手机外壳注射成型工艺的智能优化算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着国民经济的高速发展,也带动了塑料工业的飞速发展,塑料制品使用范围在不断扩大。但是在注塑成型过程中出现的各种问题特别是成型薄壁塑料制品时产生的翘曲变形和收缩率过大等,如何减少、防止制品成形中时常发生影响产品质量的问题,是经常困扰工程师的一大难题。在手机行业中,绝大部分的部件都是由塑料制品组成,塑料成型CAE技术是当前塑料加工行业研究的热点,但是目前注塑成型CAE技术依然存在着一系列的问题,特别是在成型手机外壳这种薄壁塑料制品的时候。
     本文工作主要包括以下几个方面的内容:
     1.本文简要概述了薄壁注塑成型技术,介绍了薄壁件翘曲变形产生的相关机理,以及聚合物流变学的基础知识,进而分析影响翘曲变形量和体积收缩率的因素,并指出了减小薄壁件翘曲变形和收缩率的多种措施,由此讨论并且确定了薄壁件翘曲变形的研究方法。
     2.注塑制品翘曲变形量和体积收缩率受工艺参数的的影响进行综合评价。并且指出翘曲量和体积收缩受工艺参数控制的影响不可忽视,最后得到合适的工艺参数组合使翘曲变形分析和体积收缩率最小。
     3.基于神经网络建立了从注塑工艺参数到翘曲变形量和体积收缩率的非线性映射关系。利用正交试验获得的数据作为人工神经网络的训练样本,得到输入为工艺参数、输出为翘曲变形量和收缩率的人工神经网络模型,并且通过对样本的检验,检验了ANN(Artifidal Neural Network)模型的准确性,为参数优化及翘曲变形和收缩率的预测做好准备。
     4.基于人工神经网络和正交试验的工艺参数优化。我们在工艺参数取值范围内采用ANN模型代替CAE软件进行数值模拟试验,并且结合正交试验法对工艺参数做优化使得翘曲变形量和收缩率更小。论文工作表明:将正交试验和神经网络以及数值模拟三者结合,用于注塑过程参数优化可非常明显的减少优化工艺参数的时间并且提高工艺设定的效率,同时在数值模拟试验次数一定的条件下能够获得比单一使用正交试验和数值模拟方法更为精确的结果。
     本论文对薄壁注塑翘曲变形作了多工艺参数影响的综合分析减少了单个因素分析的片面性,有利于对薄壁注塑件翘曲变形和收缩率问题的深入探讨,在保证分析精度一定的前提下,明显节省了工艺制定的时间,提高了工艺设计的工作效率,缩短生产时间,提高制件质量。
With the rapid development of the national economy has also led to the rapid development of the plastics industry and the range use of plastic products in expanding. But various problems in the injection molding process, especially when molding thin-walled plastic products, warpage and shrinkage is too large, engineers often plagued by a major problem that how to reduce, to prevent the products shaping often affect product. In the mobile phone industry, the vast majority of parts are composed of plastic products, current research focus of the plastics processing industry is plastic molding CAE technology, but there are still a range of issues in the injection molding CAE technology, especially in the forming cell phone case thin-walled plastic products.
     This work includes the following aspects of the content:
     1. This paper provides an overview of the thin-wall injection molding technology and warpage related mechanism of the thin-walled parts, as well as the basics of polymer rheology, and then analyze the factors that affect the amount of warpage and volume shrinkage, pointed out variety of measures to reduce small thin-walled parts warpage and shrinkage, thus discussed and determined some research methods of the thin-walled warpage.
     2. Evaluation of multiple process parameters influence on injection molding warping deformation quantity and size of shrinkage ratio. With cell phone casing parts as the research object and building simulation model, arranged experiment by taguchi test method, obtain the warpage amount and volume contraction rate of the test data by simulate and analysis the injection molding of plastic parts. Different process parameters play an essential role on the warpage and shrinkage control, at the same time we can get the minimum combinations of process parameters of the warpage.
     3. Based on neural network establish a nonlinear mapping relationship from the injection molding process parameters to the warpage amount and volume shrinkage, taguchi experiment dated as an artificial neural network training samples. the input is process parameters, the out put is warpage and shrinkage of the artificial neural network model, testing ANN (Artifidal, Neural Network) the accuracy of the model by inspection of samples, and be prepare for the parameter optimization and warpage and shrinkage forecast.
