添加剂对PDMS/PAN富氧复合膜性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
膜法制备富氧空气进行助燃可以极大的降低工业生产中的能耗,减少废气的排放,符合节能减排战略,具有较好的经济效益和社会效益,已成为膜分离领域研究的重点之一。实际生产中一般要求富氧量大,但氧气浓度要求不高,一般为25.0%~35.0%左右,这就要求这类富氧膜具有较高的氧气渗透速率,而对分离系数要求不严。富氧膜材料硅橡胶(PDMS)由于其极高的氧气渗透系数可以满足该种要求,从而得到广泛应用,但因其机械强度不高,一般将其复合在多孔支撑基膜上制备成复合膜使用。复合膜的性能除了和膜材料本身有关之外,还受到基膜结构的重要影响,因此,制备合适孔结构的基膜是制备高性能富氧复合膜的关键之一。
     论文以聚丙烯腈(PAN)为基膜材料,N、N-二甲基甲酰胺(DMF)为溶剂,水为凝胶介质,通过浸入沉淀相转化法制备基膜,以PDMS为选择层涂覆制备复合膜。通过使用有机添加剂聚乙烯吡咯烷酮(PVP)、不同分子量(400、600、1000、2000 g/mol)的聚乙二醇(PEG)和无机添加剂氯化锌(ZnCl_2)来调节基膜结构,制备具有合适孔径、孔隙率结构的多孔支撑基膜,保证涂覆后PDMS可以在基膜表面形成均匀、无缺陷的超薄致密膜,并提高PDMS/PAN复合膜的氧气渗透速率。
     首先对PAN浓度、涂膜方法、PDMS浓度等基本制膜条件进行了考察。结果表明,当PAN浓度为19.0%,PDMS浓度为4.0%(wt.%以后未加说明均为质量分数)时,可以制备性能较好的复合膜,其氧气渗透速率为292GPU,氧氮选择性为2.07。其次考察了添加剂对铸膜液热力学性质和凝胶动力学的影响。研究了铸膜液体系的相分离行为,测试了其浊点数据,进行(linearized cloud point,简称LCP)回归,计算制膜体系的理论双节线。结果表明,该体系热力学相行为符合LCP理论,随着添加剂PVP、PEG浓度及PEG分子量的增大,铸膜液的凝胶值减小,热力学稳定性减弱,分相加快。同时,随着添加剂PVP、PEG、ZnCl_2浓度及PEG分子量的增大,铸膜液粘度增大,成膜时透光率曲线起始部分的斜率绝对值逐渐减小,铸膜液凝胶速率减小,分相减缓。两种作用共同影响膜的结构。
     最后,通过扫描电镜对添加剂对基膜结构的影响进行了表征,并利用氧、氮纯气对复合膜的性能进行了测试。当添加分子量为400、600、1000、2000 g/mol的PEG浓度为6.0%、4.0%、2.0%、2.0%,PVP浓度为3.0%,ZnCl_2浓度2.0%时,复合膜均显示出优良的富氧性能,其氧气渗透速率分别为:407、352、377、521、410、490 GPU,其氧氮选择性分别为:2.07、2.10、2.09、2.07、2.01、2.03。(1GPU=10~(-6)cm~3(STP)/cm~2·s·cmHg)
The oxygen-enriched air for combustion-supporting produced by the membrane separation,can reduce the energy consumption and the exhaust emission in the industry,which is to the great interest of energy-saving and emission-reduction strategy in our days.Therefore, it has brought considerable social and economic benefits,and thus,become a focus to the investigators.For oxygen-enrichment membranes to produce combustion air with low oxygen concentration of 25.0%to 35.0%,the oxygen permeation rate is more important than the selectivityof oxygen/nitrogen,which can be satisfied easily by poly(dimethylsiloxane)(PDMS) membranes.Therefore,it has been widely used to prepare oxygen-enrichment membranes for its excellent oxygen permeability coefficient.Nevertheless,its membrane-forming ability is so poor that its direct applications are limited.Consequently,PDMS has often been coated as the selective layer on porous polymeric substrates to form oxygen-enrichment composite membranes in practical applications.Moreover,not only the membrane material but also the structure of the substrate plays an important role in the performance of the composite membrane.As a result,to prepare the substrates with proper morphology is the key to the composite membrane with excellent performance.
