistributed without any permission from the copyright owner, which is potentially capable of incurring considerable financial loss to the media producers and content providers. Therefore, how to protect the copyright of digital media in open networks has been a challenging issue and also has become a hot topic in both academic community and business circles. Under this circumstance, the concept of digital watermarking came up while trying to solve the problems related to the management of intellectual property of digital media.
     After decade development, digital watermarking is still in its infancy and remains a great deal of open problems demanding prompt solution in theory and application. Under the framework of the second generation watermarking, this paper takes still images as main research object and presents several geometrically resistant watermarking algorithms by incorporating the advantages of the local invariant feature regions and the embedding/detection strategies seamlessly. The main achievements of this paper are summarized as follows.
     (1) In feature-based image watermarking, the stability and distribution of local feature regions will direct affect the robustness of the watermarking system. Taking this situation into account, this paper proposes a novel selection criterion for watermarking references. After choosing the feature points in the middle-scale band, this criterion utilizes graph theory clustering to mine the latent distant information betweeen feature points and groups these feature points according the distance constraint. With regarding to the same cluster, the points whose strength is the largest are used to form the feature regions. Experimental results show that this criterion is not only suitable for different types of feature point detector and image, but also stable under various watermark attacks.
     (2) Nowadays, the existing second generation watermarking methods are still vulnerable to some particular geometric distortions, such as local random bending, shearing, and aspect ratio changes. With regarding to this, a geometrically robust image watermarking approach is developed via affine covariant regions extracted by Harris-Affine detector. These regions have good spatial localization, orientation selection, distinctiveness, and more importantly, their covariance records not only the geometric 2D transformations but also nonrigid deformations. From the circular watermark, the elliptical watermark pattern can be obtained by the affine transform- ation according to the shape of the feature regions. The elliptical watermark is embedded additively in the spatial domain. The experimental results illustrate that the proposed scheme can resist kinds of geometric attacks.
     (3) To further improve the robustness against geometric attacks, an image watermarking method is proposed based on normalized affine covariant regions. By analyzing the relationship of the identical regions in both the original image and the affine-transformed version, local normalization technique is first used to reduce the affine ambiguity to a rotational one. Then, orientation alignment is applied to remove the rotation effect. In this way, geometrically invariant local feature regions can be achieved. Compared with the original method based on affine covariant regions, this new approach evidently improves the performance in terms of robustness.
     (4) The previous feature-based image watermarking methods are difficult to obtain the relatively higher watermark detection ratio under common image processing as well as geometric attacks. To this end, a robust image watermarking by using local invariant features is proposed. Local invariant feature regions are first constructed with Scale Invariant Feature Transform (SIFT), and then watermarking embedding and detection are conducted in DFT domain of these invariant regions. Extensive experimental results confirm that this algorithm enhances not only the overall robustness bust also the detection accuracy.
     (5) To deal with the shift problems and interpolation error problems caused by common image processing and geometric attacks, a local Tchebichef moments based robust image watermarking is developed. The Tchebichef moments are employed to describe the global characteristics of the local invariant regions which are relatively independent to the location deviation and the numerical error in pixel values. Here, Tchebichef moments have not only insensitivity to noise but also better feature representation capability and reconstruction accuracy. Experiments using a subset of USC-SIPI image database demonstrate the newly developed algorithm outperforms some representative methods consistently in terms of watermark capacity, impercepti- bility, and robustness.
     On the basis of solving the conflict between the stability and the spatial distribution of local feature regions, the construction of geometrically invariant local feature regions is combined with the design of watermark embedding/detection strategy. The proposed algorithms can effectively resist common image processing, geometric attacks, and even combined attacks. In generally, these research results enrich the theories and applications of image watermarking robust against geometric attacks.
引文
[1]林坚.论现代科技革命引发的信息传播中的问题及其对策.自然辩证法通讯, 23(132): 258-264, 2001.
    [2]杨成.鲁棒的数字水印技术及其版权保护应用研究.北京邮电大学,博士学位论文, 2005.
    [3]尼葛洛庞帝.数字化生存.海南:海南出版社, 1996.
    [4]卢伟.鲁棒性数字水印研究.上海交通大学,博士学位论文, 2007.
    [5]钟桦,张小华,焦李成.数字水印与图像认证—算法及应用.西安:西安电子科技大学出版社, 2006.
    [6] Cox I. J., Miller M. L., Bloom J. A. Digital watermarking. Morgan Kaufmann Publisher, 2002.
    [7] Sequeira A., Kundur D. Communication and information theory in watermarking: a survey. Proc. SPIE—Multimedia Systems and Applications IV, 4518: 216-227, 2001.
    [8] Smith J. R., Comiskey B. O. Modulation and information hiding in images. Proc. Int. Workshop Information Hiding, LNCS 1174, 1996: 207-226.
    [9]孙圣和,陆哲明,牛夏牧.数字水印技术及应用.北京:科学技术出版社, 2004.
    [10] Ohbuchi R., Masuda H., Aono M. Watermarking three-dimensional polygonal models. Proc.ACM Int. Conf. Multimedia, 1997: 261-272.
    [11] Zafeiriou S., Tefas A., Pitas I. Blind robust watermarking schemes for copyright protection of 3D mesh objects. IEEE Trans. Vis. Comput. Graphics, 11(5): 596-607, 2005.
    [12] Lu H. Y. S., Liao H. Y. M., Lu C. S., et al. Fragile watermarking for authenticating 3D polygonal meshes. IEEE Trans. Multimed., 7(6): 997-1006, 2005.
    [13] Brassil J., Low S., Maxemchuk N. F. Copyright protection for the electronic distribution of text documents. Proc. IEEE, 87(7): 1181-1196, 1999.
    [14] Borges P. V. K., Mayer J. Document watermarking via character luminance modulation. Proc. IEEE Int. Conf. Acoustics, Speech and Signal Processing, 2: 317-320, 2006.
    [15] Christian C., Thomborsen C. Software watermarking: models and dynamic embeddings. Proc. Annual SIGPLAN-AIGACT Symposium Principles of Programming Languages, 1999: 311-324.
