稻谷过热蒸汽干燥过程中的力学及干燥动力学特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对高水分早稻干燥时间长、能耗大的问题,开展高水分早稻过热蒸汽干燥的生物材料力学及干燥特性探索研究,为过热蒸汽应用于干燥高水分谷物奠定理论研究基础。本文主要研究内容及结论如下:
     1.在自行搭建的过热蒸汽循环干燥实验台进行高水分稻谷过热蒸汽薄层干燥实验,获得稻谷经验水分有效扩散系数Deff,数量级为10-9m2/s。
     2.对干燥实验所得样品进行接触应力实验,获得稻米力-变形曲线和弹性模量。当湿基含水率大于0.235kg/kg时,稻米受力随变形线性增加,呈现出橡胶态特性,可承受较大变形;当湿基含水率在0.16~0.235kg/kg之间,稻米力-变形曲线呈现弹塑性变形特性;当湿基含水率低于0.16kg/kg时,稻米明显变脆,呈现出玻璃态特性,只能发生小变形;干基含水率在0.25kg/kg以上时,稻米弹性模量较小,低于20MPa,而此含水率以下,弹性模量剧增至100MPa以上;不同温度的过热蒸汽干燥所得稻米弹性模量无显著差异,分段建立稻米弹性模量与含水率的关系式。
     3.将稻谷看作是由稻壳和糙米构成的三轴不等的弹性椭球体,基于热质传递原理和弹性力学理论,构建三维传热、传质、应力数学模型,利用COMSOL Multiphysics软件求解方程组,得到过热蒸汽干燥过程中稻米内部温度、水分和应力分布及变化情况。
     4.以常压下150℃过热蒸汽干燥高水分稻谷模拟结果为例分析,结果表明,模拟结果与实际总体相符。过热蒸汽干燥2分钟左右稻米内部温度基本均匀分布,并到达干燥介质温度;稻米内部水分分布不均匀,水分梯度大小排序:厚度方向>宽度方向>长度方向,但水分梯度值在三方向上变化趋势相同,随着水分下降先增大后减小,由表及里水分梯度依次减小;干燥中,稻米外层受到拉伸应力,内层受到压缩应力,应力随着干燥进行逐渐下降,应力(第一主应力)最大值数量级为106Pa,其中芯部受到的压缩应力值较大,表层受到的拉应力值较小。整个干燥过程中,稻米内部存在两个应力集中区:厚度方向的表层区和中心区。
     5与热风干燥(50℃,相对湿度22%,风速0.5m/s)高水分稻谷爆腰增率33%相比较,140~180℃过热蒸汽干燥,稻米腰增率明显下降,其值不超过12%。过热蒸汽干燥作为饲料用粮的高水分早稻具有推广应用价值。
For the problem of long drying time and high energy consumption for early indica rice with high moisture, studies on the mechanical characteristics of biological material and drying dynamic of rice kernel during superheated steam (SHS) drying could provide a basis for study the application of SHS drying technique to high moisture paddy dehydration. The main research contents and conclusions of this paper are as follows:
     1. A series thin layer drying experiments on SHS drying paddy with high moisture were conducted on a self built SHS dryer. And the drying characteristics was analyzed and the experimental coefiBcient of moisture transfer in paddy Deff during SHS drying was obtained from experiments, with the magnitude10-9m2s.
     2. The force-deformation curves and elastic modulus of paddy subjected to SHS drying were gotten through mechanical experiments. Results showed that, when moisture content is beyond0.235kg/kg wet basis (w.b.), the force rice kernel subjected linear increases with the increase of the deformation, and rice can withstand large deformation; when the moisture content ranges from0.16to0.235kg/kg w.b., the force-deformation curve shows the characteristics as that of elastic-plastic material; when the moisture content is lower than0.16kg/kg w.b., rice kernel becomes brittle and just withstands small deformation; the elastic modulus of rice is below20MPa when the moisture content is higher than0.25kg/kg dry basis (d.b.), however, it dramatically increases and beyond100MPa while the moisture content is lower than0.25kg/kg d.b. There is no significant difference among elastic modulus of rice kernels dried with SHS with temperature range from135to180℃. At last, the relation between elastic modulus and moisture content of rice kernel was determined.