     The composite membranes were prepared by coating PDMS on the surface of porous polyacrylonitrile(PAN) substrates,which were prepared via phase inversion process using PAN as the substrate material,N,N-dimethyl-formamide(DMF) as the solvent and water as the coagulant.To prepare the PAN substrate with proper pore size and porosity,which is helpful to form a thin defect-free PDMS dense membrane coated on the substrate surface,and to improve the oxygen permeation rate of the composite membranes,the organic additive of polyvinylpyrrolidone(PVP) and polyethylene glycol(PEG) with different molecular weight (400、600、1000、2000 g/mol) as well as the inorganic additive of zinc chloride(ZnCl_2) were used to control the structure of the substrate.
     Firstly,the membrane preparation conditions of the concentration of PAN,the coating method and the concentration of PDMS were investigated.It was shown that the composite membranes formed by coating PDMS solution of 4.0%on the substrates of 19.0%(wt.% following the same without any sepecial notes) PAN,exhibited good performance with the oxygen permeation rate of 292GPU,and the selectivity of oxygen/nitrogen of 2.07.
     Secondly,the effects of the additives on the thermodynamics properties and precipitation kinetics of the casting system were investigated.The cloudy points were measured and the experimental data were linearly regressed with the linearized cloud point(LCP) relation,by which,the theoretical binodal line was calculated.All the results showed that the systems in this study were in accord with the LCP relation and were suitable for membrane preparation. Moreover,the casting system became less thermodynamically stable for that the coagulation value decreased,with the increase of the concentration of PVP,PEG and the molecular weight of PEG,which improved the phase separation.However,when the concentration of the PVP, PEG,ZnCl_2 and the molecular weight of PEG increased further,the viscosity of the casting solution increased,and the precipitation rate decreased from the light transmittance curve, which delayed the phase separation.The structure of the membrane was the result of the both properties.
     Thirdly,the effects of the additives on the cross-section structure of the substrate membrane were characterized by scanning electron microscope(SEM),and the gas permeation performaces were measured with the oxygen and nitrogen pure gas.It was shown by the results that the composite membranes with 6.0%of PEG 400,4.0%of PEG 600,2.0%of PEG 1000, 2.0%of PEG 2000,3.0%of PVP,2.0%of ZnCl_2 as the additives exhibited good oxygen-enrichment performance,such as the oxygen permeation rate of 407,352,377,521, 410,490 GPU as well as the selectivity of oxygen/nitrogen of 2.07,2.10,2.09,2.07,2.01,2.03, respectively.(1GPU=10~(-6)cm~3(STP)/cm~2·s·cmHg)
引文
[1]吕晓岚.实施节约优先的发展战略--《中国能源状况与政策》白皮书解读[J].天然气技术,2008,2(2).
    [2]杨秋宝.新世纪中国能源可持续发展:战略背景、战略挑战和战略思路[J].中共云南省委党校学报,2006(1):7.
    [3]徐寿波.中国能源发展战略变革综述[J].电网与清洁能源,2008,24(5).
    [4]Mitchell J K.On a new practice inacute and chronic rheumatism[J].Journal of Medical Science,1831,13:36.
    [5]Graham T.On the Absorption and Dialytic Separation of Gases by Colloid Septa.Part I.Action of a Septum of Caoutchouc[J].The London,Edinburgh,and Dublin Philosophical Magazine and Journal of Science,1866,32:401-420.
    [6]Weller S,Steiner W A.Enginering gaspects of separation gases:fractional permeation through membranes[J].Chemical Engineering Progress,1950,46(11):585-590.
    [7]王学松.膜分离技术及其应用[M].北京:科学出版社,1994.
    [8]Henis J M S,Tripodi M K.A novel approach to gas separation using compsite hollow fiber membranes[J].Sep Sci and Technol,1980,15:1059-1068.
    [9]Schell W J.Commercial application for gas permeation membrane systems[J].Journal of Membrane Science,1985,22:217-224.
    [10]Henis J M S,Tripodi M K.Composite hollow fiber membranes for gas separation:the resistance model approach[J].Journal of Membrane Science,1981,8(3):233.
    [11]Chem Eng News[J],1979,26:26.
    [12]Kesting R E,Fritzsche A,Murphy M,Cruse C,Handermann A,Malon R.US,4871494[P].1989.
    [13]Fritzsche A K,Murphy M K,Cruse C A,et al.Characterization of asymmetric hollow fibre membranes with graded-density skins[J].Gas Separation and Purification,1989,3:106-116.
    [14]刘茉娥,等.膜分离技术[M].北京:化学工业出版社,2000.
    [15]刘丽,邓麦村,袁权.气体分离膜研究和应用新进展[J].现代化工,2000,20(1):17-21.
    [16]沈光林.膜法/深冷法联合制氧工艺方法:中国,97105067.8[P].1997.1.31
    [17]张林,陈欢林,柴江.挥发性有机物废气的膜法处理工艺研究进展[J].化工环保,2002,22(2):75280.