    [16] Collberg C., Thomborson C. Watermarking, tamper-proofing, and obfuscation-tools for software protection. IEEE Trans. Softw. Eng., 28(8): 735-746, 2002.
    [17] Zhu W., Thomborson C., Wang F. Y. A survey of software watermarking. Proc. IEEE Int. Conf. Intelligence and Security Informatics, LNCS 3495, 2005: 454-458.
    [18] Cox I. J., Miller M. L. The first 50 years of electronics watermarking. EURASIP J. Appl. Signal Process., 2: 126-132, 2002.
    [19] Zhao J., Koch E. A digital watermarking system for multimedia copyright protection. Proc. ACM Int. Conf. Multimedia, 1997: 443-444.
    [20] O’Ruanaidh J. J. K., Dowling W. J., Boland F. M. Watermarking digital images for copyright protection. IEE Proc. Vis. Image Signal Process., 143(4): 250-256, 1996.
    [21] Tachibana T., Fujiyoshi M., Kiya H. A watermarking scheme without reference images for broadcast monitoring. Electron. Commun. Jpn.: Fundamental Electronic Science, 87(9): 22-32, 2004.
    [22] Kalker T., Depovere G., Haitsma J., et al. Video watermarking system for broadcast monitoring. Proc. SPIE—Video and Multimedia Watermarking, 3657: 103-112, 1999.
    [23] Barni M., Bartolini F., Cappellini V., et al. A M.A.P. identification criterion for DCT-based watermarking. Proc. European Signal Processing Conf., 1998: 17-20.
    [24] Low S. H., Maxemchuk N. F., Lapone A. P. Document identification for copyright protection using centroid detection. IEEE Trans. Commun., 46(3): 372-383, 1998.
    [25] Coppersmith D., Mintzer F., Tresser C., et al. Fragile imperceptible digital watermark with privacy control, Proc. SPIE—Authentication Watermarks, 3657: 79-84, 1999.
    [26] Kundur D., Hatzinakos D. Digital watermarking for telltale tamper proofing and authentication. Proc. IEEE, 87(7): 1167-1180, 1999.
    [27] Wong A., Sorell M., Clarke R. Transaction tracking for multimedia content from a mutual distrust perspective. Proc. Int. Sym. Intelligent Multimedia, Video and Speech Processing, 2004: 89-92.
    [28] Emmanuel S., Vinod A. P., Rajan D., et al. An authentication watermarking scheme with transaction tracking enabled. Digital EcoSystems and Technologies Conf., 2007: 481-486.
    [29] Queluz M. P. Authentication of digital images and video: generic models and a newcontribution. Signal Processing Image Commun., 16(5): 461-475, 2001.
    [30] Tian J. High capacity reversible data embedding and content authentication. Proc. IEEE Int. Conf. Acoustics, Speech, and Signal Processing, 3: 517-520, 2003.
    [31] Linnartz J. P. M. G. The‘ticket’concept for copy control based on embedded signaling. Proc. 5th European Symp. Research in Computer Security, LNCS 1485, 1998: 257-274.
    [32] Bloom J. A., Cox I. J., Talker T. Copy protection for DVD video. Proc. IEEE, 87(7): 1267-1276, 1999.
    [33] Cox I. J., Linnartz J. P. Some general methods for tampering with watermarks. IEEE J. Sel. Areas Commun., 16(5): 587-593, 1998.
    [34] Zheng D., Liu Y., Zhao J. A survey of RST invariant image watermarking algorithms. ACM Comput. Surv., 39(2): 1-91, 2007.
    [35] Voloshynovskiy S., Pereira S., Iquise V., et al. Attack modeling: towards a second generation watermarking benchmark. Signal Process., 81(6): 1177-1214, 2001.
    [36] Voloshynovskiy S. Pereira S., Pun T., et al. Attacks on digital watermarks: classification, estimation-based attacks, and benchmarks. IEEE Commun. Mag.. 39(8): 118-126, 2001.
    [37] Hartung F. H., Su J. K., Girod B. Spread spectrum watermarking: malicious attacks and counterattacks. Proc. SPIE—Security and Watermarking of Multimedia Contents, 3657: 147-158, 1999.
    [38] Craver S., Yeo B. L., Yeung M. Technical trials and legal tribulations. Commun. ACM, 41(7): 45-54, 1998.
    [39] Nikolaidis A., Tsekeridou S., Tefas A., et al. A survey on watermarking application scenarios and related attacks. Proc. IEEE Int. Conf. Image Processing, 3: 991-994, 2001.
    [40]刘九芬,黄达人,黄继武.图像水印抗几何攻击研究综述.电子与信息学报, 26(9): 1495-1503, 2004.
    [41]王志雄,王慧琴,李人厚.数字水印应用中的攻击和对策综述.通信学报, 23(11): 74-79, 2002.
    [42] Cox I. J., Kilian J., Leighton F. T., et al. Secure spread spectrum watermarking for multimedia. IEEE Trans. Multimed., 6(12): 1673-1687, 1997.
    [43] Hong Z., Min W., Wang Z. J., et al. Nonlinear collusion attacks on independent fingerprints for multimedia. Proc. IEEE Int. Conf. Acoustics, Speech and Signal Processing, 5: 664-667, 2003.
    [44] Stone H. S. Analysis of attacks on image watermarks with randomized coefficients. Technical Report TR 96-045, NEC Research Institute, 1996.
    [45] Langelaar G. C., Lagendijk R. L., Biemond J. Removing spatial spread spectrum watermarks by nonlinear filtering. Proc. EUSIPCO, 4: 2281-2284, 1998.
    [46] Bender W., Gruhl D., Morimoto N., et al. Techniques for data hiding. IBM Syst. J., 35(3&4): 313-336, 1996.
    [47] Huang C. H., Wu J. L. Attacking visible watermarking schemes. IEEE Trans. Multimed., 6(1): 16-30, 2004.
    [48] Petitcolas F. A. P., Anderson R. J., Kuhn M. G. Information hiding: a survey. Proc. IEEE, 87(7): 1062-1078, 1999.
    [49] Holliman M., Memon N. Counterfeiting attacks on oblivious block-wise independent invisible watermarking schemes. IEEE Trans. Image Process., 9(3): 432-441, 2000.
