微小塑料铰链注塑模内装配工艺及成型装置的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
注塑模内装配技术是将注塑成型过程和塑件的装配过程结合在一起的技术。该技术能够有效减少或避免塑料组件的模外装配工作,减少工人的劳动量,缩短产品生产周期,降低成本,提高企业的经济效益,目前已经在汽车、玩具、电器、航空等领域得到应用。然而,注塑模内装配技术在微注塑领域的研究和应用刚刚处于起步阶段,尚有许多难题未得到充分的解决。因此,本文以微小塑料铰链的注塑模内装配技术为研究对象,对其成型工艺和成型装置进行了较全面的研究和探索。
     首先,分析研究了采用注塑模内装配技术成型微小塑料铰链的技术原理,提出了塑料铰链不发生粘接的前提条件,进行了塑料铰链运动间隙获得方式的理论分析。认为采用注塑模内成型微小塑料铰链时,塑件之间是否发生粘接与后成型的塑件传递给先成型塑件的热量有关,铰链的运动间隙取决于塑料微轴与塑料微孔的相对收缩量。
     其次,对微小塑料铰链的结构进行了优化,使其更适于采用注塑模内装配技术成型。在此基础上,对其成型工艺进行了分析,提出了先成型微孔塑件、后成型微轴塑件的成型方案。
     再次,在原理分析和成型工艺分析的基础上,设计了一套能够在单筒注塑机上进行微小塑料铰链模内装配注塑成型的模具。该模具不仅能够在单筒注塑机上实现多阶段注塑成型,而且有效地保护了微细型芯,使其在高压聚合物熔体的高速冲击下不发生弯曲变形。
     最后,采用高密度聚乙烯(HDPE)和聚丙烯(PP)分别进行了同种聚合物和不同种聚合物的微小塑料铰链装配实验。实验结果表明,在采用注塑模内装配技术成型微小塑料铰链时,只要满足不粘接的前提条件,无论是采用同种聚合物还是不同聚合物,都可以装配出可以灵活转动的铰链。实验还表明,第二阶段塑件的注射成型压力对微轴与微孔的形状有一定的影响,当第二阶段的注射压力较大时,塑料微轴和塑料微孔呈现锥状,微小塑料铰链的运功间隙减小,甚至使塑料微轴与塑料微孔之间为过盈配合,无法发生相对转动。此外,在第二阶段注塑成型过程中过于追求较低的成型温度是不可取的,因为较低的成型温度需要配合较高的注射压力才能使塑件填充完整,而较高的注射压力会对微小塑料铰链装配质量带来不良的影响。
In-mold assembly technology integrates assembly of plastic parts into injection molding. This technology can effectively reduce or even avoid the work of assembly after molding, shorten the cycle time of production, lower the cost and enhance the economic benefit of enterprise. Now, it has been extensively used in making parts of cars, toys, electrical equipments and military. But application of in-mold assembly technology in micro-injection molding is just on start. There are many questions to be resolved. So this master thesis takes in-mold assembly of the mesoscale polymeric joint as the research object, and makes deeply study on the molding process and molding equipments.
     At first, theoretical analyses are carried out for the technique principles of in-mold assembly injection molding of the mesoscale plastic hinge. The precondition for eliminating adhesive bonding is put forward, and the approach of acquiring the clearance required for rotation of the mesoscale plastic hinge is analyzed. It is inferred that whether adhesion of plastic parts appears depends on the heat transferred from the later molded plastic part to the earlier molded plastic part. And the clearance between plastic parts is decided by shrinkage of both the plastic micro pin and the plastic micro hole.
     Secondly, the structure of the mesoscale plastic hinge is optimized to make it more suitable for injection molding by in-mold assembly technology. Then the molding process is analyzed, and the molding sequence of making the plastic micro hole before the plastic micro pin is chosen.
     Thirdly, based on the theoretical analyses, the mold for assembly of the mesoscale plastic hinge by using the single cylinder injection molding machine is worked out. This mould makes multi-stage injection molding become possible on the single cylinder injection molding machine, and effevtively protects the very thin core from bending under the high pressure of the polymer melt that flows into the mold cavity with high speed.
     Finally, the experiments for in-mold assembly of the mesoscale plastic hinge are carried out with HDPE and PP. The experimental results show that the mesoscale plastic hinge can be successfully molded by both single kind of polymer and multi kinds of polymers as long as the precondition for no adhesive bonding is meeted. Meanwhile, the injection pressure of the later molding stage has significant influence on shapes of the plastic micro pin and the plastic micro hole. With higher injection pressure of the later molding stage, tapers of the plastic micro pin and the plastic micro hole become bigger, and the clearance between the plastic parts becomes smaller even minus to form interference fit that makes the plastic hinge can not move freely. Moreover, it is not a good idea to pursue lower temperature of polymer melt at later molding stage, because lower temprature of polymer melt needs higher injection pressure which would bring undesirable influence.
引文
[1]模具行业信息[J].模具工业,2012,38(1):1.
