金针菇多糖的分离纯化、结构分析及其记忆功能改善作用机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金针菇(Flammulina velutipes)是目前国内消费量较大的食用菌类之一,其含有丰富的营养成分和生物活性物质,是一种药食两用菌。据研究和报道显示,金针菇能够增强儿童生长和智力发育,尽管许多报道已经表明金针菇具有改善记忆力功能的作用,然而金针菇中主要的改善记忆功能成分物质仍然不明确,金针菇活性成分的改善记忆功能的作用机制一直未得到很好的阐明。
     本文通过Box-Behnken响应面优化金针菇多糖(FVP)的超声波辅助提取工艺,并采用高效凝胶过滤色谱法(HPGFC)、气相色谱法(GC)、傅里叶红外光谱(FT-IR)、紫外扫描法光谱(UV)、核磁共振技术(NMR)等光谱技术和一些化学分析方法对金针菇多糖结构进行分析。进一步利用Morris迷宫试验隐藏平台试验和定位航行试验,研究金针菇多糖对东茛菪碱诱导大鼠记忆损伤的改善作用。并分析脑组织海马和大脑皮质中生理生化指标变化,通过检测超氧化物歧化酶(SOD)和谷胱甘肽过氧化物酶(GSH-Px)等抗氧化酶的活性,乙酰胆碱(ACh)、5-羟色胺(5-HT)、多巴胺(DA)、去甲肾上腺素(NE)等神经递质含量,胆碱乙酰转移酶(ChAT)和乙酰胆碱酯酶(AChE)活性,Ca2+/钙调蛋白依赖的蛋白激酶Ⅱ(CaMKⅡ)、细胞外信号调节激酶(ERK)、以及细胞间隙连接蛋白Connexin36等一些蛋白激酶分子的变化,研究金针菇多糖改善记忆功能作用机制。研究结果表明:
     (1)通过研究金针菇四种不同溶剂提取物(水、乙醇、石油醚、乙酸乙酯)抑制AChE活性,水萃取物组分具有最强的AChE抑制活性,抑制率为19.75%。进一步研究水溶液中的多糖成分AChE抑制活性为20.0%(2.0mg/mL).通过Box-Behnken响应面优化金针菇多糖超声波辅助提取工艺条件(料液比(X1)、超声波功率(X2)、超声时间(X3)、超声温度(X4)),建立金针菇多糖提取模型方程为Y=-11.94+0.18·X1+0.03-X2+0.30·X3+0.25·X4+6.88×10-5·X1X2+1.0×10-3·X1X3+1.2×10-3·X1X4-2.59×10-4·X2X3-1.11×10-4·X2X4-1.33×10-3·X3X4-5.99×10-3·X12-1.86×10-5·X22-2.87×10-3·X32-2.06×10-3·X42.确定金针菇多糖超声波辅助提取最佳工艺条件为料液比为25mL/g、超声波功率为620W、超声时间为20min、超声温度为45℃,在此条件下金针菇多糖得率为8.33%,比普通热水浸提法的多糖得率提高了62.7%。
     (2)金针菇粗多糖经DEAE纤维素-52离子交换色谱、Sephadex G-100葡聚糖凝胶色谱分离纯化得到FVP-1和FVP-2两种金针菇多糖组分,其总糖含量分别是98.65%和96.24%。经过高效凝胶过滤色谱测得分子量分别为28kD和268kD。FVP-1和FVP-2糖醛酸含量分别为1.56%和3.42%,硫酸基含量分别为0.09%和0.14%。FVP-1由葡萄糖、半乳糖、甘露糖和岩藻糖4种单糖组成,其摩尔比为葡萄糖:半乳糖:甘露糖:岩藻糖=81.3:12.1:3.6:3.0。FVP-2由葡萄糖、甘露糖、半乳糖、木糖和岩藻糖5种单糖组成,其摩尔比为葡萄糖:甘露糖:半乳糖:木糖:岩藻糖=57.9:12.0:15.1:9.5:5.5。FVP-1和FVP-2均是具有三股螺旋结构的多糖分子。紫外光谱图显示FVP-1和FVP-2不含有核酸和蛋白质类物质。红外光谱扫描结果,FVP-1和FVP-2含有多糖类物质的特征吸收峰,FVP-1属于吡喃糖,FVP-2属于呋喃糖。FVP-1和FVP-2均是以β-糖苷键链接的多糖分子。
     (3)通过Morris水迷宫试验研究金针菇多糖对东莨菪碱诱导大鼠记忆损伤模型的改善作用。研究结果发现:腹腔注射5mg/kg.bw剂量东莨菪碱能够造成大鼠学习记忆功能损伤,显著延长大鼠在隐藏平台实验中的平均逃避潜伏期,增加大鼠的总游泳路程;并能够降低大鼠在空间探索实验中穿过原平台位置的次数和在原平台象限区域的游泳时间。200mg/kg.bw和400mg/kg.bw金针菇多糖能够显著降低大鼠在隐藏平台实验中的平均逃避潜伏期,减少逃避潜伏期的总路程长度,增加空间探索实验中大鼠穿过原平台位置的次数和在原平台象限区域的游泳时间。表明金针菇多糖对记忆功能损伤大鼠的空间学习和记忆能力有显著的修复作用,为金针菇辅助改善记忆功能的作用提供了科学的证明。
     (4)通过分析多糖对大鼠海马和大脑皮质的生理生化指标的变化,研究金针菇多糖改善记忆机制。结果表明,5mg/kg.bw ip的东茛菪碱能够显著抑制海马和大脑皮质中SOD和GSH-Px活性,降低多巴胺、去甲肾上腺素、5-羟色胺、乙酰胆碱等神经递质含量,抑制ChAT活性,促进AChE的活性升高。同时,还能够显著降低海马和大脑皮质中Connexin36、p-ERK和p-CaMK Ⅱ蛋白的表达。最终导致学习记忆能力下降。与损伤模型组相比,金针菇多糖能够显著提高海马和大脑皮质中SOD和GSH-Px活性,修复东茛菪碱引起的海马和大脑皮质中DA、NE、5-HT和ACh等神经递质含量的降低,特别是高浓度的FVP对海马中DA、NE和ACh的含量效果最显著。FVP通过增强ChAT活性和降低AChE的活性以加速ACh的合成和降低ACh的分解速度,有效促进ACh含量的增加。此外,金针菇多糖能够显著增强海马和大脑皮质中Connexin36、p-ERK和p-CaMKⅡ蛋白的表达水平,从而达到改善大鼠学习记忆功能。
Flammulina velutipes is one of the most popular mushrooms in China, which contains plentiful nutrients and active substance and can be used for pharmaceutical and edible functions. A few reports have shown that F. velutipes was benefit for children growth and intellectual development. Although many researches have proved its improvement of learning and memory functions, the functional ingredients and mechanism haven't been elucidated.