    [50] Craver S., Memon N., Yeo B. L., et al. Resolving rightful ownerships with invisible watermarking of multimedia techniques: limitations, attacks and implications. IEEE J. Sel. Areas Commun., 16(4): 573-586, 1998.
    [51]赵耀.基于小波变换的抵抗几何攻击的鲁棒视频水印.中国科学E辑, 36(2): 137-152, 2006.
    [52] Petitcolas F. A. P., Anderson R. J., Kuhn M. G. Attacks on copyright marking systems. Proc. 2nd Int. Workshop Information Hiding, LNCS 1525, 1998: 218-238.
    [53]凌贺飞,卢正鼎,邹复好.抗几何攻击的数字水印技术综述.计算机工程与科学, 28(11): 42-47, 2006.
    [54] Delannay D. Digital watermarking algorithms robust against loss of synchronization. Ph. D. Thesis, Universite catholique de Louvain, 2004.
    [55] Licks V. On watermark synchronization. Ph. D. Thesis, University of New Mexico, 2004.
    [56] Licks V., Jordan R. Geometric attacks on image watermarking systems. IEEE Trans. Multimed., 12(3): 68-78, 2005.
    [57] Licks V., Ourique F., Jordan R., et al. The effect of the random jitter attack on the bit error rate performance of spatial domain image watermarking. Proc. Int. Conf. Image Processing, 2: 455-458, 2003.
    [58] Petitcolas F. A. P. Watermarking schemes evaluation. IEEE Signal Process. Mag., 17(5): 58-64, 2004.
    [59] Pereira P., Voloshynovkiy S., Maribel M., et al. Second generation benchmarking and application oriented evaluation. Proc. 4th Int. Workshop Information Hiding, LNCS 2137, 2001: 340-353.
    [60] Solachidis V., Tefas A., Nikolaidis N., et al. A benchmarking protocol for watermarking methods. IEEE Int. Conf. Image Processing, pp. 1023-1026, Thessaloniki, Greece, 2001.
    [61]王鹏,高新波,韩继涛.数字视频水印算法评测标准研究.通信学报, 28(11A): 39-43, 2007.
    [62] Lin F., Brandt R. D. Towards absolute invariants of images under translation, rotation and dilatations. Pattern Recognit. Lett., 14(5): 369-379, 1993.
    [63] O’Ruanaidh J., Pun T. Rotation, scale and translation invariant digital image watermarking. Signal Process., 66(3): 303-317, 1998.
    [64] Lin C. Y. Public watermarking surviving general scaling and cropping: an application for print-and-scan process. Proc. Multimedia and Security Workshop ACM Multimedia, 1999: 41-46.
    [65] Lin C. Y., Wu M., Bloom J. A., et al. Rotation, scale, and translation resilient watermarking for images. IEEE Trans. Image Process., 10(5): 765-782, 2001.
    [66] Kim B., Choi J., Park K., et al. Robust digital image watermarking method against geometrical attacks. R. Time Imag., 9(2): 139-149, 2003.
    [67] Zheng D., Zhao J., Saddik A. RST invariant digital image watermarking based on log-polar mapping and phase correlation. IEEE Trans. Circ. Syst. Video Tech., 13(8): 753-765, 2003.
    [68] Liu Y., Zheng D., Zhao J. A rectification scheme for RST invariant image watermarking. IEICT Trans. Fund. Electron. Commun. Comput. Sci., E88-A(1): 314-318, 2005.
    [69] Liu Y., Zheng D., Zhao J. An image rectification scheme and its applications in RST invariant digital image watermarking. Multimed. Tool. Applicat., 34(1): 57-84, 2007.
    [70] Woo C.-S., Du J., Pham B. Geometric invariant domain for image watermarking. Proc. Int. Workshop Digital Watermarking, LNCS 4283, 2006: 294-307.
    [71] Al-Shaykh O. K., Doherty J. F. Invariant image analysis based on radon transform and SVD. IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process., 13(8): 123-133, 1996.
    [72] Simitopoulos D., Koutsonanos D. E., Strintzis M. G. Robust image watermarking based on generalized radon transformations. IEEE Trans. Circuits Syst. Video Technol., 13(8): 732-745, 2003.
    [73] Simitopoulos D., Koutsonanos D. E., Strintzis M. G. Image watermarking resistant to geometric attacks using generalized radon transformations. Proc. 14th Int. Conf. Digital Signal Processing, 2002: 85-88.
    [74] Kim H., Baek Y. J., Lee H. K., et al. Robust image watermark using radon transform and bispectrum invariants. Proc. 5th Int. Workshop Information Hiding, LNCS 2578, 2002: 145-159.
    [75] Solachidis V., Pitas I. Circularly symmetric watermark embedding in 2-D DFT domain. IEEE Int. Conf. Acoustics, Speech and Signal Processing, 6: 3469-3472, 1999.
    [76] Licks V., Jordan R. On digital image watermarking robust to geometric transformations. IEEE Int. Conf. Image Processing, 2000: 690-693.
    [77] Hays M. The reconstruction of a multidimensional sequence from the phase or magnitude of its Fourier transform. IEEE Trans. Acoust., Speech Signal Process., 30(2):140-154, 1982.
    [78] Coltuc D., Bolon P. Robust watermarking by histogram specification. Proc. IEEE Int. Conf. Image Processing, 2: 236-239, 1999.
    [79] Loo P., Kingsbury N. Motion estimation based registration of geometrically distorted images for watermark recovery. Proc. SPIE—Security and Watermarking of Multimedia Contents III, 4314: 606-617, 2001.
    [80] Loo P., Kingsbury N. Watermarking using complex wavelets with resistance to geometric distortion. Proc. 10th European Signal Processing Conf., 2000: 1677-1680.
    [81] Caldelli R., Barni M., Bartolini F., et al. Geometric-invariant robust watermarking through constellation matching in the frequency domain. Proc. Int. Conf. Image Processing, 2000: 65-68.
    [82] Almeida L. B. The fractional Fourier transform and time-frequency distributions for analysis of multicomponent signals. IEEE Trans. Signal Process., 42(11): 3084-3091, 1994.