     4. Based on artificial neural network and the process parameters optimization of the taguchi experiment. we are using ANN model instead of the CAE software with the combination of the taguchi experiment method to simulate the test within the range of process parameters, get smaller warpage amount of process parameters by futher optimization. The thesis work has shown that:we can significantly shorten the time to optimize the process parameters and to increase the efficiency of the process design by combined with the taguchi experiment, the neural network and numerical simulation of the three combination for the injection molding process parameters optimization, we can obtain more accurate results than the single use of orthogonal experiments and numerical simulation methods under certain conditions of the number of numerical simulation test.
     This paper made several process parameters of the combined effects of analysis to the shell injection molding warpage, to avoid the one-sidedness of a separate analysis. Use taguchi experiment, the neural network and the numerical simulation method for the optimization of mobile phone shell injection molding process parameters, under certain preconditions to ensure the accuracy of analysis, improve the efficiency of the process design work, shorten production time and improve part quality.
引文
[1]郭志英,阮雪榆,李德群.注塑制品翘曲变形数值分析模型[J].中国机械工程,2002,13(17):1515-1517.
    [2]李海梅,谢英.注射压力对塑件残余应力和翘曲变形的影响[J].模具工业,1999,221(7):27-30.
    [3]菲恩费尔德著,徐定宁译.注射塑料技术[M].北京:轻工业出版社,1990.
    [4]申乃雨.大型薄壁注塑件成型工艺优化研究[D].吉林:吉林大学,2008.
    [5]徐冰冰.数值优化在汽车复杂注塑件成型工艺分析中的应用[D].杭州:浙江大学,2008.
    [6]E.C.Berhardt. Processing of thermoplastic meterials[M]. New York:Reinhold,1959.
    [7]J.M.Mckelvey. Polymer processing [M]. New York:Wiley,1962.
    [8]J.Klein, D.I.Marshall. Computer Programs for Plastics Engineers [M]. New York:Reinhold, 1968.
    [9]J.F.Stevenson, A.Galskoy. Injection molding in disk-shaped cavities[J]. Polymer Engineering and Science,1977,17(9):706-710.
    [10]M.R.Kamal, S.Kenig. The injection molding of thermoplasties[J]. Polymer Engineering and Science,1972,12(4):302-308.
    [11]G.William, H.A.Lord. Mold-filling studies for the injection molding of Thermoplastic materials[J]. Polymer Engineering and Science,1975,15(8):553-568.
    [12]Broyer, C.Gutfinger, Z.Tadmor. A theoretical model for the cavity filling process In injection molding[J]. Transaction of the society of rheology,1975,19(3):423-444.
    [13]KruegeW.L.Krueger, Z.Tadmor. Injection molding into a rectangular cavity with inserts[J]. Polymer Engineering and Science,980,20(6):426-431.
    [14]Austin.C. Computer Aided Engineering in Injection Molding[C]. Carl Hanser Verlag. Applications of Computer Aided Engineering in Injection Molding. New York:Carl Hanser Verlag, 1987:137-172.
    [15]C.A.Hieber, S.F.Shen. A finite-element/finite difference simulation of the injection-molding filling Proeess[J]. Journal of Non-Newtonian Fluid Mechanics,1980,7(1):1-32.
    [16]Wang, C.A.Hieber, K.K.Wang. Mold-filling simulation in injection molding of Three dimensional thin parts[C]. New York:ANTEC86,SPE conference,1986.
    [17]黄风立,林建平,许锦泓,等.基于可拓关联的注塑成型工艺参数优化方法[J].塑料工业,2009,37(4):3-48.
    [18]卫炜,胡泽豪.正交试验设计的注塑成型工艺参数多目标优化设计[J].现代制造工程,2009,(2):94-97.
    [19]王睿鹏,孟庆霞.基于Moldflow与正交试验的注塑工艺参数优化设计[J].宁夏工程技术,2011,10(4):326-329.
    [20]童尧,秦宗慧.注射成型工艺参数的混合优化[J].现代塑料加工应用,2010,22(3):39-42.
    [21]刘柱.超薄塑件注塑成型特性的试验研究与数值模拟[D].大连:大连理工大学.2004.
    [22]朱洪燕.薄壳件注塑成型的计算机模拟及工艺参数优化[D].武汉:武汉理工大学,2004.