     In this study, response surface methodology, based on Box-Behnken design was used to optimize the ultrasonic extraction conditions of F. velutipes polysaccharides (FVP), and chromatographic and spectroscopy technologies such as high performance gel filtration chromatography (HPGFC), gas chromatography (GC), Fourier transform infrared spectrum (FT-IR), UV scanning spectrum (UV), and nuclear magnetic resonance (NMR), as well as chemical analysis methods were employed to characterized FVP structure. Hidden platform test and probe test of Morris water maze were applied to evaluate the improvement of scopolamine-induced memory impairments of FVP. Effects of FVP on the biochemical and neurological changes in hippocampus and cerebral cortex of rats were investigated, SOD and GSH-Px activities, content of some neurotransmitters such as acetylcholine (ACh),5-hydroxytryptamine (5-HT), dopamine (DA), and norepinephrine (NE), choline acetyltransferase (ChAT) and acetylchohnesterase (AChE) activities, phosphorylation of Calcium/calmodulin dependent protein kinase (CaMKⅡ) and extracellular regulated protein kinases (ERK), and expression of gap junction protein connexin36are were analyzed to clarify the mechanism. The following work was performed and the results are summarized:
     (1) Four solvent extracts of F. velutipes were prepared for AChE inhibitory activities assay. Results showed that the AChE inhibitory activity of water extract was significantly better than the other solvents extracts (ethanol, petroleum ether, and ethyl acetate), with19.75%inhibition rate. FVP as the main component in water extract was further shown to have20.0%AChE inhibition rate (2.0mg/mL). Box Behnken design was used to optimize the ultrasonic extraction conditions of FVP and four independent variables (ratio of water to raw material, ultrasonic power, ultrasonic time, and ultrasonic temperature) were taken into consideration. A quadratic model was constructed between ultrasonic conditions and yield of FVP, Y=-11.94+0.18·X1+0.03·X2+0.30·X3+0.25X4+6.88×10-5·X1X2+1.0×10-3·X1X3+1.2×10-3·X1X4-2.59×10-4·X2X3-1.11×10-4·X2X4-1.33×10-3·X3X4-5.99×10-3·X12-1.86×10-5·X22-2.87×10-3X32-2.06×10-3·X42。A modified optimization condition was ratio of water to material of25ml/g, ultrasonic power of620W, ultrasonic time of20min, and ultrasonic temperature of45℃, and a yield of FVP of8.33%was obtained under this condition, which is62.7%higher than that obtained with hot water extraction.
     (2) FVP was further purified by DEAE cellulose-52chromatography and Sephadex G-100size-exclusion chromatography to afford FVP-1and FVP-2, with total sugar content of98.65%and96.24%, respectively. Molecular weight of FVP-1and FVP-2was28kDa and268kDa, respectively. Uronic acid content was1.56%and3.42%, respectively. Sulfate content was0.09%and0.14%, respectively. FVP-1was composed of glucose, galactose, mannose and fucose in an approximate molar ratio81.3:12.1:3.6:3.0and FVP-2was composed of glucose, mannose, galactose, xylose and fucose in an approximate molar ratio57.9:12.0:15.1:9.5:5.5. Both FVP-1and FVP-2were triple helical structures. Ultraviolet spectrum indicated that FVP-1and FVP-2were without protein and nucleic acid. Characteristic absorptions of polysaccharides were observed in infrared spectra of FVP-1and FVP-2, which indicated the possible presence of pyranose ring in FVP-1and furanose ring in FVP-2, respectively, and glycosyl residues of FVP-1and FVP-2were mainly β-type glycosidic linkages.
     (3) Morris water maze was employed to evaluate effect of FVP on scopolamine-induced learning and memory impairments. Results showed that, compared with control,5mg/kg.bw ip scopolamine can injure the learning and memory of rats, presenting an increase in the escape latency and total swimming distance in hidden platform test, and decreased the numbers of crossing the platform and distance of moving around platform of rats in probe test.200mg/kg.bw and400mg/kg.bw FVP significantly decreased the escape latency and total swimming distance of rats in hidden platform test, and increased the numbes of crossing the platform and distance of moving around platform of rats in probe test. All these results indicated that FVP could improve scopolamine-induced learning and memory impairments, which afford scientific proof for learning and memory function of F.velutipe.