    [83] Djurovic I., Stankovic S., Pitas I. Digital watermarking in the fractional Fourier transformation domain. J. Netw. Comput. Applicat., 24(2): 167-173, 2001.
    [84] Niu X. M., Sun S. H. Digital watermarking for still image based on discrete fractional Fourier transform. J. Harbin Institute of Technology, 8(3): 309-311, 2001.
    [85] Djurovic I., Stankovic S., Pitas I., et al. Generalization of the Fourier domain watermarking to the space/spatial-frequency domain. Proc. 1st Int. Workshop Image and Signal Processing andAnalysis, 2000: 47-51.
    [86] Stankovic S., Djurovic I., Pitas I. Watermarking in the space/spatial-frequency domain using two-dimensional Radon-Wigner distribution. IEEE Trans. Image Process., 10(4): 650-658, 2001.
    [87] Po-Chyi Su, Kuo C. C. J. Image watermarking scheme to resist generalized geometrical transformations. Proc. SPIE—Multimedia Systems and Applications III, 4209: 354-365, 2001.
    [88] Fleet D. J., Heeger D. J. Embedding invisible information in color images. Proc. IEEE Int. Conf. Image Processing, 1: 532-535, 1997.
    [89] Voloshynovshiy S., Deguillaume F., Pun T. Multi-bit digital watermarking robust against local nonlinear geometrical distortions. Proc. IEEE Int. Conf. Image Processing, 10: 999-1002, 2001.
    [90] Pereira S., Pun T. Robust template matching for affine resistant image watermarks. IEEE Trans. Image Process., 9(6): 1123-1129, 2000.
    [91] Pereira S., Pun T. Iterative template matching algorithm using the Chirp-Z transform for digital image watermarking. Pattern Recognit., 33(1): 173-175, 2000.
    [92] Kang X., Huang J., Shi Y. Q. A DWT-DFT composite watermarking scheme robust to both affine transform and JPEG compression. IEEE Trans. Circ. Syst. Video Technol., 13(8): 776-786, 2003.
    [93] Andrew D. K. An idea for a blind watermarking scheme resistant to Stirmark. Technical Report RR-01-14, Programming Research Group, Oxford University Computing Laboratory, 2001.
    [94] Deguillaume F., Csurka G., O’Ruanaidh J. J., et al. Robust 3D DFT video watermarking. Proc. SPIE—Security and Watermarking of Multimedia Contents, 3657: 113-124, 1999.
    [95] Herrigel A., Voloshynovskiy S., Rytsar Y. The watermark template attack. Proc. SPIE—Security and Watermarking of Multimedia Contents III, 4314: 394-405, 2001.
    [96] Delannay D., Macq B. A method for hiding synchronization marks in scale and rotation resilient watermarking schemes. Proc. SPIE—Security and Watermarking of Multimedia Contents IV, 4675: 548-554, 2002.
    [97] Gruhl D., Bender W. Affine invariance. http://nif.www.media.mit.edu/DataHiding/affine /affine.html, 1995.
    [98] Kutter M. Watermarking resistant to translation, rotation and scaling. Proc. SPIE—Multimedia Systems and Applications, 3528: 423-431, 1998.
    [99]桑茂栋,赵耀.抵抗几何攻击的数字图像水印.电子与信息学报, 26(12): 1875-1881, 2004.
    [100] Delannay D., Macq B. Generalized 2D cyclic patterns for secret watermark generation. Proc. IEEE Int. Conf. Image Processing, 2000: 77-79.
    [101] Deguillaume F., Voloshynovskiy S., Pun T. A method for the estimation and recovering from general affine transforms in digital watermarking applications. Proc. SPIE-Security and Watermarking of Multimedia Contents IV, 4675: 313-322, 2002.
    [102] Dugelay J.-L., Roche S., Rey C., et al. Still-image watermarking robust to local geometric distortions. IEEE Trans. Image Process., 15(9): 2831-2842, 2006.
    [103] Setyawan I. Geometric distortion in image and video watermarking: robustness and perceptual quality. Ph. D. Thesis, Delft University of Technology, 2004.
    [104] Celik M. U., Saber E., Sharma G. Analysis of feature-based geometry invariant watermarking. Proc. SPIE-Security and Watermarking of Multimedia Contents III, 4314: 261-268, 2001.
    [105] Kutter M., Bhattacharjee S. K., Ebrahimi T. Towards second generation watermarking schemes. Proc. IEEE Int. Conf. Image Processing, 1: 320-323, 1999.
    [106] Aurenhammer F., Klein R. Voronoi Diagrams, Computational Geometry, North-Holland, 2000.
    [107] Bas P., Chassery J.-M., Macq B. Geometrically invariant watermarking using feature points. IEEE Trans. Image Process., 11(9): 1014-1028, 2002.
    [108] Tang C.-W., Hang H.-M. A feature-based robust digital image watermarking scheme. IEEE Trans. Signal Process., 51(4): 950-959, 2003.
    [109] Weinheimer J., Qi X. J., Qi J. Towards a robust feature-based watermarking scheme. Proc. IEEE Int. Conf. Image Processing, 2006: 1401-1404.
    [110]李雷达,郭宝龙,武晓钥.一种新的空域空几何攻击图像水印算法.自动化学报, 34(10): 1235-1242, 2008.
    [111] Lee H. Y., Kim H. S., Lee H. K. Robust image watermarking using local invariant features. Opt. Eng., 45(3): 1-10, 2006.
    [112] Seo J. S., Yoo C. D. Image watermarking based on invariant regions of scale-space representation. IEEE Trans. Signal Process., 54(4): 1537-1549, 2006.
    [113] Wang X. Y., Wu J., Niu P. P. A new digital image watermarking algorithm resilient to desynchronization attacks. IEEE Trans. Inf. Forens. Security, 2(4): 655-663, 2007.
    [114] Alghoniemy M., Tewfik A. H. Geometric distortions correction in image watermarking. Proc. SPIE—Security and Watermarking of Multimedia Contents II, 3971: 82-89, 2000.