     3. Paddy was viewed as an elastic ellipsoid with two layers:hull and brown rice. Base on the principle of heat and mass transfer and the theory of elasticity, three-dimensional mathematical models of heat and mass transfer and stress were built.. Soft ware COMSOL Multiphysics was employed to solve the mathematical equations.
     4. Take the simulation results from drying condition at150℃at1atm for example. Simulation results were generally consistent with experiment results. Simulated results showed that, temperature in rice kernel becomes uniform and reaches to steam temperature in about two minutes, so thermal stress can be neglected; moisture in rice kernel is not uniform that induces moisture content gradient (MCG); the max of MCG appears in the short axis in direction of the thickness of rice kernel, followed by that in the width, and the minimum appears in the long axis in direction of the length; MCGs in rice kernel decreases from surface to center, and they firstly increase and then decrease during SHS drying; outer layer of rice kernel is subjected tensile stress while the inner is subjected compressive stress, and the tensile stress (the first principle stress) decreases with the decrease of moisture content while the compressive stress firstly increases and then reduces as the moisture content decreases during SHS drying; magnitude of stress is106Pa, and maximum compressive stress is higher than maximal tensile stress in rice kernel during SHS drying; there are two stress concentration zones in rice kernel:the tensile stress concentration zone in surface in direction of thickness and the compressive stress concentration zone in center.
     5. Compared to the additional breakage ratio33%of paddy dried with continuous hot air drying(temperature50℃, relative humidity22%, velocity0.5m/s), the additional breakage ratio of paddy subjected to SHS drying with the temperature of140~180℃at latm is reduced sharply, less than12%. Base on this study, SHS drying paddy with high moisture, which is as feed grain, has an application value.
引文
[1]http://tianqi.cncn.com/meizhou/news-86147
    [2]http://jiangxi.jxnews.com.cn/system/2012/07/27/012056094.shtml
    [3]http://www.jjnews.gov.cn/News/2009/42374.shtml
    [4]杨洲,罗锡文,李长友.高湿稻谷逐步升温干燥工艺实验研究.农业工程学报2002,18(6):137-140.
    [5]吴捷,余中华,赵阳.中国粮食需求总量与需求结构演变.农业经济问题,2013,(5):15-19.
    [6]吴乐.中国粮食需求中长期趋势研究:[博士学位论文].武汉:华中农大学,2011.
    [7]陈宁玲.我国饲料粮消耗现状分析与猪、鸡饲料粮需求预测:[硕士学位论文].重庆:西南大学,2011.
    [8]李波,张俊飚,李海鹏.我国中长期粮食需求分析及预测.中国稻米,2008,(3):23-25.
    [9]郑少华,吴琼.我国粮食贸易的现状分析及其发展趋势.企业家天地,2009,(7):18-20.
    [10]郭道林,陶诚,王双林,等.粮食仓储行业节能减排技术研究现状与发展趋势.粮食贮藏技术,2011,40(2):7-12.
    [11]潘永康,王喜忠,刘相东.现代干燥技术.北京:化学工业出版社,2007.
    [12]Taechapairoj C., Dhuchakallsya I., Soponronnarit S., et al. Superheated steam fluidized bed paddy drying. Journal of Engineering,2003,58(1):67-73.
    [13]Taechapairoj C., Prachayawarakorn S., Soponronnarit S. Characteristics of rice dried in superheated-steam fluidized-bed[J]. Drying Technology,2004,22(4):719-743.
    [14]肖志锋.过热蒸汽流化床干燥过程数值模拟及实验:[博士学位论文].北京:中国农业大学,2008.
    [15]陈建勇,陈时若.用过热蒸汽干燥蚕茧的探讨.纺织学报,1989,10(12):19-22,25.
    [16]Chen S. R., Chen J. Y., Mujumdar A. S. A preliminary study of steam drying of silkworm cocoons. Drying Technology,1992,10(1):251-260.
    [17]陈锦祥,陈时若,姚日明.蚕茧过热蒸汽干燥与蚕质关系浅析.浙江丝绸工学院学报,1996,13(5):7-11.
    [18]连政国.过热蒸汽干燥理论与实验研究:[博士学位论文].北京:中国农业大学,1998.
    [19]张璧光,伊松林,崔旭东.真空过热蒸汽干燥木材的水分迁移特性.工程热物理学报2002,23(增刊):169-172.