    [18]Bessaiabov D G.Memb Tech,107.
    [19]陈光文.高聚物/陶瓷复合膜-制备、性能表征及应用[D].大连:大连化学物理研究所,1995.
    [20]Kang Y S,Kim H J,Kim U Y.Asymmetric membrane formation via immersion precipitation method I.Kinetic effect[J].Journal of Membrane Science,1991,60:219.
    [21]Cohen C,Tanny G B,Prager S.Diffusion-controlled formation of porous structure in ternary polymer system[J].Journal of Polymer Science,1979,17:477.
    [22]Altena F W,Smolder C A.Calculation of liquid-liquid phase separation in a ternary system of a polymer in a mixture of a solvent and a non-solvent[J].Macromolecules,1982,15:1491-1498.
    [23]Van de Witte P,Dijkstra P J,Van den Berg J W A,et al.Phase separation processes in polymer solutions in relation tomembrane formation[J].Journal of Membrane Science,1996,117:1-31.
    [24]Li S G,Koops G H,Mulder M H V,et al.Wet spinning of integrally skinned hollow fiber membranes by a modified dual-bath coagulation method using a triple orifice spinneret[J].Journal of Membrane Science,1994,94:329.
    [25]李战胜,李怒广,等.膜科学与技术[M].北京:化学工业出版社,2002.
    [26]赵晓勇,曾一鸣,等.相转化法制备超滤和微滤膜的孔结构控制[J].功能高分子学报,2002,4:487-495.
    [27]Tompa H.Polymer solutions[M].London:Butterworths,1956:183-185.
    [28]Altena F W,Smolder C A.Calculation of liquid-liquid phase separation in a ternary system of a polymer in a mixture of a solvent and a non-solvent[J].Macromolecules,1982,15:1491-1498.
    [29]Altena F W,Smolder C A.Calculation of liquid-liquid phase separation in a ternary system of a polymer in a mixture of a solvent and a non-solvent[J].Macromolecules,1982,15:1491-1498.
    [30]Van de Witte P,Dijkstra P J,Van den Berg J W A,et al.Phase separation processes in polymer solutions in relation to membrane formation[J].Journal of Membrane Science,1996,117:1-31.
    [31]索里拉金.反渗透和超滤膜材料学[J].膜分离科学与技术,1984,4(4):12-16.
    [32]王保国,孙洪亮,蒋维钧.添加剂对PAN中空纤维超滤膜影响规律研究[J].膜科学与技术,1997,4(17).
    [33]Cho S H,Park J S,Jo SM,et al.Influence of ZnC12 on the structure and mechanical properties of poly(acrylonitrile) fibres[J].Poly Int,1994,34:333-337.
    [34]Shinde M H,Kulkarni S S,Musale D A,et al.Improvement of the water purification capability of poly(acrylonitrile),ultrafiltration membranes[J].Journal of Membrane Science,1999,162:9-22.
    [35]Kunst B,Skevin D.A light scattering and membrane formation study on concentrated cellulose acetate solutions[J].J Appl Polym Sci,1976,20:1339-1353.
    [36]Kesting R E,Fritzsche A K.Polymeric gas separation membranes[M].New York:Wiley,1993.
    [37]Ronner J A,Smolders C A.Investigation of liquid2liquid demixing and aggregate formation in a membrane2forming system by means of pulse-induced critical scattering[J].Journal of Membrane Science,1989,42:27-38.
    [38]侯太平,杨兰娜.聚砜铸膜液体系有机添加剂作用规律的研究[J].水处理技术,1990,16(5):359-367.
    [39]何涛,江成璋.聚醚砜微孔膜制备中非溶剂添加剂作用研究[J].膜科学与技术,1998,18(3):43-48.
    [40]李战胜,江成璋.非溶剂添加剂对PES/NMP铸膜液性质的影响[J].膜科学与技术,2001,21(5):1-6.
    [41]Wienk L M,Boom R M.Recent advances in the formation of phase inversion membranes made from amorphous or semi2crystalline polymers[J].Journal of Membrane Science,1996,113:361-371.
    [42]Chakrabarty B,Ghoshal A K,Purkait M K.Effect of molecular weight of PEG on membrane morphology and transport properties[J].Journal of Membrane Science,2008,309:209-221.
    [43]Tang B,Wu D,Xu T.Effect of PEG Additives on Properties and Morphologies of Membranes Prepared from Poly(2,6-dimethyl-1,4-phenyleneoxide) by Benzyl Bromination and In Situ Amination.Wiley InterScience,2005.