    [2]2011年统计简报中国塑料行业整体形势向好[EB/OL]慧聪网,[2012,02,06].http://info.plas.hc360. com/2012/02/061151341481.shtml
    [3]刘来英.注塑成型工艺[M].北京:机械工业出版社,2004.
    [4]C K Huang. Polymeric nanofeatures of lOOnm using injection moulding for replication[J]. Journal of Micromechanics and Microengineering,2007,6 (17):1518-1526.
    [5]庞中华.微流控芯片注塑成型工艺规范的实验研究与质量预测[D].大连:大连理工大学,2010.
    [6]王勇.微型齿轮注塑成型工艺实验研究[D].大连:大连理工大学,2006.
    [7]Kukla C, Loibl, Detter H, et al. Micro-injection moulding:the aims of a project partnership [J]. Kunststoffe Plast Europe,1998,88 (9):6-7.
    [8]晏伟.微流控芯片注塑可视化装置研制及显微图像处理[D].大连:大连理工大学,2008.
    [9]陶俏.微型塑件注射成型充填流动模拟及实验研究[D].大连:大连理工大学,2009.
    [10]裕克施乐的微型行星齿轮装配—模内装配的新空间[EB/OL][2012,3,12].http://www.oechsler.com/hp3453/35013-37197-27880-22609.htm.
    [11]A.Ananthanarayanan, W.Bejgerowski, D.Mueller, G.Ramu, P.Ward, S.K.Gupta. In-Mold Assembly: A New Approach to Assembly Automation [R/OL]. [2010,4,22]. www.isr.umd.edu/SS2008/2009_posters/Gupta_in-mold.pdf
    [12]模内组装:多色注塑成型的新方向[J].国外塑料,2010,28(2):55-58.
    [13]Walter Michaeli, Arno Rogalla, Christian Ziegmann. Processing Technologies for the Injection Moulding of Hybrid Microstructures [J]. Macromolecular Materical and Engineering,2000,279 (1) 42-45.
    [14]W. Michaeli, C. Ziegmann. Micro Assembly Injection Moulding For the Generation of Hybrid Microstructure [J]. Microsystem Technologies,2003,9 (6-7):427-430.
    [15]E.h.Walter Michaeli, Opfermann. Micro assembly injection moulding Potential Application in Medical Science[C]. Multi-material micro Manufacture,2005.
    [16]W. Michaeli, D. Opfermann. Micro assembly injection moulding [J]. Microsystem Technologies, 2006,12 (7):616-619.
    [17]Walter Michaeli, Dirk Opfermann, Thomas Kamps. Advances in micro assembly injection moulding for use in medical system [J]. International Journal of Advanced Manufacturing Technology,2007, 33 (1-2):206-211.
    [18]W.Michaeli, T.Kamps. Micro Assembly Injection Moulding With Plasma Treated Inserts [J]. Microsystem Technologies,2008,14 (12):1903-1907.
    [19]Malay Kumar, Satyandra K.Gupta. Automated Design of Multi-Stage Molds for Manufacturing Multi-Material Objects [J]. Journal of Mechanical Design,2002,124 (3):399-407.
    [20]H.A.Bruck, G.Fowler, S.K.Gupta, T.M.Valentine.Towards bio-inspired interfaces:Using Geometric Complexity to Enhance the Interfacial Strength of Heterogeneous Structures Fabricated in a Multi-Stage, Multi-Piece Moulding Process [J]. Society for Experimental Mechanics,2004,44 (3) 261-271.
    [21]Xuejun Li, Satyandra K.Gutpa. Geometric algorithms for automated design of rotary-platen multi-shot molds [J]. Computer-Aided Design,2004,36 (12):1171-1187.
    [22]R.M.Gouker, S.K.Gupta, H.A.Bruck, T.Holzschuh. Manufacturing of multi-material compliant mechanisms using multi-material molding [J]. International Journal of Advanced Manufacturing Technology,2006,30 (11-12):1049-1075.
    [23]Arvind Ananthanarayanan, Hugh A Bruck, S.K.Gupta. Interfacial Adhesion in Multi-Stage Injection Molded Components [C]. Conference:SEM Annual Conference& Exposition on Experimental and Applied Mechanics,2006.
    [24]Ashis Gopal Banerjee, Xuejun Li, Greg Fowler, Satyandra K.Gupta. Incorporating manufacturability consideration during design of injection molded multi-material objects [J]. Research Engineering Design,2007,17 (4):207-231.
    [25]Arvind Ananthanarayanan, Chandrasekhar Thamire, and Satyandra K. Gupta. Investigation of Revolute Joint Clearances Created by an In-Mold Assembly Process [C]. Proceeding of the 2007 IEEE International Symposium on Assembly and Manufacturing,2007.
    [26]Alok K.Priyadarshi, Satyandra K.Gupta, Regina Gouker, Florian Kerbs, Martin Shroeder, Stefan Warth.Manufacturing Multi-Material Articulated Plastic Products Using In-mold Assembly [J]. International Journal of Advanced Manufacturing Technology,2007,32(3-4):350-365.