     (4) To clarify the learning and memory improvement mechanism of FVP, effects of FVP on the biochemical and neurological changes in hippocampus and cerebral cortex of rats were investigated. Results showed that5mg/kg.bw ip scopolamine decreased SOD and GSH-Px activities, as well as ACh,5-HT, DA, and NE contents in hippocampus and cerebral cortex. Decrease of ACh content owed to decrease of ChAT activity and increase of AChE activity. Expressions of Connexin36, p-ERK and p-CaMK Ⅱ in hippocampus and cerebral cortex were also decreased by scopolamine. Compared with scopolamine injured group rats, FVP reversed the decrease of SOD and GSH-Px activities induced by scopolamine, and increased ACh,5-HT, DA, and NE contents, especially effect of highest concentration FVP on ACh, DA, and NE contents in hippocampus. FVP increased ChAT activity and decreased AChE activity to raise ACh content. Moreover, FVP increased the expressions of Connexin36, p-ERK and p-CaMK Ⅱ in hippocampus and cerebral cortex. FVP achieves its learning and memory improving function through modulation of all the above mechanism.
引文
[1]王文亮,徐同成,刘丽娜,等.金针菇的保健功能及其开发前景[J].中国食物与营养2011,17(7):18-19.
    [2]袁仲.金针菇的保健功能与加工利用[J].农产品加工-学刊,2005,6(7):125-128.
    [3]伍明,郑林用,许晓燕,等.金针菇活性物质及其作用研究进展[J].中国食用菌,2011,30(3):6-8.
    [4]金湘,娄恺,毛培宏.金针菇生物活性物质结构与功能的研究进展[J].中草药,2007,38(10):1596,附1-2.
    [5]秦小明,余娟,宁恩创,等.金针菇子实体多糖成分的初步研究[J].食用菌学报,2005,12(2):27-31.
    [6]谢晨,高向东,王坚,等.富锗金针菇多糖空间结构和与生物活性关系的研究[J].中国药科大学学报,2004,35(6):576-580.
    [7]Leung M Y, Fung K P, Choy Y M. The isolation and characterization of an immunomodulatory and anti-tumor polysaccharide preparation from Flammulina velutipes [J]. Immunopharmacology,1997,35(3):255-263.
    [8]严茂祥,陈芝芸,项柏康,等.金针菇多糖对小鼠血清溶血素产生及抗体形成细胞的影响[J].中医药信息,2003,20(5):56-57.
    [9]Wu D M, Duan W Q, Liu Y, et al. Anti-inflammatory effect of the polysaccharides of golden needle mushroom in burned rats [J]. International journal of biological macromolecules,2010, 46(1):100-103.
    [10]Zhang A Q, Xiao N N, Deng Y L, et al. Purification and structural investigation of a water-soluble polysaccharide from Flammulina velutipes [J]. Carbohydrate Polymers,2012, 87(3):2279-2283.
    [11]Smiderle F R, Carbonero E R, Sassaki G L, et al. Characterization of a heterogalactan:Some nutritional values of the edible mushroom Flammulina velutipes [J]. Food Chemistry,2008, 108(1):329-333.
    [12]Pang X, Yao W, Yang X, et al. Purification, characterization and biological activity on hepatocytes of a polysaccharide from Flammulina velutipes mycelium [J]. Carbohydrate Polymers,2007,70(3):291-297.
    [13]常花蕾,雷林生,余传林,等.金针菇多糖对小鼠免疫细胞产生细胞因子及对荷瘤小鼠血清细胞因子含量的影响[J].中药材,2009,32(4):561-563.
    [14]Fukushima M, Ohashi T, Fujiwara Y, et al. Cholesterol-lowering effects of maitake (Grifola frondosa) fiber, shiitake (Lentinus edodes) fiber, and enokitake (Flammulina velutipes) fiber in rats [J]. Experimental biology and medicine (Maywood),2001,226(8):758-765.
    [15]文镜,陈文,王津,等.金针菇抗疲劳的实验研究[J].营养学报,1993,15(1):79-81.
    [16]Ikekawa T, Yoshioka Y, Emori M, et al. Studies on the antitumor activity of polysaccharides from Flammulina velutipes (Curt, ex Fr.) Sing [J]. Cancer chemotherapy reports,1973,57(1): 85-86.
    [17]Yoshioka Y, Sano T, Ikekawa T. Studies on antitumor polysaccharides of Flammulina velutipes (Curt, ex Fr.) Sing. I [J]. Chemical & pharmaceutical bulletin (Tokyo),1973,21(8):1772-1776.
    [18]Ikekawa T, Ikeda Y, Yoshioka Y, et al. Studies on antitumor polysaccharides of Flammulina velutipes (Curt, ex Fr.) Sing.Ⅱ. The structure of EA3 and further purification of EA5 [J]. Journal of pharmacobio-dynamics,1982,5(8):576-581.
    [19]Ohkuma T, Tanaka S, Ikekawa T. Augmentation of host's immunity by combined cryodestruction of sarcoma 180 and administration of protein-bound polysaccharide, EA6, isolated from Flammulina velutipes (Curt, ex Fr.) Sing, in ICR mice [J]. Journal of pharmacobio-dynamics,1983,6(2):88-95.
    [20]范青生,魏华,谢俊杰,等.培养的富锌金针菇对小鼠学习能力和免疫功能的影响[J].营养学报,1995,17(1):89-91.
    [21]康洁,构菌、海漆和蒙桑化学成分及生物活性研究[D].北京:中国协和医科大学,2006.
    [22]邹宇晓,廖森泰,吴娱明,等.金针菇多糖提取物对记忆障碍模型大鼠、小鼠学习记忆能力的影响[J].中国食品学报,2010,10(1):26-30.
