辐射对秀丽线虫的生长损伤及其防护研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:建立秀丽线虫的60Coγ射线辐射损伤模型,研究辐射对秀丽线虫的生长损伤及其机制,利用此模型研究白藜芦醇辐射防护作用及其机制。
     方法:(1)采用不同剂量(50Gy,100Gy,200Gy)60Coγ射线照射L1阶段野生型秀丽线虫(N2),观察辐射后秀丽线虫的寿命,运动能力,生殖能力,记忆能力的改变。(2)采用不同浓度(10μM,100μM,1000μM)白藜芦醇干预野生型秀丽线虫(N2),观察其对秀丽线虫寿命影响和有效的实验干预浓度。(3)采用有效浓度的白藜芦醇干预,观察60Coγ射线照射后对秀丽线虫的寿命,运动能力,生殖能力,记忆能力,评价其保护作用。(4)应用DCF荧光染色法及SOD3-GFP荧光reporter突变株CF1553 [muIs84 [pAD76 (sod-3::GFP)]],检测秀丽线虫的氧化应激水平。(5)应用实时定量PCR,检测秀丽线虫的线粒体拷贝数(mtDNA)。(6)采用秀丽线虫突变株VC199 [sir-2.1(ok434)]观察其寿命变化,探讨白藜芦醇辐射防护的有关机制。
     结果:(1)随着放射剂量增加,照射后的野生型秀丽线虫(N2)寿命显著缩短;受60Coγ射线照射后运动能力明显受损;记忆能力随着辐射剂量增加而显著下降;辐射后成虫期的产卵量明显减少,当剂量增加至200Gy时,可导致所有线虫不育。(2)不同浓度白藜芦醇均能延长野生型秀丽线虫(N2)的寿命,100μM与更高浓度之间无显著性差异,后续实验采用100μM为干预浓度。(3)白藜芦醇干预后,经60Coγ射线照射的秀丽线虫寿命显著延长;运动能力明显增强;记忆能力得到有效改善;产卵能力增加、卵存活率增加。(4)白藜芦醇干预可以显著改善60Coγ射线照射后秀丽线虫体内的氧化应激状态。(5)白藜芦醇干预后, 60Coγ射线照射后秀丽线虫的线粒体DNA拷贝数(mtDNA)有所增加。(6)白藜芦醇干预能延长经60Coγ射线照射的sir-2.1突变株的寿命。
     结论:(1)秀丽线虫是一个理想的辐射损伤研究的工具, 60Coγ射线照射对秀丽线虫造成生长损伤。(2)白藜芦醇具有良好的辐射防护作用:能够延长60Coγ射线照射后的秀丽线虫寿命;增强其运动能力;改善记忆能力;有效的保护生殖系统。(3)白藜芦醇辐射防护作用与其强有力的抗氧化作用以及对线粒体保护作用有关。(4)白藜芦醇辐射防护作用是通过非sir-2相关的途径。
Objective: To establish the model of radiation damage by 60Coγ-ray in Caenorhabditis elegan; investigate the radiation damage of growth and its mechanism in Caenorhabditis Elegans; investigate radiation protective effect of resveratrol and its mechanism in Caenorhabditis elegans.
     Methods: (1) Wild-type C. elegans at L1 stage were irradiated by 60Coγ-irradiation with 50Gy, 100Gy and 200Gy respectively, and detected the lifespan, locomotion, reproduction and the memory of irradiated C. elegans. (2) Wild-type C. elegans treated with the different concentration (10μM,100μM,1000μM) of resveratrol, the lifespan of C. elegans and its experimental intervention concentration were detected effective. (3) With the effective concentration of resveratrol on wild-type C. elegans, the lifespan, locomotion, reproduction and the memory of irradiated C. elegans were detected, and assessed the protective effect of resveratrol on the radiation. (4) The level of oxidative stress were detected in C. elegans with CF1553 [muIs84 [pAD76 (sod-3::GFP)]] and DCF. (5) The mtDNA copy number of C. elegans was determined with the quantitative PCR. (6) The changes of lifespan were observed with VC199 [sir-2.1(ok434)], to investigate its some activity mechanism of the protective effect of resveratrol in Caenorhabditis elegans on radiation.