    [115] Pham V. Q., Miyaki T., Yamasaki T., et al. Geometrically invariant object-based watermarking using SIFT feature. Proc. IEEE Int. Conf. Image Processing, 5: 473-476, 2007.
    [116] Jing L., Liu F. Double zero-watermarks scheme utilize scale invariant feature transform and Log-Polar mapping. Proc. IEEE Int. Conf. Multimedia and Expo, 2007: 2118-2121.
    [117]李京兵.基于变换域抗几何攻击数字水印算法研究.博士学位论文,重庆大学, 2007.
    [118] Wood J. Invariant pattern recognition: a review. Pattern Recognit., 29(1): 1-17, 1996.
    [119] Alghoniemy M., Tewfik A. H. Geometric distortion correction through image normalization. Proc. IEEE Int. Conf. Multimedia and Expo, 3: 1291-1294, 2000.
    [120] Dong P., Galatsanoa N. P. Affine transformation resistant watermarking based on image normalization. Proc. IEEE Int. Conf. Image Processing, 3: 489-492, 2002.
    [121] Alghoniemy M., Tewfik A. H. Geometric invariance in image watermarking. IEEE Trans. Image Process., 13(2): 145-153, 2004.
    [122] Hu M. K. Visual pattern recognition by moment invariants. IEEE Trans. Inf. Theory, 8(2): 179-187, 1962.
    [123] Farzam M., Shirani S. A robust multimedia watermarking technique using Zernike transform. Proc. IEEE Workshop Multimedia Signal Processing, 2001: 529-534.
    [124] Kim H. S., Lee H. K. Invariant image watermark using Zernike moments. IEEE Trans. Circuits Syst. Video Technol., 13(8): 766-775, 2003.
    [125] Xin Y., Liao S., Pawlak M. A multibit geometrically robust image watermark based on Zernike moments. Proc. 17th Int. Conf. Pattern Recognition, 4: 861-864, 2004.
    [126] Chen J., Yao H., Gao W. A robust watermarking method based on wavelet and Zernike transform. Proc. IEEE Int. Symp. Circuits and Systems, 2: 173-176, 2004.
    [127]李雷达,郭宝龙,刘雅宁.基于伪Zernike矩的抗几何攻击图像水印.光电子激光, 18(2): 231-235, 2007.
    [128] Pawlak M., Xin Y. Robust image watermark: an invariant domain approach. Proc. IEEE Int. Conf. Electrical & Computer Engineering, 2002: 883-888.
    [129] Yap P. T., Raveendran R. Local watermarks based on Krawtchouk moments. IEEE Region 10 Conf., 2: 73-76, 2004.
    [130]张力,钱恭斌,肖薇薇.基于Tchebichef矩的几何攻击不变性第二代水印算法.软件学报, 18(9): 2283-2294, 2007.
    [131] Yap Y., Raveendran P. An image watermarking scheme based on orthogonal moments. Proc. IEEE Region 10 Int. Conf. Electrical & Electron Technology, 2005: 841-843.
    [132] Nikolaidis A., Pitas I. Region-based image watermarking. IEEE Trans. Image Process., 10(11): 1726-1740, 2001.
    [133] Lee J.-S., Kim W.-Y. A new object-based image watermarking robust to geometrical attacks. Proc. Advances in Multimedia Information Processing, LNCS 3332, 2004: 58-64..
    [134] Ji Z., Jiang L., Jin J. An improved second generation digital image watermarking scheme. Proc. SPIE—Mathematics of Data/Image Coding, Compression, and Encryption VI, 5208: 218-223, 2004.
    [135] Ho Y. K., Wu M. Y. Robust object-based watermarking scheme via shape self-similarity segmentation. Pattern Recogn. Lett., 25(15): 1673-1680, 2004.
    [1] Kutter M., Bhattacharjee S. K., Ebrahimi T. Toward second generation watermarking schemes. Proc. IEEE Int. Conf. Image Processing, 1: 320-323, 1999.
    [2]孙圣和,陆哲明,牛夏牧.数字水印技术及应用.北京:科学出版社, 2004.
    [3] Tang C. W., Hang H. M. A feature-based robust digital image watermarking scheme. IEEE Trans. Signal Process., 51(4): 950-959, 2003.
    [4] Bas P., Chassery J.-M., Macq B. Geometrically invariant watermarking using feature points. IEEE Trans. Image Process., 11(9): 1014-1028, 2002.
    [5] Lee H. Y., Lee C., Lee H. K. Geometrically invariant watermarking: synchronization through circular Hough transform. Multimed. Tools Applica., 34(3): 337-353, 2007.
    [6] Seo J. S., Yoo C. D. Image watermarking based on invariant regions of scale-space representation. IEEE Trans. Signal Process., 54(4): 1537-1543, 2006.
    [7] Lee H. Y., Kim H. S., Lee H. S. Robust image watermarking using local invariant features. Opt. Eng., 43(3): (037002)1-10, 2006.
    [8] Deng C., Gao X. B., Tao D. C., et al. Geometrically invariant watermarking using affine covariant regions. Proc. IEEE Int. Conf. Image Processing, 4: 413-416, 2008.
    [9] Mikolajczyk K., Schmid C. Indexing based on scale invariant interest points. Proc. IEEE Int. Conf. Computer Vision, 1: 525-531, 2001.
    [10] Mikolajcayk K., Schmid C. An affine invariant interest point detector. Proc. Eur. Conf. Computer Vision, 2002: 128-142.
    [11] Lowe D. G. Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis., 60(2): 63-86, 2004.
    [12] Qi X. J., Qi J., A robust content-based digital image watermarking scheme. Signal Process., 87(6): 1264-1280, 2007.
    [13]李雷达,郭宝龙,武晓钥.一种新的空域抗几何攻击图像水印算法.自动化学报, 34(10): 1235-1242, 2008.
    [14]陶茂垣,卢正鼎,袁武钢等.基于图像尺度空间的几何不变特征点提取算法.电子学报, 34(12A): 2564-2568, 2006.
    [15]高新波.模糊聚类分析及其应用.西安:西安电子科技大学出版社, 2004.
    [16] Murtagh F. A survey of recent advances in hierarchical clustering algorithms. Comput. J., 26(4): 354-359, 1983.