    [23]杨义芳,孔德元,中药提取分离技术[M].北京:化学工业出版社,2009.29-60.
    [24]杨洋,超声波中药提取过程中提取率的检测[D].北京:北京化工大学,2011.
    [25]徐亚杰,宁波,王磊,等.金针菇多糖的提取及含量测定[J].农产品加工.学刊,2007(9):70-71.
    [26]何轩辉,廖森泰,刘吉平,等.应用Box-Behnken组合设计优化金针菇粗多糖提取条件[J].食用菌学报,2008,15(3):64-67.
    [27]占建波,金针菇多糖提取纯化及生物活性研究[D].贵州:贵州大学,2009.
    [28]罗登宏.超声波辅助提取金针菇多糖工艺参数优化研究[J].江苏农业科学,2010(2):316-317.
    [29]Yang W, Fang Y, Liang J, et al. Optimization of ultrasonic extraction of Flammulina velutipes polysaccharides and evaluation of its acetylcholinesterase inhibitory activity [J]. Food Research International,2011,44(5):1269-1275.
    [30]杨宁,仙人掌多糖的分离纯化及降血糖的研究[D].广州:华南理工大学,2007.
    [31]王瑞芬,现代色谱分析法的应用[M].北京:冶金工业出版社,2006.78-79.
    [32]Sun H, Qi D, Xu J, et al. Fractionation of polysaccharides from rapeseed by ultrafiltration: Effect of molecular pore size and operation conditions on the membrane performance [J]. Separation and Purification Technology,2011,80(3):670-676.
    [33]冯卫生,王彦志,郑晓珂,中药化学成分结构解析[D].北京:科学出版社,2008.
    [34]乔德亮,三角帆蚌多糖提取、纯化、生物活性及其结构[D].南京:南京农业大学,2009.
    [35]杜秀菊,张劲松,潘迎捷.核磁共振技术在食用菌多糖结构分析中的作用[J].中国食用菌,2010,29(1):3-6,19.
    [36]Thies W, Bleiler L.2011 Alzheimer's disease facts and figures [J]. Alzheimers Dement,2011, 7(2):208-244.
    [37]张翼,海藻抑制乙酰胆碱酯酶活性及红藻海头红化学成分的研究[D].青岛:中国科学院海洋研究所,2004.
    [38]Sisodia S S, Price D L. Role of the beta-amyloid protein in Alzheimer's disease [J]. The FASEB Journal,1995,9(5):366-370.
    [39]Ballatore C, Lee V M, Trojanowski J Q. Tau-mediated neurodegeneration in Alzheimer's disease and related disorders [J]. Nature reviews,2007,8(9):663-672.
    [40]Craig L A, Hong N S, McDonald R J. Revisiting the cholinergic hypothesis in the development of Alzheimer's disease [J]. Neuroscience and biobehavioral reviews,2011,35(6):1397-1409.
    [41]Muir J L. Acetylcholine, aging, and Alzheimer's disease [J]. Pharmacology, biochemistry, and behavior,1997,56(4):687-696.
    [42]Talesa V N. Acetylcholinesterase in Alzheimer's disease [J]. Mechanisms of ageing and development,2001,122(16):1961-1969.
    [43]Fu A L, Li Q, Dong Z H, et al. Alternative therapy of Alzheimer's disease via supplementation with choline acetyltransferase [J]. Neuroscience letters,2004,368(3):258-262.
    [44]黄雨三,保健食品检验与评价技术规范实施手册[M].北京:清华同方电子出版社,2003.375-388.
    [45]Sharma S, Rakoczy S, Brown-Borg H. Assessment of spatial memory in mice [J]. Life sciences, 2010,87(17-18):521-536.
    [46]D'Hooge R, De Deyn P P. Applications of the Morris water maze in the study of learning and memory [J]. Brain Research Reviews,2001,36(1):60-90.
    [47]Zou X H, Li H M, Wang S, et al. The effect of 3-hydroxybutyrate methyl ester on learning and memory in mice [J]. Biomaterials,2009,30(8):1532-1541.
    [48]Lazarova-Bakarova M B, Stancheva S, Petkova B, et al. Effects of β-adrenoceptor blocker pindolol, calcium antagonist verapamil and their combination on retention in step-down- and shuttle-box-trained rats and on brain biogenic monoamines [J]. Journal of Physiology-Paris, 1997,91(6):301-305.
    [49]Jafari-Sabet M. NMDA receptor antagonists antagonize the facilitatory effects of post-training intra-basolateral amygdala NMDA and physostigmine on passive avoidance learning [J]. European Journal of Pharmacology,2006,529(1-3):122-128.
    [50]Lanari A, Amenta F, Silvestrelli G, et al. Neurotransmitter deficits in behavioural and psychological symptoms of Alzheimer's disease [J]. Mechanisms of ageing and development, 2006,127(2):158-165.
    [51]Xu Y, Yan J, Zhou P, et al. Neurotransmitter receptors and cognitive dysfunction in Alzheimer's disease and Parkinson's disease [J]. Progress in Neurobiology,2012,97(1):1-13.
    [52]Zheng P. Neuroactive steroid regulation of neurotransmitter release in the CNS:action, mechanism and possible significance [J]. Progress in neurobiology,2009,89(2):134-152.
    [53]Phillis J W. Acetylcholine release from the central nervous system:a 50-year retrospective [J]. Critical reviews in neurobiology,2005,17(3-4):161-217.