     Result: (1) Life span of irradiated wild-type C. elegans were shortened along with the increased radiation dose; the locomotion suffered injury obviously and memory deficits were caused with 60Coγ-irradiation exposure; the amount of offspring was obvious reduced along with the increased radiation dose, and when the dosage increased to 200Gy, all maternal worms became sterile. (2)Dietary resveratrol with the different density extended life span of wild-type C. elegans. As there was no significant difference between 100μM and the higher density, all other experiments were performed with 100μM resveratrol. (3) The lifespan was extended, the locomotion was enhanced, the memory was improved, laying-egg was increased, and the egg survival percentage was increased with resvertrol pre-treatment. (4) The oxidative stress was significantly attenuated with resvertrol pre-treatment in 60Coγ-irradiated C. elegans. (5) The mtDNA copy number was increased with resvertrol pre-treatment in 60Coγ-irradiated C. elegans. (6) Resveratrol pre-treatment also extended life span 60Coγ-irradiated sir-2.1 mutants.
     Conclusion: (1) Caenorhabditis elegans is a useful model of animal on irradiation-related damage, which can be examined the damage of growth caused by 60Coγ-irradiation. (2) Resveratrol has the good protective function to the 60Coγ-irradiated, such as extended the lifespan of wild-type C. elegans, enhanced its locomotion, improved the memory and protected the reproductive system. (3) The protective effect of resveratrol on radiation is the strong ability to protect from oxidative stress and protective effects to mitochondria. (4) The sir-2 independent mechanisms play an important role in the protective action of resveratrol.
引文
[1] Lee JH, Choi IY, Kil IS, et al. Protective role of superoxide dismutases against ionizing radiation in yeast [J]. Biochim Biophys Acta, 2001, 1526(2): 191-198.
    [2] Stewart MS, Cameron GS, Pence BC. Antioxidant nutrients protect against UVB-induced oxidative damage to DNA of mouse keratinocytes in culture [J]. J Invest Dermatol, 1996, 106(5):1086-1089.
    [3] Parker JA, Arango M, Abderrahmane S, et al. Resveratrol rescues mutant polyglutamine cytotoxicity in nematode and mammalian neurons[J].. Nat Genet, 2005, 37(4):349-350.
    [4] Wang Q, Yu S, Simonyi A, et al. Resveratrol protects against neurotoxicity induced by kainic acid [J]. Neurochem Res, 2004, 29(11):2105-2112.
    [5] Araki T, Sasaki Y, Milbrandt J. Increased nuclear NAD biosynthesis and SIRT1 activation prevent axonal degeneration [J]. Science, 2004, 305(5686):1010-1013.
    [6] McKay RM, McKay JP, Avery L, et al. C. elegans:A Model for Exploring the Genetics of Fat Storage [J].Dev Cell. 2003, 4(1):131-142.
    [7] Pomerai D, Daniells C, David H, et al. Non-thermal heat-shock response to microwaves [J]. Nature, 2002, 405(6785):417-418.
    [8] David HE, Dawe AS, de Pomerai DI, et al. Construction and evaluation of a transgenic hsp16-GFP-lacZ Caenorhabditis elegans strain for environmental monitoring [J]. Environ Toxicol Chem, 2003, 22(1):111-118.
    [9] Junkersdorf B, Bauer H, Gutzeit HO. Electromagnetic fields enhance the stress response at elevated temperatures in the nematode Caenorhabditis elegans [J]. Bioelectromagnetics, 2000, 21(2):100-106.
    [10] Sakashita T, Hamada N, Ikeda D, et al. Locomotion-learning behavior relationship in Caenorhabditis elegans following gamma-ray irradiation [J]. Journal of Radiat Res, 2008, 49(3):285-291.
    [11] Liu X, Long F, Peng H, et al. Analysis of cell fate from single-cell gene expression profiles in C. elegans [J]. Cell, 2009, 139(3):623-633.
    [12] Lai CH, Chou CY, Ch'ang LY, et al. Identification of novel human genes evolutionarily conserved in Caenorhabditis elegans by comparative proteomics [J]. Genome Res, 2000, 10(5): 703–713.
    [13] An JH, Blackwell TK.SKN-1 links C. elegans mesendodermal specification to a conserved oxidative stress response [J]. Genes Dev2003, 17(1):1882-1893.
    [14] Spitz DR, EI Azzam, JJ Li, et al. Metabolic Oxidation/Reduction Reactions and Cellular Responses to Ionizing Radiation: A Unifying Concept in Stress Response Biology [J]. Cancer and Metastasis Reviews, 2004, 23(3-4):311-322.