    [20]程万里,刘一星,齐华春,等.木材过热蒸汽干燥过程中的收缩应力(Ⅰ)——径向收缩应力特征.东北林业大学学报,2004,32(6):32-34.
    [21]蒋斌,李胜,梁国林.褐煤过热蒸汽预干燥探讨.电力技术,2010,19(8):40-42.
    [22]Li S., Jiang B., Shi Y. C.,.et al. Superheated steam drying:an innovation of clean coal technology for lignite. The 7th Asia-Pacific Drying Conference,2011, Tianjin, China
    [23]Wenzel L., White R. R. Drying granular solids in superheated steam. Industrial and Engineering chemistry,1951,43(8):1829-1837.
    [24]Chu J. C., Lane A. M., Conklin D. Evaporation of liquids into their superheated vapor. Industrial and Engineering chemistry,1953,45(7):1586-1591.
    [25]Tetsuo Y., Tsutomu H. Evaporation of water in air, humid air, and superheated steam. Ind. Eng. Chem. Process Des. Develop.,1970,9(2):207-214.
    [26]Chow L. C., Chung J. N. Evaporation of water into laminar stream of air and superheated steam. International Journal Heat Mass Transfer,1983,26(3):373-380.
    [27]Haji M., Chow L. C. Experimental measurement of water evaporation rates into air and superheated steam. Journal of Heat Transfer,1988,110(1),237-242.
    [28]Khan J. A., Beasley D. E., Alatas B. Evaporation from a packed bed of porous particles into superheated vapor. International Journal Heat Mass Transfer,1991,34(1):267-280.
    [29]Sheikholeslam R., Warkinson A. P. Rate of evaporation of water into superheated steam and humidified air. Int. J. Heat Mass Transfer,1992,35(7):1743-1750.
    [30]Schwartze J. P., Brocher S. The evaporation of water into air of different humidities and the inversion temperature phenomenon. International Journal of Heat and Mass Transfer,2000, 43(10):1791-1800.
    [31]Schwartze J. P., Brocher S. A theoretical explanation for the inversion temperature. Chemical Engineering Journal,2002,86(1-2):61-67.
    [32]Costa V. A. F., Neto da Silva F. On the rate of evaporation of water into a steam of dry air, humidified air and superheated steam, and the inversion temperature. International Journal of Heat and Mass Transfer,2003,46(19):3717-3726.
    [33]连政国,美学东,王延耀.对过热蒸汽干燥逆转点存在的一种解释.粮油加工与食品机械,2000, (4):21,23.
    [34]梅国晖,任立义,任朝晖,等.空气和过热蒸汽干燥特性的对比[J].东北大学学报,2001,22(3):275-278.
    [35]Iyoto H., Nomura T., Nishimura N. A reverse process of superheated steam drying from condensation to evaporation. Heat Transfer-Asian Research,1999,28(5):352-366.
    [36]Iyoto H., Nishimura N., Nomura T. Characteristics of combined heat transfer of super-heated steam drying:numerical study on coupled convection and gas radiation heat transfer. Heat Transfer-Asian Research,2000,29(5):385-399.
    [37]Iyota H., Nishimura N., Yoshida M., et al. Simulation of superheated steam drying considering initial condensation. Drying Technology,2001,19(7):1425-1440.
    [38]Christian R, Anders R.. Mathematical model of steam drying of wood chips and other hygroscopic porous media. AICh E Journal,1996,42(9):2491-2502.
    [39]Christian F., Anders R. Some aspects of the modelling of wood chips drying in superheated steam. Int. J. Heat Mass Transfer,1997,40(12):2825-2842.
    [40]Anders J., Christian F., Anders Rasmuson. High temperature convective drying of wood chips with air and superheated steam. Int. J. Heat Mass Transfer,1997,40(12):2843-2858.
    [41]Defo M., Fortin Y., Cloutier A. Modeling superheated steam vacuum drying of wood. Drying Technology,2004,22(10):2231-2253.
    [42]Erriguible A., Bernada P., Coutre F., et al. Simulation of superheated steam drying from coupling models. Drying Technology,2006,24(8):941-951.