    [23]奚东.注塑成型中制品的缺陷原因及其对策[J].塑料科技,2000,(3):34-38.
    [24]郭广思.注塑成型技术时[M].北京:机械工业出版社,2002.
    [25]中长雨.注塑成型制品的质量控制[J].工程塑料应用,1999,27(8):33-37.
    [26]谢红梅,廖小平.用正交法分析注塑工艺参数对制品质量的影响[J].合肥工业大学学报,2007,30(7):874-876.
    [27]Lee Z J, Ying K C, Chen S C, et al. Applying PSO-based BPN for predicting the yield rate of DRAM modules produced using defective ICs[J]. The International Journal of Advanced Manufacturing Technology,2010,49(9-12):987-999.
    [28]Che Z H. PSO-based back-propagation artificial neural net-work for product and mold cost estimation of plastic injectjon molding[J]. Computers and Industrial Engineering,2010,58(4): 625-637.
    [29]周婷,刘斌.基于BP人工神经网络的异形透盖注塑件翘曲变形分析[J].塑料工业,2011,39(10):59-61.
    [30]蒋文胜,庞祖高,夏薇,等.基于神经网络和遗传算法的薄壳件注塑成型工艺参数优化[J].塑料加工,2007,(1):38-40.
    [31]陈晓平.薄壳件注塑成型工艺参数优化研究[D].杭州:浙江大学,2005.
    [32]曹伟,王蕊,中长雨.塑料熔体在注塑模中的三维流动模拟[J].化工学报,2004,55(9):1493-1498.
    [33]吴孟武,周华民,赵朋.塑料熔体黏度的神经网络拟合[J].塑料科技,2007,35(2):64-67.
    [34]Mitsoulis E. Annular extrudate swell of pseudoplastic and viscoplastic fluids[J]. Journal of NonNewtonian Fluid Mechanics,2007,141(23):138-147.
    [35]方莹松.复杂塑件的注塑成型模拟及工艺参数优化[D].合肥:合肥工业大学,2009.
    [36]中长雨.塑料模具计算机辅助工程[M].郑州:河南科学技术出版社,1998.
    [37]中开智.塑料模具设计与制造[M].北京:化学工业出版社,2006.
    [38]王国中.注塑模CAD/CAE/CAM技术[M].北京:北京理工大学出版社,1998.
    [39]吴崇峰.实用注塑模CAD/CAE/CAM技术[M].北京:中国轻工业出版社,2000.
    [40]黄虹.塑料成型加工与模具[M].北京:化学工业出版社,2002.
    [41]Balofusji H塑料产品设计和加工工程[M].北京:化学工业出版杜,2000.
    [42]Takaaki Matsuoka. Integrated simulation to predict warpage of injections molded parts[J]. Polymer Engineering and Science,1991,31(14):30-37.
    [43]朱洪艳.薄壳件注塑成型的计算机模拟及工艺参数优化[D].武汉:武汉理工大学,2004.
    [44]万传伟.ABS材料零件的注塑工艺和模具设计[D].上海:上海交通大学,2008.
    [45]刘正林.汽车薄壳注塑件翘曲变形及注塑工艺优化研究[D].武汉:武汉理工大学,2007.
    [46]菲恩费尔特.D著,徐定宇译.注射模塑技术[M].北京:轻工业出版社,1990.
    [47]李海梅,刘永志,申长雨,等.注塑件翘曲变形的CAE研究[J].中国塑料,2003,17(3):53-58.
    [48]申长雨,李倩.橡胶模具优化设计技术[M].北京:化学工业出版社,1999.
    [49]吴崇峰.实用注塑模CAD/CAE/CAM技术[M].北京:中国轻工业出版社,2000.
    [50]王孝培.塑料成型工艺及模具简明手册[M].北京:机械工业出版社,2000.
    [51]王巍.平板类塑件翘曲变形分析与成型工艺优化[D].合肥:合肥工业大学,2011.
    [52]傅建,彭必友,曹建国.材料成型过程数值模拟[M].北京:化学工业出版社,2009.
    [53]刘琼.塑料注射Moldflow实用教程[M].北京:机械工业出版社,2008.
    [54]王卫兵Moldflow中文版注塑流动分析案例导航视频教程[M].北京:清华大学出版社,2008.