    [15] Wilson MA, Shukitt-Hale B, Kalt W, et al. Blueberry polyphenols increase lifespan and thermotolerance in Caenorhabditis elegans [J]. Aging Cell, 2006, 5(1):59-68.
    [16] Hartman P, Goldstein P, Algarra M, et al. The nematode Caenorhabditis elegans is up to 39 times more sensitive to gamma radiation generated from 137Cs than from 60Co [J]. Mutat Res, 1996, 363(3):201-208.
    [17]王文峰,张兆霞,朱红平.生物分子的自由基损伤与保护研究[J].生物物理学报,2009,25(S1):405-406.
    [18] Weidhaas JB, Eisenmann DM, Holub JM. A Caenorhabditis elegans tissue model of radiation-induced reproductive cell death [J]. PNAS, 2006, 103(26): 9946-9951.
    [19] Libina N, Berman JR, and Kenyon C .Tissue-specific activities of C. elegans DAF-16 in the regulation of lifespan [J]. Cell, 2003, 115(4):489-502.
    [20] Brenner S. The genetics of Caenorhabdits elegans [J].Genetics.1974, 77(1): 71-94.
    [21] Stiernagle, T. Maintenance of C. elegans (February 11, 2006), WormBook, ed. The C. elegans Research Community, WormBook,doi/10.1895/wormbook.1.101.1, http://www.wormbook.org.
    [22] Sakashita T, Hamada N, Ikeda DD, et al. Modulatory effect of ionizing radiation on food-NaCl associative learning: the role of gamma subunit of G protein in Caenorhabditis elegans. Faseb J, 2008, 22(3):713-720.
    [23] Tsalik E L, Hobert O. Functional mapping of neurons that control locomotory behavior in Caenorhabditis elegans [J]. Journal of Neurobiology, 2003, 56(2): 178-197.
    [24] Swain S C, Keusekotten K, Baumeister B, et al. C. elegans metallothioneins: newinsights into the phenotypic effects of cadmium toxicosis [J]. Journal of Molecular Biology, 2004, 341(4): 951-959.
    [25] Hedgecock EM, Russell RL. Normal and mutant thermotaxis in the nematode Caenorhabditis elegans [J].Proc Natl Acad Sci USA.1975, 72(10): 4061-4065.
    [26] McGaugh JL. Memory-a century of consolidation [J]. Science, 2000, 287(5451): 248-251.
    [27] Chávez V, Mohri-Shiomi A, Maadani A, et al. Oxidative Stress Enzymes Are Required for DAF-16-Mediated Immunity Due to Generation of Reactive Oxygen Species by Caenorhabditis elegans[J].Genetics,2007,176(3):1567-1577.
    [28] Ishii N, Suzuki K. X-ray inactivation of Caenorhabditis elegans embryos or larvae. Int J Radiat Biol. 1990, 58(5):827-833.
    [29] Finkel T, Holbrook NJ. Oxidants, oxidative stress and the biology of ageing [J].Nature. 2000, 408(6809):239-247.
    [30] Anne PR. PhaseⅡtrial of subcutaneous amifostine in patients undergoing radiation therapy for head and neck cancer [J]. Semin Oncol, 2002, 29 (6 ):80-83.
    [31]刘哲峰,赵宏.生脉注射液提高机体抗辐射能力临床研究[J].科学技术与工程,2005,5(14):980
    [32]田京伟,杨建雄,傅风华,等.白藜芦醇苷对羟自由基所致大鼠脑线粒体氧化损伤的保护作用[J].中国药理学通报, 2003, 19(11) : 1287-1289.
    [33] Miura T, Muraoka S, Fujimoto Y. Inactivation of creative kinase induced by stilbene derivatives [J]. Pharmacol Toxicol, 2002, 90 (2) : 66-72.
    [34] Ou HC, Chou FP, Sheen HM, et al. Resveratrol, a polyphenolic compound in red wine, protects against oxidized LDL-induced cytotoxicity in endothelial cells. Clin Chim Acta. 2006,364(1-2):196-204.
    [35] Carsten RE, Bachand AM, Bailey SM, et al. Resveratrol reduces radiation-induced chromosome aberration frequencies in mouse bone marrow cells [J]. Radiat Res, 2008, 169(6): 633-638.