    [54]Sarter M, Parikh V. Choline transporters, cholinergic transmission and cognition [J]. Nature Reviews Neuroscience,2005,6(1):48-56.
    [55]Hornick A, Schwaiger S, Rollinger J M, et al. Extracts and constituents of Leontopodium alpinum enhance cholinergic transmission:brain ACh increasing and memory improving properties [J]. Biochemical pharmacology,2008,76(2):236-348.
    [56]Lee E H, Ma Y L. Amphetamine enhances memory retention and facilitates norepinephrine release from the hippocampus in rats [J]. Brain research bulletin,1995,37(4):411-416.
    [57]Hammerschmidt T, Terwel D, Kummer M, et al. Norepinephrine deficiency aggravates learning and memory impairment independent of amyloid-beta levels in APP PS1 mice [J]. Alzheimer's and Dementia,2009,5(4, Supplement):P499.
    [58]Denenberg V H, Kim D S, Palmiter R D. The role of dopamine in learning, memory, and performance of a water escape task [J]. Behavioural Brain Research,2004,148(1-2):73-78.
    [59]El-Ghundi M, Fletcher P J, Drago J, et al. Spatial learning deficit in dopamine D(1) receptor knockout mice [J]. European journal of pharmacology,1999,383(2):95-106.
    [60]Blecharz-Klin K, Piechal A, Joniec I, et al. Pharmacological and biochemical effects of Ginkgo biloba extract on learning, memory consolidation and motor activity in old rats [J]. Acta neurobiologiae experimentalis,2009,69(2):217-231.
    [61]Polter A M, Li X.5-HT1A receptor-regulated signal transduction pathways in brain [J]. Cellular Signalling,2010,22(10):1406-1412.
    [62]Harrell A V, Allan A M. Improvements in hippocampal-dependent learning and decremental attention in 5-HT(3) receptor overexpressing mice [J]. Learning & memory,2003,10(5): 410-419.
    [63]Marchetti E, Dumuis A, Bockaert J, et al. Differential modulation of the 5-HT(4) receptor agonists and antagonist on rat learning and memory [J]. Neuropharmacology,2000,39(11): 2017-2027.
    [64]Roberts A J, Hedlund P B. The 5-HT(7) receptor in learning and memory [J]. Hippocampus, 2012,22(4):762-771.
    [65]Hynd M R, Scott H L, Dodd P R. Glutamate-mediated excitotoxicity and neurodegeneration in Alzheimer's disease [J]. Neurochemistry international,2004,45(5):583-595.
    [66]Yamamoto Y, Shioda N, Han F, et al. Nobiletin improves brain ischemia-induced learning and memory deficits through stimulation of CaMKII and CREB phosphorylation [J]. Brain Research, 2009,1295:218-229.
    [67]Griffith L C. Calcium/calmodulin-dependent protein kinase Ⅱ:an unforgettable kinase [J]. The Journal of Neuroscience,2004,24(39):8391-8393.
    [68]Frisch C, De Souza-Silva M A, Sohl G, et al. Stimulus complexity dependent memory impairment and changes in motor performance after deletion of the neuronal gap junction protein connexin36 in mice [J]. Behavioural brain research,2005,157(1):177-185.
    [69]Peng S, Zhang Y, Zhang J, et al. ERK in learning and memory:A review of recent research [J]. International journal of molecular sciences,2010,11(1):222-232.
    [70]Ribeiro M J, Schofield M G, Kemenes I, et al. Activation of MAPK is necessary for long-term memory consolidation following food-reward conditioning [J]. Learning& memory 2005,12(5): 538-545.
    [71]唐玲,唐荣伟,唐晶,等.突触可塑性与学习记忆关系的研究进展[J].川北医学院学报,2012,27(1):89-92.
    [72]Whitlock J R, Heynen A J, Shuler M G, et al. Learning induces long-term potentiation in the hippocampus [JJ. Science,2006,313(5790):1093-1097.
    [73]Martin S J, Grimwood P D, Morris R G. Synaptic plasticity and memory:an evaluation of the hypothesis [J]. Annual review of neuroscience,2000,23(1):649-711.
    [74]Arendt T, Bruckner M K. Linking cell-cycle dysfunction in Alzheimer's disease to a failure of synaptic plasticity [J]. Biochimica et biophysica acta,2007,1772(4):413-421.
    [75]Mackenzie G G, Zago M P, Aimo L, et al. Zinc deficiency in neuronal biology [J]. IUBMB Life, 2007,59(4-5):299-307.
    [76]Huskisson E, Maggini S, Ruf M. The influence of micronutrients on cognitive function and performance [J]. The Journal of international medical research,2007,35(1):1-19.
    [77]Sato T, Teramoto T, Tanaka K, et al. Effects of ovariectomy and calcium deficiency on learning and memory of eight-arm radial maze in middle-aged female rats [J]. Behavioural brain research, 2003,142(1-2):207-216.
    [78]Gleason M R, Higashijima S, Dallman J, et al. Translocation of CaM kinase II to synaptic sites in vivo [J]. Nature neuroscience,2003,6(3):217-218.
    [79]Hawkins R D,4.38-Transsynaptic Signaling by NO during Learning-Related Synaptic Plasticity [M]. Oxford:Academic Press,2008.
    [80]Paul V, Ekambaram P. Involvement of nitric oxide in learning & memory processes [J]. The Indian journal of medical research,2011,133(5):471-478.
    [81]Greene L A, Tischler A S. Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor [J]. Proceedings of the National Academy of Sciences of the United States of America,1976,73(7):2424-2428.
    [82]王文君,中药复方更年春对β-淀粉样蛋白PC-12细胞损伤的保护作用[D].上海:复旦大学,2009.