    [44]Kim J H,Lee K H.Effect of PEG additive on membrane formation by phase inversion [J],Journal of Membrane Science,1998,138:153-163.
    [45]Tsaia H A,Ma L C,Yuan F,et al.Investigation of post-treatment effect on morphology and pervaporation performance of PEG added PAN hollow fiber membranes [J],Desalination,2008,234:232-243.
    [46]Jung B,Yoon J K,et al.Effect of molecular weight of polymeric additives on formation,permeation properties and hypochlorite treatment of asymmetric polyacrylonitrile membranes[J].Journal of Membrane Science,2004,243:45-57.
    [47]王保国,袁乃驹,膜法富氧技术的现状与未来[J].化工进展,1995(2):19-24.
    [48]近滕武夫.力、之分离技术内展开[M],1991.4
    [49]沈光林,等.膜法富氧用于助燃的理论研究[J].膜科学与技术,1994,14(3):47-50.
    [50]张可达.富氧膜材料的进展[J].材料科学进展,1988(5):10-20.
    [51]周宗华.高分子富氧材料的应用与发展[J].材料导报,1994(5):60-64.
    [52]Li Y,Cao C,Chung T S,et al.Pramoda Fabrication of dual-layer polyether-sulfone (PES) hollow fiber membranes with an ultrathin dense-selective layer for gas separation[J],Journal of Membrane Science,2004,245:53-60.
    [53]Ding X,Cao Y,Zhao H,et al.Fabrication of high performance Matrimid/polysulfone dual-layer hollow fiber membranes for O2/N2 separation[J].Journal of Membrane Science,2008,323:352-361.
    [54]Chung T S,Shieha J J,Laua W W Y,et al.Fabrication of multi-layer composite hollow fiber membranes for gas separation[J].Journal of Membrane Science,1999,152:211-225.
    [55]乐建保,孙方.用于富氧燃烧低压高通量中空纤维富氧膜研究[J].天津纺织工学院学报,1998,15(2):53-56.
    [56]陈光文,袁权,吴迪镛,等.高聚物/陶瓷复合膜的制备及性能表征[J].化工学报,2000,51(6):725-733.
    [57]Jiang X,Kumar A.Performance of silicone-coated polymeric membrane in separation of hydrocarbons and nitrogen mixtures[J].Journal of Membrane Science,2005,254:179-188.
    [58]张阳,王湛,纪树兰,等.聚砜-硅橡胶富氧膜的制备[J].膜科学与技术,2007,27(3).
    [59]Stern S A,Shan V M,Hardy B.Structure-permeability relationships in silicone polymers[J].Journal of Polymer Science Part B:Polymer Physics,1987,25:1263-1298.
    [60]Teijin Ltd.Permselective membranes[M].JPpat:209608,1984:11-28.
    [61]Yang J S,Hsiue G H.Synthesis of acrylic acid grafted silicone rubber via preirradiation graft copolymerization and its physical and dielectric properties [J].Journal of Applied Polymer Science,1996,61:221-229.
    [62]Sasaki Y M.Manufacture of polyethylene-silicone rubber blend membranes[M].JPpat:72932.
    [63]Chris C,Chris H,Eva M.Hybrid organic-inorganic membranes[J].Separation and Purification Technology,2001,25:181-193.
    [64]Jae H K,gong M L.Gas permeation properties of poly(amide-6-bethylene oxide)-silica hybrid membranes[J].Journal of Membrane Science,2001,193:209-225.
    [65]Ho B P,Jang K K,Sang Y N.Imide-siloxane block copolymer/silica hybrid membranes:preparation,characterization and gas separation properties[J].Journal of Membrane Science,2003,220:59-73.
    [66]Zeman L J,Zydney A L.Microfiltration and ultrafiltration Principles and applications[M].New York:Marcel Dekker Inc,1996.
    [67]Bottino A,Camera R G.The formation of microporous polyvinylidene difluoride membranes by phase separation[J].Journal of Membrane Science,1991,57:1-20.
    [68]何涛,江成璋.聚醚砜微孔膜制备中非溶剂添加剂作用研究[J].膜科学与技术,1998,18(3):43-48.
    [69]Chuang W Y,Young T H.The effect of a ceticacid on the structure and filtration properties of poly(vinylalcohol)membranes[J].Journal of Membrane Science,2000,172:241-251.
    [70]Witte P,Dijkstra P J,Berg J W,et al.Phase separation processes in polymer solutions in relation to membrane formation[J].Journal of Membrane Science,1996,117:1-31.
    [71]Reuvers A J,Berg J W,Smolders C A.Formation of membranes by means of immersion precipitation.(Ⅰ) A model describe the mass transfer during immersion precipitation[J].Journal of Membrane Science,1987,34:45-65.