    [36] Johnson GE, Ivanov VN, Hei TK. Radiosensitization of melanoma cells through combined inhibition of protein regulators of cell survival [J]. Apoptosis, 2008,13(6):790-802.
    [37] Baur JA, Sinclair DA. Therapeutic potential of resveratrol: the in vivo evidence [J]. Nat Rev Drug Discov, 2006, 5(6): 493-506.
    [38] Lee MH, Choi BY, Kundu JK, et al. Resveratrol suppresses growth of human ovarian cancer cells in culture and in a murine xenograft model: eukaryotic elongation factor 1A2 as a potential target [J]. Cancer Res, 2009, 69(18): 7449-7458.
    [39] Harikumar KB, Kunnumakkara AB, Sethi G, et al. Resveratrol, a multi-targeted agent, can enhance antitumor activity of gemcitabine in vitro and in orthotopic mouse model of human pancreatic cancer [J]. Int J Cancer, 2010, 127(2):257-268.
    [40] Athar M, Back JH, Tang X, et al. Resveratrol: a review of preclinical studies for human cancer prevention [J]. Toxicol Appl Pharmacol, 2007, 224(3): 274-283.
    [41] Niles RM, Cook CP, Meadows GG, et al. Resveratrol is rapidly metabolized in athymic (nu/nu) mice and does not inhibit human melanoma xenograft tumor growth [J]. J Nutr, 2006, 136(10): 2542-2546.
    [42] Wenzel E, Soldo T, Erbersdobler H, et al. Bioactivity and metabolism of trans-resveratrol orally administered to Wistar rats [J]. Mol Nutr Food Res, 2005, 49(5): 482-494.
    [43] De Santis M, Cesari E, Nobili E, et al. Radiation effects on development [J]. Birth Defects Res C Embryo Today. 2007, 81(3): 177-182.
    [44] Gannes FP, Billaudel B, Taxile M, et al. Effects of head-only exposure of rats to GSM-900 on blood-brain barrier permeability and neuronal degeneration [J]. Radiat Res, 2009, 172(3): 359-367.
    [45] Agarwal A, Desai NR, Makker K, et al. Effects of radiofrequency electromagnetic waves (RF-EMW) from cellular phones on human ejaculated semen: an in vitro pilot study [J]. Fertil Steril, 2009, 92(4):1318-1325.
    [46] Sharma VP, Singh HP, Kohli RK, et al. Mobile phone radiation inhibits Vigna radiata (mung bean) root growth by inducing oxidative stress [J]. Sci Total Environ, 2009, 407(21):5543-5547.
    [47] Halliwell B, Gutteridge JMC.Oxygen radicals and nervous system. Trends Neurosci.1985, 8(1): 22–26.
    [48] Halliwell B, Gutteridge JMC, Cross CE. Free radicals, antioxidants, and human disease: where are we now? J Lab Clin Med.1992, 119(6): 598–620.
    [49] Abidin I, Yargi?oglu P, Agar A, et al. The effect of chronic restraint stress on spatial learning and memory: relation to oxidant stress. Int J Neurosci, 2004, 114(5): 683-699.
    [50] Fukui K, Onodera K, Shinkai T, et al. Impairment of learning and memory in rats caused by oxidative stress and aging, and changes in antioxidative defense systems. Ann NY Acad Sci.2001, 928 (1):168–175.
    [1] Lai CH, Chou CY, Ch'ang LY, et al. Identification of novel human genes evolutionarily conserved in Caenorhabditis elegans by comparative proteomics [J]. Genome Res, 2000, 10(5): 703–713.
    [2] Ashrafi K. Mapping out starvation responses [J]. Cell Metab, 2006, 3(4):235–236.
    [3] Satouchi K, Hirano K, Sakaguchi M, et al. Phospholipids from the free-living nematode Caenorhabditis elegans [J]. Lipids, 1993, 28(9):837-840.
    [4] Watts JL, Browse J. Genetic dissection of polyunsaturated fatty acid synthesis in Caenorhabditis elegans [J]. Proc Natl Acad Sci U S A. 2002, 99(9):5854-5859.
    [5] Kniazeva M, Crawford QT, Seiber M, et al. Monomethyl branched-chain fatty acids play an essential role in Caenorhabditis elegans development [J]. PLoS Biol,2004, 2(9):E257.
    [6] Brock TJ, Browse J, Watts JL. Genetic regulation of unsaturated fatty acid composition in C.elegans [J]. PLoS Genet, 2006, 2(7):e108.