    [83]Raiteri L, Raiteri M, Bonanno G. Coexistence and function of different neurotransmitter transporters in the plasma membrane of CNS neurons [J]. Progress in neurobiology,2002,68(4): 287-309.
    [84]Dai Q, Borenstein A R, Wu Y, et al. Fruit and vegetable juices and Alzheimer's disease:the Kame Project [J]. The American journal of medicine,2006,119(9):751-759.
    [85]Hirano E, Saito H, Ito Y, et al. PB-2, a polysaccharide fraction from lichen Flavoparmelia baltimorensis, peripherally promotes the induction of long-term potentiation in the rat dentate gyrus in vivo [J]. Brain research,2003,963(1-2):307-311.
    [86]Smriga M, Saito H. Effect of selected thallophytic glucans on learning behaviour and short-term potentiation [J]. Phytotherapy Research,2000,14(3):153-155.
    [87]Hernandez P J, Abel T. The role of protein synthesis in memory consolidation:progress amid decades of debate [J]. Neurobiology of learning and memory,2008,89(3):293-311.
    [88]Gibbs M E, Robertson S, Hambley J. Amino acid uptake required for long-term memory formation [J]. Neuroscience letters,1977,4(5):293-297.
    [89]Yang J-H, Lin H-C, Mau J-L. Non-volatile taste components of several commercial mushrooms [J]. Food Chemistry,2001,72(4):465-471.
    [90]Lee K J, Yun I J, Kim K H, et al. Amino acid and fatty acid compositions of Agrocybe chaxingu, an edible mushroom [J]. Journal of Food Composition and Analysis,2011,24(2):175-178.
    [91]Bourre J M, Francois M, Youyou A, et al. The effects of dietary alpha-linolenic acid on the composition of nerve membranes, enzymatic activity, amplitude of electrophysiological parameters, resistance to poisons and performance of learning tasks in rats [J]. The Journal of nutrition,1989,119(12):1880-1892.
    [92]Gold P E. Acetylcholine modulation of neural systems involved in learning and memory [J]. Neurobiology of learning and memory,2003,80(3):194-210.
    [93]张侃,曾琳,龙在云,等.必需脂肪酸对大鼠脑组织中EPA、DHA含量的影响及意义[J].第三军医大学学报,2005,27(12):1213-1215.
    [94]Su H M. Mechanisms of n-3 fatty acid-mediated development and maintenance of learning memory performance [J]. The Journal of nutritional biochemistry,2010,21(5):364-373.
    [95]Takeda A, Takefuta S, Okada S, et al. Relationship between brain zinc and transient learning impairment of adult rats fed zinc-deficient diet [J]. Brain Research,2000,859(2):352-357.
    [96]Hasanein P, Shahidi S. Effects of combined treatment with vitamins C and E on passive avoidance learning and memory in diabetic rats [J]. Neurobiology of learning and memory, 2010,93(4):472-478.
    [97]蔡和晖,廖森泰,叶运寿,等.金针菇的化学成分、生物活性及加工研究进展[J].食品研究与开发,2008,29(11):171-175.
    [98]Armstrong R A. Alzheimer's Disease and the Eye [J]. Journal of Optometry,2009,2(3): 103-111.
    [99]王晓映,阿尔茨海默病中microRNA-34a作用机制的研究[D].北京:北京协和医学院,2009.
    [1]徐亚杰,宁波,王磊,等.金针菇多糖的提取及含量测定[J].农产品加工.学刊,2007(9):70-71.
    [2]何轩辉,廖森泰,刘吉平,等.应用Box-Behnken组合设计优化金针菇粗多糖提取条件[J].食用菌学报,2008,15(3):64-67.
    [3]占建波,金针菇多糖提取纯化及生物活性研究[D].贵州:贵州大学,2009.
    [4]杨洋,超声波中药提取过程中提取率的检测[D].北京:北京化工大学,2011.
    [5]Yang W, Fang Y, Liang J, et al. Optimization of ultrasonic extraction of Flammulina velutipes polysaccharides and evaluation of its acetylcholinesterase inhibitory activity [J]. Food Research International,2011,44(5):1269-1275.
    [6]Yang W, Li D, Li J, et al. Synergistic antioxidant activities of eight traditional Chinese herb pairs [J]. Biological & Pharmaceutical Bulletin,2009,32(6):1021-6.
    [7]Langjae R, Bussarawit S, Yuenyongsawad S, et al. Acetylcholinesterase-inhibiting steroidal alkaloid from the sponge Corticium sp [J]. Steroids,2007,72(9-10):682-5.
    [8]Brand-Williams W, Cuvelier M E, Berset C. Use of a Free Radical Method to Evaluate Antioxidant Activity [J]. Lebensm.-Wiss. u.-Technol.,,1995,28:25-30.
    [9]Gan C Y, Abdul Manaf N H, Latiff A A. Optimization of alcohol insoluble polysaccharides (AIPS) extraction from the Parkia speciosa pod using response surface methodology (RSM) [J]. Carbohydrate Polymers,2010,79(4):825-831.
    [10]Banik R M, Pandey S K. Selection of metal salts for alkaline phosphatase production using response surface methodology [J]. Food Research International,2009,42(4):470-475.
    [11]罗登宏.超声波辅助提取金针菇多糖工艺参数优化研究[J].江苏农业科学,2010(2):316-317.
    [12]Yang B, Zhao M, Shi J, et al. Effect of ultrasonic treatment on the recovery and DPPH radical scavenging activity of polysaccharides from longan fruit pericarp [J]. Food Chemistry,2008, 106(2):685-690.