    [17] Liang G.-S., Chou T.Y., Han T.-C. Cluster analysis based on fuzzy equivalence relation. European J. Oper. Res., 166(1): 160-171, 2005.
    [18] Wu Z., Leahy R. An optimal graph theoretic approach to data clustering: theory and its application to image segmentation. IEEE Trans. Pattern Anal. Mach. Intell., 15(11): 1101-1113, 1993.
    [19] Bezdek J. C. Pattern recognition with fuzzy objective function algorithm. Plenum Press, 1981.
    [20]高新波,谢维信.模糊聚类理论发展及应用的研究进展.科学通报, 44(21): 2241-2251, 1999.
    [21] Zahn C. T. Graph-theoretical methods for detecting and describing gestalt clusters. IEEE Trans. Comput., 20(1): 68-86, 1971.
    [22] Balakrishnan R., Ranganathan K. A textbook of graph theory. Springer-Verlag, 1999.
    [23] Mikolajczyk K., Schmid C. Scale & affine invariant interest point detectors. Int. J. Comput. Vis., 60(1): 63-86, 2004.
    [1] Lin C. Y., Wu M., Bloom J., et al. Rotation, scale, and translation resilient public watermarking for images. IEEE Trans. Image Process., 10(5): 767-782, 2001.
    [2] Boneh D., Shwa J. Collusion-secure fingerprinting for digital data. IEEE Trans. Inf. Theory, 44(9): 1897-1905, 1998.
    [3] Voloshynovskiy S., Herrigel A., Rystar Y. B. Watermark template attack. Proc. SPIE—Security and Watermarking of Multimedia Contents III, 4314: 394-405, 2001.
    [4] Bas P., Chassery J.-M., Macq B. Geometrically invariant watermarking using feature regions. IEEE Trans. Image Process., 11(9): 1014-1028, 2002.
    [5] Dittmann J., Fiebig T., Steinmetz R. New approach for transformation invariant image and video watermarking in the spatial domain: SSP-self spanning patterns. Proc. SPIE—Security and Watermarking of Multimedia Contents II, 3971: 176-185, 2000.
    [6] Tang C.-W., Hang H.-M. A feature-based robust digital image watermarking scheme. IEEE Trans. Signal Process., 51(4): 950-959, 2003.
    [7] Lee H. Y., Kim H. S., Lee H. S. Robust image watermarking using local invariant features. Opt. Eng., 43(3): (037002)1-10, 2006.
    [8] Seo J. S., Yoo C. D. Localized image watermarking based on feature points of scale-space representation. Pattern Recognit., 37(7): 1365-1375, 2004.
    [9] Wang X. Y., Wu J., Niu P. P. A new digital image watermarking algorithm resilient to desynchronization attacks. IEEE Trans. Inf. Forens. Security, 2(4): 655-663, 2007.
    [10] Deng C., Gao X. B., et al. Digital watermarking in image affine co-variant regions. Proc. IEEE Int. Conf. Machine Learning and Cybernetics, 4: 2125-2130, 2007.
    [11] Pritchett P., Zisserman A. Wide baseline stereo matching. Proc. IEEE Int. Conf. Computer Vision, 1998: 754-760.
    [12] Schaffalitzky F., Zisserman A. Multi-view matching for unordered image sets, or‘how do I organize my holiday snaps?’. Proc. European Conf. Computer Vision, 1: 414-431, 2002.
    [13] Tuytelaars T., Van Gool L. Content-based image retrieval based on local affinely invariant regions. Proc. Int. Conf. Visual Information Systems, LNCS 1614, 1999: 493-500.
    [14] Sivic J., Zisserman A. Video data mining using configurations of viewpoint invariant regions. Proc. IEEE Conf. Computer Vision Pattern Recognition, 2004: 488-495.
    [15] Varma M., Zisserman A. A statistical approach to texture classification from single images. Int. J. Comput. Vis., 62(1-2): 61-81, 2005.
    [16] Lazebnik S., Schmid C., Ponce J. A sparse texture representation using local affine regions. IEEE Trans. Pattern Anal. Mach. Intell., 27(8): 1265-1278, 2005.
    [17] Mikolajczyk K., Tuytelaars T., Schmid C. A comparison of affine region detectors. Int. J. Comput. Vis., 65(1-2): 43-72, 2005.
    [18] Crowley J. L., Parker A. C. A representation of shape based on peaks and ridges in the difference of low-pass transform. IEEE Trans. Pattern Anal. Mach. Intell., 6(2): 156-170, 1984.
    [19] Voorhees H., Poggio T. Detecting textons and texture boundaries in natural images. Proc. Int. Conf. Comput. Vis., 1987: 250-258.
    [20] Blostein D., Ahuja N. A multiscale region detector. Comput. Vis. Graph. Image Process., 45(1): 22-41, 1989.
    [21] Lingeberg T. Feature detection with automatic scale selection. Int. J. Comput. Vis., 30(2): 77-116, 1998.
    [22] Garding J., Lindeberg T. Direct computation of shape cues using scale-adapted spatial derivative operators. Int. J. Comput. Vis., 17(2): 163-191, 1996.
    [23] Baumberg A. Reliable feature matching across widely separated views. Proc. IEEE Int. Conf. Computer Vision Pattern Recognition, 1: 774-781, 2000.
    [24] Mikolajczyk K., Schmid C. An affine invariant interest point detector. Proc. European Conf. Computer Vision, 1: 128-142, 2002.
    [25] Mikolajczyk K., Schmid C. Scale and affine invariant interest point detectors. Int. J. Comput. Vis., 60(1): 63-86, 2004.
    [26] Kadir T., Brady M. Scale, saliency and image description. Int. J. Comput. Vis., 45(2): 83-105, 2001.
    [27] Lowe D. Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis., 60(2): 91-110, 2004.
    [28] Matas J., Chum O., Martin U., et al. Robust wide baseline stereo from maximally stable extremal regions. Proc. British Machine Vision Conf., 1: 384-393, 2002.
    [29] Tuytelaars T., Van Gool L. Matching widely separated views based on affinely invariant neighbourhoods. Int. J. Comput. Vis., 59(1): 61-85, 2004.