    [43]Sa-adchom P., Swasdisevi T., Nathakaranakule A., et al. Mathematical model of pork slice drying using superheated steam. Journal of Food Engineering,2011,104(4):499-507.
    [44]Pakowski Z., Adamski R. On prediction of the drying rate in superheated steam drying process. Drying Technology,2011,29(13):1492-1498.
    [45]Hager J., Hermansson M., Wimmerstedt R. Modelling steam drying of a single porous ceramic sphere:experiments and simulations. Chemical Engineering Science,1997,52(8):1253-1264.
    [46]Chen Z., Wu W., Agarwal P. K. Steam-drying of coal. Part 1. Modeling the behavior of a single particle. Fuel,2000,79:961-973.
    [47]Chen Z., Agarwal P. K., Agnew J. B. Steam-drying of coal. Part 2. Modeling the operation of a fluidized bed drying unit[J].Fuel,2001,80:209-223.
    [48]史勇春.褐煤过热蒸汽气流干燥过程动力学模型研究:[博士学位论文].济南:山东大学,2012.
    [49]Yang D. Y., Wang Z. H., Huang X. L., et al. Numerical simulation on superheated steam fluidized bed drying:Ⅰ. Model construction. Drying Technology,2011,29(11):1325-1331.
    [50]Shi Y. C., Xiao Z. F., Wang Z. H., et al. Numerical simulation on superheated steam fluidized bed drying:Ⅱ. Experiments and numerical simulation. Drying Technology,2011,29(11):1332-1342.
    [51]Suvarnakuta P., Devahastin S., Mujumdar A. S. A mathematical model for low-pressure superheated steam drying of a biomaterial. Chemical Engineering and Processing,2007,46(7): 675-683.
    [52]Kittiworrawatt S., Devahastin S. Improvement of a mathematical model for low-pressure superheated steam drying of a biomaterial. Chemical Engineering Science,2009,64(11): 2644-2650.
    [53]Iyota H., Nishimura N., Onuma T., et al. Drying of sliced raw potatoes in superheated steam and hot air. Drying Technology,2001,19(7):1411-1424.
    [54]Moreira R. G. Impingement drying of foods using hot air and superheated steam. Journal of Food Engineering,2011,49(4):291-295.
    [55]Pronyk C, Cenkowski S, Muir W E. Drying foodstuffs with superheated steam. Drying Technology, 2004,22(5):899-916.
    [56]Iyota H., Konishi Y., Inoue T., et al. Popping of amaranth seeds in hot air and superheated steam. Drying Technology,2005,23(6):1273-1287.
    [57]Prachayawarakorn S., Prachayawasin P., Soponronnarit S. Heating process of soybean using hot-air and superheated-steam fluidized-bed dryers. LWT,2006,39(7):770-778.
    [58]Prachayawarakorn S., Soponronnarit S., Wetchacama S, et al. Desorption isotherms and drying characteristics of shrimp in superheated steam and hot air. Drying Technology,2002,20(3): 669-684.
    [59]Uengkimhuan N., Soponronnarit S., Prachayawarakorn S., et al. A comparative study of pork drying using superheated steam and hot air. Drying Technology,2006,24(12):1665-1672.
    [60]Nathakaranakule A., Kraiwanichkul W., Soponronnarit S. Comparative study of different combined superheated-steam drying techniques for chicken meat. Journal of Food Engineering,2007,80(4): 1023-1030.
    [61]Speckhahn A., Srzednicki G., Desai D. K. Drying of beef in superheated steam. Drying Technology, 2010,28(9):1072-1082.
    [62]Pronyk C., Cenkowski S., Muir W. E., et al. Effects of superheated steam processing on the textural and physical properties of Asian noodles. Drying Technology,2008,26(2):192-203.
    [63]Head D. S., Cenkowski S., Arntfield S., et al. Superheated steam processing of oat groats. LWT-Food Science and Technology,2010,43(4):690-694.
    [64]Choicharoen K., Devahastin S., Soponronnarit S. Comparative evaluation of performance and energy consumption of hot air and superheated steam impinging stream dryers for high-moisture particulate materials. Applied Thermal Engineering,2011,31(16):3444-3452.
    [65]Shivmurti S., Kumbhar B. K. Textural profile analysis of paneer dried with low pressure superheated steam. Journal Food Science Technology,2010,47(3):355-357.