    [7] Wallis JG, Watts JL, Browse J. Polyunsaturated fatty acid synthesis: what will they think of next? [J] Trends Biochem Sci, 2002, 27(9):467.
    [8] Kniazeva M, Sieber M, McCauley S, et al. Suppression of the ELO-2 FA elongation activity results in alterations of the fatty acid composition and multiple physiological defects, including abnormal ultradian rhythms, in Caenorhabditis elegans [J]. Genetics, 2003, 163(1):159–169.
    [9] Kahn-Kirby AH, Dantzker JL, Apicella AJ, et al. Specific polyunsaturated fatty acids drive TRPV-dependent sensory signaling in vivo [J]. Cell, 2004, 119(6): 889–900.
    [10] Lesa GM, Palfreyman M, Hall DH, et al. Long chain polyunsaturated fatty acids are required for efficient neurotransmission in C. elegans [J]. J Cell Sci, 2003, 116(Pt24):4965–4975.
    [11] Van Gilst MR, Hadjivassiliou H, Jolly A, et al. Nuclear hormone receptor NHR-49 controls fat consumption and fatty acid composition in C. elegans [J]. PLoS Biol.2005, 3(2):e53.
    [12] Watts JL, Browse J. Dietary manipulation implicates lipid signaling in the regulation of germ cell maintenance in C. elegans [J]. Dev Biol. 2006, 292(2): 381–392.
    [13] Watts JL, Phillips E, Griffing KR, et al. Deficiencies in C20 polyunsaturated fatty acids cause behavioral and developmental defects in Caenorhabditis elegans fat-3 mutants [J]. Genetics, 2003, 163(2):581–589.
    [14] Mukhopadhyay A, Deplancke B, Walhout AJ, et al. C. elegans tubby regulates life span and fat storage by two independent mechanisms [J]. Cell Metab, 2005, 2(1): 35–42.
    [15] Taubert S, Van Gilst MR, Hansen M, et al. A Mediator subunit, MDT-15, integrates regulation of fatty acid metabolism by NHR-49-dependent and-independent pathways in C. elegans [J]. Genes Dev, 2006, 20(9): 1137–1149.
    [16] Ashrafi K, Chang FY, Watts JL, et al.Genome-wide RNAi analysis of Caenorhabditis elegans fat regulatory genes [J]. Nature, 2003, 421(6920): 268–272.
    [17] McKay RM, McKay JP, Avery L, et al. C. elegans: a model for exploring the genetics of fat storage [J]. Dev Cell, 2003, 4(1):131–142.
    [18] Salway JG. Metabolism at a Glance, Third edition. Oxford: Blackwell Publishing Ltd.2004.
    [19] Braeckman BP, Houthoofd K, Vanfleteren JR. Assessing metabolic activity in aging Caenorhabditis elegans: concepts and controversies [J]. Aging Cell, 2002, 1(2):82–88.
    [20] Burnell AM, Houthoofd K, O'Hanlon K, et al. Alternate metabolism during the dauer stage of the nematode Caenorhabditis elegans [J]. Exp. Gerontol.2005, 40(11): 850–856.
    [21] Gems D. Nematode ageing: Putting metabolic theories to the test [J]. Curr Biol, 1999, 9(16): R614–R616.
    [22] Halaschek-Wiener J, Khattra JS, McKay S, et al. Analysis of long-lived C. elegans daf-2 mutants using serial analysis of gene expression [J]. Genome Res. 2005, 15(5):603–615.
    [23] Holt SJ, Riddle DL. SAGE surveys C. elegans carbohydrate metabolism: evidence for an anaerobic shift in the long-lived dauer larva [J]. Mech Ageing Dev, 2003, 124(7):779–800.
    [24] Jones SJ, Riddle DL, Pouzyrev AT, et al. Changes in gene expression associated with developmental arrest and longevity in Caenorhabditis elegans [J]. Genome Res, 2001, 11(8):1346–1352.
    [25] Larsen PL, Albert PS, Riddle DL. Genes that regulate both development and longevity in Caenorhabditis elegans [J]. Genetics, 1995, 139(4):1567–1583.
    [26] Lee SS, Kennedy S, Tolonen AC, et al. DAF-16 target genes that control C. elegans life-span and metabolism. Science, 2003, 300(5619): 644–647.