    [30] Lindeberg T., Garding J. Shape-adapted smoothing in estimation of 3-D shape cues from affine deformations of local 2-D brightness structure. Image Vis. Comput., 15: 415-434, 1997.
    [31] Wang L. X. A course in fuzzy system and control. Prentice Hall, 1997.
    [32] Lou D.-C., Yin T.-L. Adaptive digital watermarking using fuzzy logic techniques. Opt. Eng., 41(10): 2675-2687, 2002.
    [33] Watson A. B. DCT quantization matrices visually optimized for individual images. Proc. SPIE—Human Vision, Visual Processing, and Digital Display IV, 1913: 202-216, 1993.
    [34] Pennebaker W. B., Mitchell J. L. JPEG: still image data compression standard, Van Nostrand Reinhold, New York, 1993.
    [35] Jayant N. S., Johnson J. D., Safranek R. J. Perceptual coding of image signals. Proc. IEEE, 81(10): 1385-1422, 1993.
    [36] Gu Z. Q., Duncan C. N., Grant P. M., et al. Textural and spectral features as an aid to cloud classification. Int. J. Remote Sens., 12(5): 953-968, 1991.
    [37] Miller M., Bloom J. Computing the probability of the watermark detection. Proc. 3rd Int. Workshop Information Hiding, LNCS 1768, 2000: 146-158.
    [38]凌贺飞,邹复好,卢正鼎等.基于对数缩放的幅度调制水印算法研究.中国科学E辑:信息科学, 37(2): 297-314, 2007.
    [39] http://sipi.usc.edu/database/
    [40] Petitcolas F. A. P. Watermarking schemes evaluation. IEEE Signal Process. Mag., 17(5): 58-64, 2000.
    [1] Mikolajczyk K., Tuytelaars T., Schmid C., et al. A comparison of affine region detectors. Int. J. Comput. Vis., 65(1-2): 43-72, 2005.
    [2] Tsai J.-S., Huang W.-B., Chen C.-L., et al. A feature-based digital image watermarking for copyright protection and content authentication. Proc. IEEE Int. Conf. Image Processing, 2007: 469-472.
    [3] Seo J. S., Yoo C. D. Image watermarking based on feature points of scale-space representation. IEEE Trans. Signal Process., 54(4): 1537-1549, 2006.
    [4] Deng C., Gao X. B., Tao D. C., et al. Digital watermarking in image affine covariant regions. Proc. IEEE Int. Conf. Machine Learning Cybernetics, 4: 2125-2130, 2007.
    [5] Lazebnik S., Schmid C., Ponce J. A sparse texture representation using local affine regions. IEEE Trans. Pattern Anal. Mach. Intell., 27(8): 1265-1278, 2005.
    [6] Tone M., Hamada N. Affine invariant digital image watermarking using feature points. RISP Int. Workshop Nonlinear Circuit Signal Processing, 2005: 117-120.
    [7] Deng C., Gao X., Tao D. C., et al. Geometrically invariant watermarking using affine covariant regions. Proc. IEEE Int. Conf. Image Processing, 2008: 413-416.
    [8] Lindeberg T. Scale-space theory in computer vision. Kluwer Academic Publishers, 1994.
    [9] Lindeberg T., Garding J. Shape-adapted smoothing in estimation of 3-D shape cues from affine deformations of local 2-D brightness structure. Image Vis. Comput., 15(6): 415-434, 1997.
    [10] Baumberg A. Reliable feature matching across widely separated views. Proc. Conf. Computer Vision Pattern Recognition, 2000: 774-781.
    [11] Lu C.-S., Sun S.-W., Hsu C.-Y., et al. Media hash-dependent image watermarking resilient against both geometric attacks and estimation attacks based on false positive-oriented detection. IEEE Trans. Multimed., 8(4): 668-685, 2006.
    [12] Lowe D. G. Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis., 60(2): 91-110, 2004.
    [13] Zheng D., Zhao J. Y., A rotation invariant feature and image normalization based image watermarking algorithm. Proc. IEEE Int. Conf. Multimedia Expo, 2007: 2098-2101.
    [14] Lee H.-Y., Lee C., Lee H.-K. Geometrically invariant watermarking: synchronization through circular Hough transform. Multimed. Tools Appl., 34(3): 337-353, 2007.
    [15] Voloshynovskiy S., Herrigel A., Baumgartner N., et al. A stochastic approach to content adaptive digital image watermarking. Proc. 3rd Int. Workshop Information Hiding, LNCS 1768, 1999: 212-236.
    [16] http://sipi.usc.edu/database/
    [17] Tang C W, Hang H M. A feature-based robust digital image watermarking scheme. IEEE Trans. Signal Process., 51(4): 950-959, 2003.
    [18] Seo J. S., and Yoo C. D. Image watermarking based on invariant regions of scale-space representation. IEEE Trans. Signal Process., 54(4): 1537-1549, 2006.
    [19] Petitcolas F. A. P. Watermarking schemes evaluation. IEEE Signal Process. Mag., 17(5): 58-64, 2000.
    [1] Lu C.-S., Sun S.-W., Hsu C.-Y., et al. Media hash-dependent image watermarking resilient against both geometric attacks and estimation attacks based on false positive-oriented detection. IEEE Trans. Multimed., 8(4): 668-685, 2006.
    [2] Tone M., Hamada N. Affine invariant digital image watermarking using feature points. RISP Int. Workshop Nonlinear Circuit and Signal Processing, 2005: 117-120.
    [3] Tang C. W., Hang H. M. A feature-based robust digital image watermarking scheme. IEEE Trans. Signal Process., 51(4): 950-959, 2003.
    [4] Qi X., Qi J. A robust content-based digital image watermarking scheme. Signal Process., 87(6): 1264-1280, 2007.
    [5] Wang X. Y., Wu J., Niu P. P., A new digital image watermarking algorithm resilient to desynchronization attacks. IEEE Trans. Inf. Forens. Security, 2(4): 655-663, 2007.
    [6]邓成,高新波.基于SIFT特征区域的抗几何攻击图像水印算法.光子学报, 38(4): 1005-1010, 2009.