    [72]吴开芬,王静荣,王正军,等.高通量聚丙烯腈超滤膜的研究[J].膜科学与技术,1999,19(3):49-51.
    [73]高从堦,鲁学仁,孙秀珍.聚丙烯腈支撑膜的研究[J].水处理技术,1985,11(5):38-43.
    [74]曹晓春,马军.铸膜液组成对聚丙烯腈超滤膜性能的影响[J].大庆石油学院学报,2005,29(5).
    [75]陈世英,等.CA/PAN中空纤维血浆分离膜的结构与性能[J].高分子材料科学与工程,1993(1):87.
    [76]陈世英,姚文.CA/PAN共混体系相容性的研究[J].高分子材料科学与工程,1994,(2):106.
    [77]王保国,等.PAN/PS共混中空纤维超滤膜研究[J].水处理技术,1996,22(2):27-31.
    [78]尹秀丽,宋艳秋.PVDF/PAN共混超滤膜[J].应用化学,1997,14(5):115.
    [79]Nguyen Q T,et al.Preparation of membranes from polyacrylonitrile-polyvinyl-pyrrolidone blends and the study of their behaviour in the pervaporation of water-organic liquid mixtures[J].Journal of Membrane Science,1985,22:245.
    [80]Yoshiyuki Nishio,et al.Blends of cellulose with polyacrylonitrile prepared from N,N-dimethylacetamide-lithium chloride solutions[J].Polymer,1987,28:1385.
    [81]Lauw W Y,Guiver M D.Phase separation in polysulfone/solvent/water and polyethersulfone/solvent/water systems[J].Journal of Membrane Science,1991,59(2):219-227.
    [82]Swinyard B T,Barrie J A.Phase separation in non-solvent/dimethylformamide/polyethersulphone and non-solvent/dimethylformamide/polysulfone systems[J].Journal of Polymer,1998,20(4):317-321.
    [83]Wu Soheng.Polymer interface and adhesion[M].New York and Basel:Marcel Dekker INC Press,1982.
    [84]Matsuyama H,Teramoto M,Nakatani R,et al.Membrane formation via phase separation induced by penetration of nonsolvent from vapor phase.I.phase diagram and mass transfer process[J].Journal of Applied Science,1999,74:159-170.
    [85]郝继华,王世昌.聚合物-溶剂-非溶剂三元相图的计算[J].高等化学学报,1995,12:1831-1836.
    [86]钟银屏,赵长生,欧阳庆,等.聚醚砜四元制膜液体系的相图计算[J].膜科学与技术,1997,17:63-68.
    [87]秦建军,江成璋.聚砜制膜液体系的相图研究[J].膜科学与技术,1990,10:120-125.
    [88]Barter A L,Piringer O G.Prediction of solute partition coefficients between polyolefins and alcohols using the regular solution theory and group contribution methods[J].Industrial and Engineering Chemistey Research,1991,30(7):1506-1515.
    [89]Craubner H.Thermodynamic Perturbation Theory of Phase Separation in Macromolecular Multicomponent Systems Ⅱ.Concentration Dependence[J].Macromolecule,1978,11(6):1161-1167.
    [90]Wijman J G,Kant J,Mulder M H V,et al.Phase separation phenomena in solutions of polysulfone in mixtures of a solvent and a nosolvent:relationship with membrane formation[J].Polymer,1985,26(10):1435-1592.
    [91]Boom R M,Boomgaard T V D,Berg J W A,et al.Linearized cloudpoint curve correlation for ternary systems consisting of one polymer,one solvent and one non-solvent[J].Polymer,1993,34(11):2348-2356.
    [92]Kools W F C,Konagurthu S,Boomgaard V D,et al.Use of ultrasonic time-domain reflectometry for real-time measurement of thickness changes during evaporative casting of polymeric films[J].Journal of Applied Polymer Science,1998,62:79-88.
    [93]Ziabicki A.Fundamentals of Fiber Formation,The Science of Fiber Spinning and Drawing,Willey,1976,300.
    [94]Kim I C,Lee K,Tak T M.Preparation and characterization of integrally skinned uncharged polyetherimide asymmetric nanofiltration membrane[J].Journal of Membrane Science,2001,183:235-247.
    [95]Strathmann H,Kock K,Amar P,et al.The formation mechanism of asymmetric membranes [J].Desalination,1975,16(169):179.
    [96]Reuvers A J,Smolders C A.Formation of membranes by means of immersion precipitation.Part Ⅱ.The mechanism of formation of membrane[J].Journal of Membrane Science1987,34:67.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700