    [27] Lund J, Tedesco P, Duke K, et al. Transcriptional profile of aging in C. elegans [J]. Curr Biol, 2002, 12(18):1566–1573.
    [28] McElwee JJ, Schuster E, Blanc E, et al. Shared transcriptional signature in Caenorhabditis elegans Dauer larvae and long-lived daf-2 mutants implicates detoxification system in longevity assurance [J]. J Biol Chem, 2004, 279(43): 44533–44543.
    [29] McElwee JJ, Schuster E, Blanc E, et al. Diapause-associated metabolic traits reiterated in long-lived daf-2 mutants in the nematode Caenorhabditis elegans [J]. Mech. Ageing Dev, 2006, 127(5): 458–472.
    [30] Murphy CT, McCarroll SA, Bargmann CI, et al. Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans [J]. Nature, 2003, 424(6946): 277–283.
    [31] Van Voorhies WA, Ward S. Genetic and environmental conditions that increase longevity in Caenorhabditis elegans decrease metabolic rate [J]. Proc Natl Acad Sci USA, 1999, 96(20):11399–11403.
    [32] Wadsworth WG, Riddle DL. Developmental regulation of energy metabolism in Caenorhabditis elegans [J]. Dev Biol, 1989, 132(1):167–173.
    [33] Wang J, Kim SK. Global analysis of dauer gene expression in Caenorhabditis elegans [J]. Development, 2003, 130(8): 1621–1634.
    [34] Jia K, Chen D, Riddle DL. The TOR pathway interacts with the insulin signaling pathway to regulate C. elegans larval development, metabolism and life span [J]. Development, 2004, 131(16):3897–3906.
    [35] Kniazeva M, Sieber M, McCauley S, et al. Suppression of the ELO-2 FA elongation activity results in alterations of the fatty acid composition and multiple physiological defects, including abnormal ultradian rhythms, in Caenorhabditis elegans [J]. Genetics, 2003, 163(1): 159–169.
    [36] Ludewig AH, Kober-Eisermann C, Weitzel C, et al. A novel nuclear receptor/coregulator complex controls C. elegans lipid metabolism, larval development, and aging [J]. Genes Dev, 2004, 18(17):2120–2133.
    [37] Mak HY, Nelson LS, Basson M, et al. Polygenic control of Caenorhabditis elegans fat storage [J]. Nat Genet, 2006, 38(3): 363–368.
    [38] Vellai T, Takacs-Vellai K, Zhang Y, et al. Genetics: influence of TOR kinase on lifespan in C. elegans [J]. Nature, 2003, 426(6967): 620.
    [39] Yang F, Vought BW, Satterlee JS, et al. An ARC/Mediator subunit required for SREBP control of cholesterol and lipid homeostasis [J]. Nature, 2006, 442(7103): 700–704.
    [40] All Cohen P, Friedman JM. Leptin and the control of metabolism: role for stearoyl-CoA desaturase-1 (SCD-1) [J]. J Nutr, 2004, 134(9): 2455S–2463S.
    [41] Cohen P, Ntambi JM, Friedman JM. Stearoyl-CoA desaturase-1 and the metabolic syndrome [J]. Curr Drug Targets Immune Endocr Metabol Disord. 2003, 3(4): 271–280.
    [42] Margulis. Archaeal-eubacterial mergers in the origin of Eukarya: phylogenetic classification of life [J]. Proc Natl Acad Sci USA. 1996, 93(3): 1071–1076.
    [43] Gabaldon T, Huynen MA. Shaping the mitochondrial proteome [J]. Biochim Biophys Acta, 2004, 1659(2-3): 212–220.
    [44] Chacinska A, Koehler CM, Milenkovic D, et al. Importing mitochondrial proteins: machineries and mechanisms [J]. Cell, 2009, 138(4): 628–644.
    [45] Schwimmer C, Rak M, Lefebvre-Legendre L, et al. Yeast models of human mitochondrial diseases: from molecular mechanisms to drug screening [J]. Biotechnol J, 2006, 1(3): 270–281.
    [46] Chinault AC, Shaw CA, Brundage EK, et al. Application of dual-genome oligonucleotidearray-based comparative genomic hybridization to the molecular diagnosis of mitochondrial DNA deletion and depletion syndromes [J]. Genet Med, 2009, 11(7): 518–526.