    [27]Alok K.Priyadarshi, Satyandra K.Gupta.Generating Multi-stage Molding Plans for Articulated Assemblies [C]. Proceeding of the 2007 IEEE International Symposium on Assembly and Manufacturing,2007.
    [28]A.Ananthanarayanan, S.K. Gupta, H.A. Bruck, Z.Yu, K.P. Rajurkar.Development of In-Mold Assembly Process for Realizing Mesoscale Revolute Joints [C]. North American Manufacturing Research Conference,2007.
    [29]A. Ananthanarayanan, S.K.Gupta, H.A.Bruck. Characterization and Control of Plastic Deformation In Premolded Components In In-mold Assembled Mesocale Revolute Joints Using Bi-Directional Filling Strategy [C]. All India Manufacturing Technology and Development Research,2008.
    [30]N.Pappafotis, W. Bejgerowski, R. Gullapalli, J.M.Simard, S.K.Gupta, J.P.Desai.Towards Design and Fabrication of A Miniature MRI-Compatible Robot for Applications in Neurosurgery [C]. ASME Mechanisms and Robotics Congerence, August 2008.
    [31]Arvind Ananthanarayanan, Leicester Ehrlich, Jaydev P. Desai, Satyandra K.Gupta. Design of Revolute Joints for In-Mold Assembly Using Insert Molding [J]. Journal of Mechanical Design,2011,133 (12): 1-10.
    [32]Arvind Ananthanarayanan, Satyandra K.Gupta, Hugh A.Bruck. Characterization and Control of Plastic Deformation in Mesoscale Premolded Components to Realize In-Mold Assembled Mesoscale Revolute Joints [J]. Polymer Engineering and Science,2009,49 (2):293-304.
    [33]Arvind Ananthanarayanan, Satyandra K.Gupta, Hugh A.Bruck. Characterization and Control of Pin Diameter During In-Mold Assembled of Mesoscale Revolute Joints [J]. Transactions of NAMRI/AME,2009,37:475-482.
    [34]Arvind Ananthanarayanan. Development of In-Mold Assembly Methods for Producing Mesoscale Revolute Joints [D]. University of Maryland,2009.
    [35]D.Mueller, J.Gerdes, S.K.Gupta. Incorporation of Passive Wing Folding in Flapping Wing Miniature Air Vehicle[C]. ASME Mechanisms and Robotics Congerence, September 2009.
    [36]Wojciech bejgerowski, Arvind Ananthanarayanan, Dominik Mueller, Satyandra K. Gupta. Integrated Product and Process Design for a Flapping Wing Drive Mechanism [J]. Journal of Mechanical Design,2009,131(6):0610061-0610069.
    [37]Wojciech bejgerowski, Satyandra K.Gupta, H.A. Bruck. A Systematic Approach for Designing Multifunctional Thermally Conducting Polymer Structures with Embedded Actuators[J]. Journal of Mechanical Design,2009,131 (11):1110091-1110098.
    [38]Arvind Ananthanarayanan, Satyandra K.Gupta, Hugh A.Bruck. Characterization of a Reverse Molding Sequence at the mesoscale for In-Mold Assembled of Revolute Joints [J]. Polymer Enginnering and Science,2010,50 (9):1842-1852.
    [39]Arvind Ananthanarayanan, Satyandra K.Gupta, Hugh A.Bruck. Modeling and Characterization to Minimize Effects of Melt Flow Fronts on Premolded Component Deformation During In-Mold Assembled of Mesoscale Revolute Joints[J]. Journal of Manufacturing Science and Engineering, 2010,132 (4):0410061-0410069.
    [40]祝铁丽,余祖元,王学虎等.塑料外啮合齿轮组的模内装配注塑成型方法:中国,CN200910312630.1[P].2010,07,28.
    [41]杨亮.共注塑不相容材料模内装配技术中的收缩分析[J].机械设计与制造,2010,7:46-48.
    [42]杨亮.共注塑不相容材料模内装配技术中的应用及其技术分析[D].上海:上海交通大学,2010.
    [43]王会凤.模内装配技术中的发展现状及研究应用前景[J].锻压技术,2010,35(5):7-10.
    [44]乔飞.注塑制品收缩规律的实验研究[D].大连:大连理工大学,2006.
    [45]祝铁丽.注塑成型制品收缩率预测理论与方法的研究[D].大连:大连理工大学,2002.
    [46]吕长友.浇口设计对塑件收缩影响规律的数值模拟研究[D].大连:大连理工大学,2007.
    [47]祝铁丽,董红军,刘永云.微小塑料铰链的模内装配注射成型模具设计[J].模具工业,2012,38(1):50-54.
    [48]屈华昌.塑料成型工艺与模具设计(第2版)[M].北京:机械工业出版社,2007.8.
    [49]郭广思.注塑成型技术[M].北京:机械工业出版社,2002.8.
    [50]王敏杰,宋满仓.模具制造技术[M].北京:电子工业出版社,2004.9.
    [51]盛占辉.注塑制品模内收缩的可视化实验研究[D].大连:大连理工大学,2007.
    [52]成大先.机械设计手册(第一卷)[M].北京:化学工业出版社,2007.11.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700