    [13]Zhong K, Wang Q. Optimization of ultrasonic extraction of polysaccharides from dried longan pulp using response surface methodology [J]. Carbohydrate Polymers,2010,80(1):19-25.
    [14]Gangadharan D, Nampoothiri K M, Sivaramakrishnan S, et al. Immobilized bacterial [alpha]-amylase for effective hydrolysis of raw and soluble starch [J]. Food Research International,2009,42(4):436-442.
    [15]Zhu T, Heo H J, Row K H. Optimization of crude polysaccharides extraction from Hizikia fusiformis using response surface methodology [J]. Carbohydrate Polymers,2010,82(1): 106-110.
    [16]杨义芳,孔德元,中药提取分离技术[M].北京:化学工业出版社,2009.29-60.
    [17]Vilkhu K, Mawson R, Simons L, et al. Applications and opportunities for ultrasound assisted extraction in the food industry-A review [J]. Innovative Food Science & Emerging Technologies,2008,9(2):161-169.
    [18]Yang B, Zhao M, Jiang Y. Optimization of tyrosinase inhibition activity of ultrasonic-extracted polysaccharides from longan fruit pericarp [J]. Food Chemistry,2008,110(2):294-300.
    [19]Zhou C, Ma H. Ultrasonic degradation of polysaccharide from a red algae (Porphyra yezoensis) [J]. Journal of agricultural and food chemistry,2006,54(6):2223-2228.
    [20]王文平,郭祀远,李琳.生物活性多糖的结构及构效关系研究进展[J].中华实用中西医杂志,2006,19(16):2363-2367.
    [21]林勤保,高大维,闵亚光.超声波在多糖降解及提取中的应用[J].应用声学,1997,16(5):47-49.
    [22]Zhang M, Zhang L, Cheung P C K, et al. Molecular weight and anti-tumor activity of the water-soluble polysaccharides isolated by hot water and ultrasonic treatment from the sclerotia and mycelia of Pleurotus tuber-regium [J]. Carbohydrate Polymers,2004,56(2):123-128.
    [23]Papandreou M A, Dimakopoulou A, Linardaki Z I, et al. Effect of a polyphenol-rich wild blueberry extract on cognitive performance of mice, brain antioxidant markers and acetylcholinesterase activity [J]. Behavioural Brain Research,2009,198(2):352-8.
    [24]Li X M, Li X L, Zhou A G. Evaluation of antioxidant activity of the polysaccharides extracted from Lycium barbarum fruits in vitro [J]. European Polymer Journal,2007,43(2):488-497.
    [25]Rao R S, Muralikrishna G. Water soluble feruloyl arabinoxylans from rice and ragi:changes upon malting and their consequence on antioxidant activity [J]. Phytochemistry,2006,67(1): 91-99.
    [1]乔德亮,三角帆蚌多糖提取、纯化、生物活性及其结构[D].南京:南京农业大学,2009.
    [2]Karamanos N K, Hjerpe A, Tsegenidis T, et al. Determination of iduronic acid and glucuronic acid in glycosaminoglycans after stoichiometric reduction and depolymerization using high-performance liquid chromatography and ultraviolet detection [J]. Analytical Biochemistry, 1988,172(2):410-419.
    [3]Dodgson K S, Price R G. A note on the determination of the ester sulphate content of sulphated polysaccharides [J]. Biochemical Journal,1962,84(1):106-110.
    [4]Han X Q, Chai X Y, Jia Y M, et al. Structure elucidation and immunological activity of a novel polysaccharide from the fruit bodies of an edible mushroom, Sarcodon aspratus (Berk.) S. Ito [J]. International journal of biological macromolecules,2010,47(3):420-4.
    [5]Yang W, Pei F, Shi Y, et al. Purification, characterization and anti-proliferation activity of polysaccharides from Flammulina velutipes [J]. Carbohydrate Polymers,2012,88(2):474-480.
    [6]Rout D, Mondal S, Chakraborty I, et al. The structure and conformation of a water-insoluble (1-->3)-,(1-->6)-[beta]-d-glucan from the fruiting bodies of Pleurotus fiorida [J]. Carbohydrate Research,2008,343(5):982-987.
    [7]Ogawa K, Wanatabe T, Tsurugi J, et al. Conformational behavior of a gel-forming (1→3)-β-glucan in alkaline solution [J]. Carbohydrate Research,1972,23(3):399-405
    [8]Sheng J, Yu F, Xin Z, et al. Preparation, identification and their antitumor activities in vitro of polysaccharides from Chlorella pyrenoidosa [J]. Food Chemistry,2007,105(2):533-539.
    [9]Xie J H, Xie M Y, Nie S P, et al. Isolation, chemical composition and antioxidant activities of a water-soluble polysaccharide from Cyclocarya paliurus (Batal.) Hjinskaja [J]. Food Chemistry, 2010,119(4):1626-1632.
    [10]Zhao L, Dong Y, Chen G, et al. Extraction, purification, characterization and antitumor activity of polysaccharides from Ganoderma lucidum [J]. Carbohydrate Polymers,2010,80(3):783-789.
    [11]Leung M Y, Fung K P, Choy Y M. The isolation and characterization of an immunomodulatory and anti-tumor polysaccharide preparation from Flammulina velutipes [J]. Immunopharmacology,1997,35(3):255-263.
    [12]Pang X, Yao W, Yang X, et al. Purification, characterization and biological activity on hepatocytes of a polysaccharide from Flammulina velutipes mycelium [J]. Carbohydrate Polymers,2007,70(3):291-297.