    [47] Dimmer KS, Fritz S, Fuchs F, et al. Genetic basis of mitochondrial function and morphology in Saccharomyces cerevisiae [J]. Mol Biol Cell, 2002, 13(3): 847–853.
    [48] Brenner S. The genetics of Caenorhabditis elegans [J]. Genetics, 1974, 77(1): 71–94.
    [49] Hartman PS, Ishii N, Kayser EB, et al. Mitochondrial mutations differentially affect aging, mutability and anesthetic sensitivity in Caenorhabditis elegans [J]. Mech Ageing Dev, 2001, 122(11): 1187–1120.
    [50] Rea S, Johnson TE. A metabolic model for life span determination in Caenorhabditis elegans [J]. Dev Cell, 2003, 5(2): 197–203.
    [51] Senoo-Matsuda N, Hartman PS, Akatsuka A, et al. A complex II defect affects mitochondrial structure, leading to ced-3- and ced-4-dependent apoptosis and aging [J]. J Biol Chem, 2003, 278(24): 22031–22036.
    [52] Wood WB. The nematode Caenorhabditis elegans. Cold Spring Harbor Laboratory Press.1988.
    [53] Hoffenberg R. Brenner, the worm and the prize [J]. Clin Med, 2003, 3(3): 285–286.
    [54] Kamath RS, Martinez-Campos M, Zipperlen P, et al. Effectiveness of specific RNA-mediated interference through ingested double-stranded RNA in Caenorhabditis elegans [J]. Genome Biol, 2001, 2(1): RESEARCH0002.
    [55] Timmons L, Court DL, Fire A. Ingestion of bacterially expressed dsRNAs can produce specific and potent genetic interference in Caenorhabditis elegans [J]. Gene, 2001, 263(1-2): 103–112.
    [56] Harris TW, Antoshechkin I, Bieri T, et al. WormBase: a comprehensive resource for nematode research [J]. Nucleic Acids Res, 2010, 38(Database issue): D463–D467.
    [57] Tsang WY, Lemire BD. Mitochondrial genome content is regulated during nematode development. Biochem Biophys Res Commun, 2002, 291(1): 8–16.
    [58] Falk MJ, Rosenjack JR, Polyak E, et al. Subcomplex Ilambda specifically controls integrated mitochondrial functions in Caenorhabditis elegans [J]. PLoS One, 2009, 4(8): e6607.
    [59] Ishii N, Fujii M, Hartman PS, et al. A mutation in succinate dehydrogenase cytochrome b causes oxidative stress and ageing in nematodes [J]. Nature, 1998, 394(6694): 694–697.
    [60] Felkai S, Ewbank JJ, Lemieux J, et al. CLK-1 controls respiration, behavior andaging in the nematode Caenorhabditis elegans [J]. EMBO J, 1999, 18(7): 1783–1792.
    [61] Kayser EB, Morgan PG, Hoppel CL, et al. Mitochondrial expression and function of GAS-1 in Caenorhabditis elegans [J]. J Biol Chem, 2001, 276(23): 20551–20558.
    [62] Tsang WY, Sayles LC, Grad LI, et al. Mitochondrial respiratory chain deficiency in Caenorhabditis elegans results in developmental arrest and increased life span [J]. J Biol Chem, 2001, 276(34): 32240–32246.
    [63] Rea SL, Ventura N, Johnson TE. Relationship between mitochondrial electron transport chain dysfunction, development, and life extension in Caenorhabditis elegans [J]. PLoS Biol, 2007, 5(10): e259.
    [64] Falk MJ, Kayser EB, Morgan PG, et al. Mitochondrial complex I function modulates volatile anesthetic sensitivity in C. elegans [J]. Curr Biol, 2006, 16(16): 1641–1645.
    [65] Suthammarak W, Yang YY, Morgan PG, et al. Complex I function is defective in complex IV-deficient Caenorhabditis elegans [J]. J Biol Chem, 2009, 284(10): 6425–6435.
    [66] Ventura N, Rea SL, Testi R. Long-lived C. elegans mitochondrial mutants as a model for human mitochondrial-associated diseases [J]. Exp Gerontol, 2006, 41(10): 974–991.
    [67] Dillin A, Hsu AL, Arantes-Oliveira N, et al. Rates of behavior and aging specified by mitochondrial function during development [J]. Science, 2002, 298(5602): 2398–2401.