    [55]钱秋波.基于模拟的注塑模浇注系统及成型工艺参数优化研究[D].苏州:苏州大学.2011.
    [56]冯淑敏.模型简化对注塑成形模拟分析结果的影响[J].上海应用技术学院学报,2005,5(3):234-238.
    [57]罗伯特A.马洛伊.塑料注塑制件设计[M].北京:化学工业出版社,2000.
    [58]陈魁.试验设计与分析[M].北京:清华大学出版社,2005.
    [59]赖家美,罗章,柳和生,等.基于正交试验的气体辅助注射成型工艺参数优化[J].工程塑料应用,2011,39(11):44-47.
    [60]鹿峰凯,陈莉.正交试验在连续挤压机腔体参数设计中的应用[J].锻压技术,2011,36(3):39-42.
    [61]颜伟,胡勇.注塑工艺设计中模具CAE技术与正交试验的综合应用[J].制造业自动化,2011,33(1):153-155.
    [62]黄风立,林建平,钟美鹏,许锦泓.注塑成型工艺多目标稳健设计及优化算法[J].同济大学学报,2011,39(2):287-291.
    [63]B.Ozcelik, T.Erzurumlu. Comparison of the warpage optimization in the plastic injectionmolding using ANOVA, neural network model and genetic algorithm[J]. Materials Processing Technology,2006,171(3):437-445.
    [64]Tuncay Erzurumlu, Babur Ozcelik. Minimization of warpage and sink index in thermoplastic parts using Taguchi optimization method[J]. Materials and Design,2006,27(10):853-861.
    [65]陈晓华,李江平Moldflow在计算器外壳成型工艺优化中的应用[J].广州化工,2012,40(7):73-75.
    [66]黄微,周大路.精密注塑成型制品的收缩率预测分析[J].计算机与应用,2011,28(10):1263-1266.
    [67]李辉煌.田口方法品质设计的原理与实务[M].台北:高立图书,2000.
    [68]陈晨,刘全坤.高光液晶前壳翘曲变形分析与工艺参数智能优化[J].塑性工程学报,2011,18(2):107-113..
    [69]李欣欣.薄壁件注射成型的翘曲变形分析与工艺优化[D].镇江:江苏大学,2010.
    [70]顾燕如,王雷刚,黄瑶.精密接插件注塑成型工艺参数的优化设计[J].中国塑料,2007,21(8):70-72.
    [71]张惠敏,陈连帅,李旭.大型薄壁塑件翘曲变形分析及工艺参数优化[J].机械制造技术,2011,2(38):73-76.
    [72]贺灿辉,刘斌,皱仕放.带金属嵌件的手机外壳注塑成型翘曲变形分析[J].工程塑料应用,2011,39(11):29-32.
    [73]袁曾任.人工神经网络及其应用[M].北京:清华大学出版社,2000.
    [74]吴正毅.测试技术与测试信号处理[M].北京:清华大学出版社,1997.
    [75]张锦华,原思聪.基于人工神经网络响应面技术的多学科优化[J].西安建筑科技大学学报,2011,43(3):451-456.
    [76]时慧焯,王希诚.基于改进的BP神经网络的注塑成型翘曲优化设计[J].化工学报,2011, 62(9):2563-2567.
    [77]张玉,张雄.基于人工神经网络的光学膜系设计方法[J].光电子技术,2011,31(4):240-244.
    [78]胡守仁.神经网络导论[M].武汉:国防科技大学出版社,1992.
    [79]M.T.Hagan, H.B.Demuth神经网络设计[M].北京:机械工业出版社,2002.
    [80]丛爽.面向MATLAB工具箱的神经网络理论与应用[M].合肥:中国科学技术大学出版社,2003.
    [81]周丰松.基于人工神经网络的注塑成型自适应控制系统研究[D].南宁:广西大学,2006.
    [82]俸崇杰.基于有限元和神经网络集成方法预测注塑制品成型收缩率的研究[D].广州:华南理工大学,2005.
    [83]卫炜.注塑成型工艺参数多目标优化设计[D].长沙:中南林业大学,2009.
    [84]钱秋波.基于模拟的注塑模浇注系统及成型工艺参数优化研究[D].镇江:江苏大学,2010.
    [85]周毅,徐伯龄.神经网络中正交设计发研究[J].南京大学学报,2001,37(1):72-78.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700