    [7] Lowe D. G. Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis., 60(2): 63-86, 2004.
    [8] Deng C., Gao X. B., Tao D. C., et al. Digital watermarking in image affine covariant regions. Proc. IEEE Int. Conf. Image Processing, 2008: 413-416.
    [9] Gower J. C., Ross G. J. S. Minimum spanning trees and single linkage cluster analysis. Appl. Stat., 18(1): 54-64, 1969.
    [10] Gonzales R., Woods R. Digital image processing. Prentice Hall, Englewood, Cliffs, NJ, 2002.
    [11] O’Ruanaidh J., Pun T. Rotation, scale and translation invariant digital image watermarking.Signal Process., 66(3): 303-317, 1998.
    [12] Lin C., Wu M., Bloom J., Cox I., et al. Rotation, scale and translation resilient watermarking for images. IEEE Trans. Image Process., 10(5): 767-782, 2001.
    [13] Bracewell R. The Fourier transform and its applications. McGraw Hill, Boston, MA, 2000.
    [14] Lee H.-Y., Kang I. K., Lee H.-K., et al. Evaluation of feature extraction techniques for robust watermarking. Proc. Int. Workshop Digital Watermarking, LNCS 3710, 2005: 418-431.
    [15] Pereira S., Pun T. Robust template matching for affine resistant image watermarks. IEEE Trans. Image Process., 9(6): 1123-1129, 2000.
    [16] Choi Y., Aizawa K. Watermark detection based on error probability and its applications to video watermarking. Electron. Commun. JPN., 87(6): 66-76, 2004.
    [17] Papulis A. Probability, random variables, and stochastic processes. 3rd ed., McGraw-Hill, 1991.
    [18] Leon-Garcia A. Probability and random processes for electronical engineering, 2nd ed., Addison-Wesley, 1994.
    [19] http://sipi.usc.edu/database/
    [20] http://decsai.ugr.es/cvg/dbimagenes/
    [21] Petitcolas F. A. P. Watermarking schemes evaluation. IEEE Signal Process. Mag., 17(5): 58-64, 2000.
    [22] Seo J. S., Yoo C. D. Localized image watermarking based on feature points of scale-space representation. Pattern Recognit., 37(7): 1365-1375, 2004.
    [1] Xiang S. J., Kim H. J., Huang J. W. Invariant image watermarking based on statistical features in the low-frequency domain. IEEE Trans. Circuits Syst. Video Technol., 18(6): 777-790, 2008.
    [2] Alghoniemy M., Tewfik A. H. Geometric invariance in image watermarking. IEEE Trans. Image Process., 13(2): 145-153, 2004.
    [3] Kim H. S., Lee H. K. Invariant image watermarking using Zernike moments. IEEE Trans. Circuits Syst. Video Technol., 13(8): 766-775, 2003.
    [4] Xin Y. Q., Liao S., Pawlak M. Geometrically robust image watermarking via pseudo-Zernike moments. Proc. IEEE Canadian Conf. Electrical Computer Engineering, 2: 939-942, 2004.
    [5] Zhang L., Qian G. B., Xiao W. W., et al. Geometric invariant blind image watermarking by invariant Tchebichef moments. Optic. Express, 15(5): 2251-2261, 2007.
    [6] Deng C., Gao X. B., Li X. L., et al. A local Tchebichef moments based robust image watermarking. Signal Process., 2009.
    [7] Schmid C., Mohr R., Bauckhage C. Evaluation of interest point detectors. Int. J. Comput. Vis., 37(2): 151-172, 2000.
    [8] Mikolajczyk K, Schmid C. Scale and affine invariant interest point detector. Int. J. Comput. Vis., 60(1): 63-86, 2004.
    [9] Lindeberg T. Feature detection with automatic scale selection. Int. J. Comput. Vis., 30(2): 79-116, 1998.
    [10]王向阳,邬俊,侯丽敏.一种基于图像特征点的数字水印嵌入算法.电子学报, 35(7): 1318-1322, 2007.
    [11] Deng C., Gao X. B., Tao D. C., et al. Geometrically invariant watermarking using affine covariant regions. Proc. IEEE Int. Conf. Image Processing, 2008: 413-416.
    [12] Teague M. R. Image analysis via the general theory of moments. J. Opt. Soc. Amer., 70(8): 920-930, 1980.
    [13] Shu H. Z., Luo L. M., Coatrieux J. L. Moment-based approaches in image-Part I: Basic feature. IEEE Eng. Med. Biol. Mag., 26(5): 70-75, 2007.
    [14] Mukundan R, Ong S. H., Lee P. A. Image analysis by Tchebichef moments. IEEE Trans. Image Process., 10(9): 1357-1364, 2001.
    [15] Mukundan R. Some computational aspects of discrete orthonormal moments. IEEE Trans. Image Process., 13(8): 1055-1059, 2004.
    [16] Deng C., Gao X. B., Tao D. C., et al. Digital watermarking in image covariant regions. Proc. IEEE Int. Conf. Image Processing, 2008: 413-416.
    [17] Chen B., Wornall G. W. Quantization index modulation methods: a class of provably good methods for digital watermarking and information hiding. IEEE Trans. Inf. Theory, 47(4): 1423-1443, 2001.
    [18] Xin Y. Q., Liao S., Pwalak M. Circularly orthogonal moments for geometrically robust image watermarking. Pattern Recognit., 40(12): 3740-3752, 2007.
    [19] Choi Y., Aizawa K. Watermark detection based on error probability and its applications to video watermarking. Electron. Commun. JPN., 87(6): 66-76, 2004.
    [20] http://sipi.usc.edu/database/
    [21] Petitcolas F. A. P. Watermarking schemes evaluation. IEEE Signal Process. Mag., 17(5): 58-64, 2004.
    [22] Tang C. W., Hang H. M. A feature-based robust digital image watermarking scheme. IEEE Trans. Signal Process., 51(4): 950-959, 2003.
    [23] Jeo J. S., Yoo C. D. Localized image watermarking based on feature points of scale-space representation. Pattern Recognit., 37(7): 1365-1375, 2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700