    [68] Lee SS, Lee RY, Fraser AG, et al. A systematic RNAi screen identifies a critical role for mitochondria in C. elegans longevity [J]. Nat Genet, 2003, 33(1): 40–48.
    [69] Kayser EB, Sedensky MM, Morgan PG. The effects of complex I function and oxidative damage on lifespan and anesthetic sensitivity in Caenorhabditis elegans [J]. Mech Ageing Dev, 2004, 125(6): 455–464.
    [70] Ishii N. Oxidative stress and aging in Caenorhabditis elegans [J]. Free Radic Res,2000, 33(6): 857–864.
    [71] Honda Y, Honda S. Oxidative stress and life span determination in the nematode Caenorhabditis elegans [J]. Ann NY Acad Sci, 2002, 959: 466–474.
    [72] Rea SL, Ventura N, Johnson TE. Relationship between mitochondrial electron transport chain dysfunction, development, and life extension in Caenorhabditis elegans [J]. PLoS Biol, 2007, 5(10): e259.
    [73] Van Raamsdonk JM, Hekimi S. Reactive oxygen species and aging in Caenorhabditis elegans: causal or casual relationship? [J]. Antioxid Redox Signal 2010, 13(12):1911-1953.
    [74] Van Raamsdonk JM, Meng Y, Camp D, et al. Decreased energy metabolism extends life span in Caenorhabditis elegans without reducing oxidative damage [J]. Genetics, 2010, 185(2): 559–571.
    [75] Yang W, Hekimi S. Two modes of mitochondrial dysfunction lead independently to lifespan extension in Caenorhabditis elegans [J]. Aging Cell, 2010, 9(3): 433–447.
    [76] Lemire BD, Behrendt M, DeCorby A, et al. C. elegans longevity pathways converge to decrease mitochondrial membrane potential [J]. Mech Ageing Dev, 2009, 130(7): 461–465.
    [77] Dingley S, Polyak E, Lightfoot R, et al. Mitochondrial respiratory chain dysfunction variably increases oxidant stress in Caenorhabditis elegans [J]. Mitochondrion, 2010, 10(2): 125–136.
    [78] Falk MJ, Zhang Z, Rosenjack JR, et al. Metabolic pathway profiling of mitochondrial respiratory chain mutants in C. elegans [J]. Mol Genet Metab, 2008, 93(4): 388–397.
    [79] Peng M, Falk MJ, Haase VH, et al. Primary coenzyme Q deficiency in Pdss2 mutant mice causes isolated renal disease [J]. PLoS Genet, 2008, 4(4): e1000061.
    [80] Grad LI, Sayles LC, Lemire BD. Introduction of an additional pathway for lactate oxidation in the treatment of lactic acidosis and mitochondrial dysfunction in Caenorhabditis elegans [J]. Proc Natl Acad Sci USA, 2005, 102(51): 18367–18372.
    [81] Grad LI, Lemire BD. Mitochondrial complex I mutations in Caenorhabditis elegans produce cytochrome c oxidase deficiency, oxidative stress and vitamin-responsive lactic acidosis [J]. Hum Mol Genet, 2004, 13(3): 303–314.
    [82] Grad LI, Lemire BD. Riboflavin enhances the assembly of mitochondrial cytochrome c oxidase in C. elegans NADH-ubiquinone oxidoreductase mutants [J]. Biochim Biophys Acta, 2006, 1757(2): 115–122.
    [83] Huang J, Lemire BD. Mutations in the C. elegans succinate dehydrogenase iron-sulfur subunit promote superoxide generation and premature aging [J]. J Mol Biol, 2009, 387(3): 559–569.
    [84] Ved R, Saha S, Westlund B, et al. Similar patterns of mitochondrial vulnerability and rescue induced by genetic modification of alpha-synuclein, parkin, and DJ-1 in Caenorhabditis elegans [J]. J Biol Chem, 2005, 280(52): 42655–42668.
    [85] Gruber J, Tang SY, Halliwell B. Evidence for a trade-off between survival and fitness caused by resveratrol treatment of Caenorhabditis elegans [J]. Ann NY Acad Sci, 2007, 1100: 530–542.
    [86] Hashimoto T, Horikawa M, Nomura T, et al. Nicotinamide adenine dinucleotide extends the lifespan of Caenorhabditis elegans mediated by sir-2.1 and daf-16 [J]. Biogerontology, 2010, 11(1): 31–43.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700