    [66]ranyawong S., Devahastin S. Determination of deformation of a food product undergoing different drying methods and conditions via evolution of a shape factor. Journal of Food Engineering,2007, 78(1):151-161.
    [67]饲料工业“十二五”发展规划.中国畜牧兽医报,2011-10-23.
    [68]胡小平,郭晓慧.2020年中国粮食需求结构分析及预测——基于营养标准的视角.中国农村经济,2010,(6):4-15.
    [69]贺建华,徐庆国,黄美华,等.饲料用稻谷和糙米的营养特性.中国水稻科学,2000,14(4):229-232.
    [70]唐为民,呼玉山.我国稻米饲用及饲料型稻米开发前景分析.饲料与饲养,2000,(2):40-42.
    [71]陈印军.转变观念加强饲用早籼稻的综合开发.农业信息探索,1999,(5):8-10.
    [72]陈印军,伊昌斌.如何解决中国南方双季稻主产区早稻积压和饲料粮短缺的问题.科技导报,1999,(8):48-51.
    [73]周联高,吴蓉蓉,严桂芹,等.饲用稻在畜禽日粮中的研究现状和进展.猪与禽,2008,28(2):63-65.
    [74]郑艺梅,何瑞国,马立保.稻谷产品在猪鸡饲养中的应用研究.粮食与饲料工业,2000,(8):24-26.
    [75]何瑞国,王玉莲,马立保,等.早杂籼稻糙米代替玉米日粮对肉鸡增重效果的研究.华中农业大学学报,1999,18(2):166-168.
    [76]何瑞国,熊统安,王玉莲,等.湖北早籼稻糙米营养价值研究(Ⅲ)——糙米替代玉米作能量饲料对蛋鸡产蛋率和肉鸡增重与肉蛋品质影响的研究.中国粮油,2000,15(2):44-47.
    [77]高振华,何瑞国,李英,等.用糙米替代玉米饲喂生长獭兔的效果研究.中国粮油学报,2006,21(3):175-177.
    [78]Kunze O. R., Prasad s. Grain fissuring potentials in harvesting and drying of rice. Transactions of the ASAE,1978,21(2):361-366.
    [79]朱文学.干燥过程中谷物应力裂纹和发芽率的模拟与实验研究:[博士学位论文].北京:中国农业大学,1997.
    [80]曹崇文,朱文学.农产品干燥工艺过程的计算机模拟.北京:中国农业出版社,2001.
    [81]Masanobu H., Yoshinari I. Drying-induced strain and stress:a review. Drying Technology,1995, 14(5):1011-1040.
    [82]贾灿纯.谷粒内部传热传质及筒仓内谷物温度场的研究:[博士学位论文].北京:中国农业大学,1995.
    [83]李业波,曹崇文.水稻干燥的模拟和实验研究.山东工程学院学报,1993,7(2):4-9.
    [84]李业波,曹崇文.水稻颗粒内部的应力分析.北京农业工程大学学报,1993,13(4):54-60.
    [85]李业波,曹崇文.水稻颗粒内部传质及其应用.农业工程学报,1993,9(1):74-82.
    [86]郑先哲.水稻干燥机理、品质及合理干燥工艺参数的实验研究:[博士学位论文].哈尔滨:东北农业大学,1999.
    [87]Cnossen A. G., Siebenmorgen T. J. The glass transition temperature concept in rice drying and tempering:effect on milling quality.Transactions of the ASAE,2000,43(6):1661-1667.
    [88]Cnossen A. G., Jimenez M. J., Siebenmorgen T. J. Rice fissuring response to high dfyihg and tempering temperature. Journal of Food Engineering,2003,59(1):61-69.
    [89]Yang W., Jia C. C., Siebenmorgen T. J., et al. Intra-kernel moisture responses of rice to drying and tempering treatments by finite element simulation. Transactionss of the ASAE,45(4):1137-1144.
    [90]Yang W., Jia C. C., Siebenmorgen T. J., et al. Relationship of kernel moisture content gradients and glass transition temperatures to head rice yield. Biosystems Engineering,2003,85(4):467-476.
    [91]Dong R. J., Lu Z. H., Liu Z. Q., et al. Effect of drying and tempering on rice fissuring analyzed by integrating intra-kernel moisture distribution[J]. Journal of Food Engineering,2010, 97(2):161-167.
    [92]肖威.常温下稻米湿应力场物理参数及裂纹机理的实验研究:[博士学位论文].哈尔滨:东北农业大学,2007.
    [93]Van H.C.D. Industrial superheated steam drying.2004:4-5.
    [94]斯米特.E,格里古尔.U.国际单位制的水和水蒸汽性质.赵兆颐译.北京:水利电力出版社,1983.
    [95]Soponronnarit S., Prachayawarakorn S., Rordprapat W., et al. A superheated-steam fluidized-bed dryer for parboiled rice:testing of a pilot-scale and mathematical. Drying Technology,2006, 24(11):1457-1467.
    [96]周祖鄂.农业物料学.北京:农业出版社,1994.
    [97]施明恒,王馨.快速干燥过程中多孔介质内部湿分迁移机理的研究[J].工程热物理学报,2000,21(2):216-219.
    [98]刘相东,杨彬彬.多孔介质干燥理论的回顾与展望.中国农业大学学报,2005,10(4):81-92.
    [99]Prakash B., Pan Z. L. Effect of geometry of rice kernels on drying modeling results. Drying Technology,2012,30(8):801-807.
    [100]Steffe J. F., Singh R. P. Liquid diffusivity of rough rice components. Transactions of ASAE,1980, 23(3):767-774,782.
    [101]Wu B., Yang W., Jia C. C. A three-dimensional numerical simulation of transient heat and mass transfer inside a single rice kernel during the drying process. Biosystems Engineering,2004, 87(2):191-200.
    [102]Tong C. H., Lund D. B. Effective moisture diffusivity in porous materials as a function of temperature and moisture content. Biotechnology Prog.,1990,6(1):67-75.
    [103]丁甜.农产品过热蒸汽干燥特性及品质的实验研究:[硕士学位论文].北京:中国农业大学,2011.
    [104]李业波.谷物间歇干燥工艺的模拟和实验研究:[博士学位论文].北京:中国农业大学,1993.
    [105]Kunze O. R., Choudhury M. S. U. Moisture adsorption related to the tensile strength of rice. Cereal Chem,1972,49(6):684-696.
    [106]Rhing D. The breakage of rice in milling. A Review Trop Agric,1962,39(1):19-28.
    [107]刘当慧.稻谷在干燥过程中爆腰形成的原因及其控制途径的研究与探讨.无锡市食品工程学会1979年年会论文集,1979.
    [108]程秋琼,刘友朋,张家年,等.稻谷吸湿产生裂纹的研究进展.粮食与饲料工业,2000,(11):8-9.
    [109]Siebenmorgen T. J., Perdon A. A. Applying glass transition principle to explain fissure formation during the drying process. International Starch Technology Conference, the 7-9th, June,1999.
    [110]刘木华,吴颜红,曾一凡,等.基于玻璃化转变的稻谷爆腰产生机理.农业工程学报,2004,20(1):30-34.
    [111]杨挺青.黏弹性理论与应用.北京:北京科学出版社,2004.
    [112]Morrow C. T., Mohsenin N. N. Consideration of selected agricultural products as viscoelastic materials. Journal of Food Science,1966,31(5):686-698.
    [113]Yamaguchi S., Wakabarashi K., Yamazawa S. Properties of brown rice kernel for calculation of drying stress. International Drying Symposiums, Kyoto, Japan,1984,633-639.
    [114]Yamaguchi S., Wakabarashi K., Yamazawa S. Chang of cracked rice percentage and internal stress of brown rice kernel during drying operation. In Drying Simposium, Kyoto, Japan,1984, 640-647.
    [115]华云龙,傅志一,秦太验,等.关于谷物湿膨胀系数的讨论.农业工程学报,1998,14(2):203-208.
    [116]陆明万,张雄,葛东云.工程弹性力学与有限元法.北京:清华大学英语出版社,2005.
    [117]孙正和.稻米爆腰机理与碎米率.农业工程学报,1995,11(3):173-178.
    [118]张允真,曹富新.弹性力学及其有限元法.北京:中国铁道出版社,1983.
    [119]王绍亭,陈涛.动量热量与质量传递.天津:天津科学技术出版社,1986.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700