    [13]Zhang A Q, Xiao N N, Deng Y L, et al. Purification and structural investigation of a water-soluble polysaccharide from Flammulina velutipes [J]. Carbohydrate Polymers,2012, 87(3):2279-2283.
    [14]娄翠,汤顺清.海带岩藻多糖的分离纯化及结构特性的初步研究[J].食品工业科技,2012,33(04):135-141.
    [15]Ueno T, Yokota S, Kitaoka T, et al. Conformational changes in single carboxymethylcellulose chains on a highly oriented pyrolytic graphite surface under different salt conditions [J]. Carbohydrate research,2007,342(7):954-60.
    [16]谢晨,高向东,王坚,等.富锗金针菇多糖空间结构和与生物活性关系的研究[J].中国药科大学学报,2004,35(6):576-580.
    [17]Smiderle F R, Carbonero E R, Sassaki G L, et al. Characterization of a heterogalactan:Some nutritional values of the edible mushroom Flammulina velutipes [J]. Food Chemistry,2008, 108(1):329-333.
    [18]Wu D M, Duan W Q, Liu Y, et al. Anti-inflammatory effect of the polysaccharides of golden needle mushroom in burned rats [J]. International journal of biological macromolecules,2010, 46(1):100-103.
    [19]Smiderle F R, Carbonero E R, Mellinger C G, et al. Structural characterization of a polysaccharide and a 8-glucan isolated from the edible mushroom Flammulina velutipes [J]. Phytochemistry,2006,67(19):2189-2196.
    [20]Yang B, Wang J, Zhao M, et al. Identification of polysaccharides from pericarp tissues of litchi (Litchi chinensis Sonn.) fruit in relation to their antioxidant activities [J]. Carbohydrate Research,2006,341(5):634-638.
    [21]Gan D, Ma L, Jiang C, et al. Production, preliminary characterization and antitumor activity in vitro of polysaccharides from the mycelium of Pholiota dinghuensis Bi [J]. Carbohydrate Polymers,2011,84(3):997-1003.
    [22]Ikhuoris E U, Folayan A S, Okieimen F E. Studies in the graft copolymerization of acrylonitrile onto cassava starch by cerie ion induced initiation [J]. International Journal for Biotechnology and Molecular Biology Research,2010,1(1):pp.010-014.
    [23]Melo M R S, Feitosa J P A, Freitas A L P, et al. Isolation and characterization of soluble sulfated polysaccharide from the red seaweed Gracilaria cornea [J]. Carbohydrate Polymers, 2002,49(4):491-498.
    [24]Rochas C, Lahaye M, Yaphe W. Sulfate Content of Carrageenan and Agar Determined by Infrared Spectroscopy [J]. Botanica Marina,1986,29(4):335-340.
    [25]Qiao D, Liu J, Ke C, et al. Structural characterization of polysaccharides from Hyriopsis cumingii [J]. Carbohydrate Polymers,2010,82(4):1184-1190.
    [26]Farina J I, Vinarta S C, Cattaneo M, et al. Structural stability of Sclerotium rolfsii ATCC 201126 β-glucan with fermentation time:a chemical, infrared spectroscopic and enzymatic approach [J]. Journal of Applied Microbiology,2009,106(1):221-232.
    [27]霍光华,李来生,高荫榆.波谱在多糖结构分析上的应用[J].生命的化学,2002,22(2):194-196.
    [1]Sharma S, Rakoczy S, Brown-Borg H. Assessment of spatial memory in mice [J]. Life sciences, 2010,87(17-18):521-536.
    [2]D'Hooge R, De Deyn P P. Applications of the Morris water maze in the study of learning and memory [J]. Brain Research Reviews,2001,36(1):60-90.
    [3]范青生,魏华,谢俊杰,等.培养的富锌金针菇对小鼠学习能力和免疫功能的影响[J].营养学报,1995,17(1):89-91.
    [4]邹宇晓,廖森泰,吴娱明,等.金针菇多糖提取物对记忆障碍模型大鼠、小鼠学习记忆能力的影响[J].中国食品学报,2010,10(1):26-30.
    [5]康洁,构菌、海漆和蒙桑化学成分及生物活性研究[D].北京:中国协和医科大学,2006.
    [6]Morris R G M. Spatial Localization Does Not Require the Presence of Local Cues [J]. Learning and Motivation,1981,12(2):pp.239-260.
    [7]Vorhees C V, Williams M T. Morris water maze:procedures for assessing spatial and related forms of learning and memory [J]. Nature protocols,2006,1(2):848-858.
    [8]Zou X H, Li H M, Wang S, et al. The effect of 3-hydroxybutyrate methyl ester on learning and memory in mice [J]. Biomaterials,2009,30(8):1532-1541.
    [9]封敏,卢圣锋,张承舜,等.国内大鼠Morris水迷宫实验现状与分析[J].辽宁中医杂志,2011,38(11):2170-2172.
    [10]Blokland A, Geraerts E, Been M. A detailed analysis of rats' spatial memory in a probe trial of a Morris task [J]. Behavioural Brain Research,2004,154(1):71-75.
    [11I]Ebert U, Kirch W. Scopolamine model of dementia:electroencephalogram findings and cognitive performance [J]. European journal of clinical investigation,1998,28(11):944-949.
    [12]Miao M, Gao J, Zhang G, et al. Effect of Schisandra chinensis polysaccharide on intracerebral acetylcholinesterase and monoamine neurotransmitters in a D-galactose-induced aging brain mouse model [J]. Neural Regeneration Research,2009,4(9):687-693.
    [13]Fan Y, Hu J, Li J, et al. Effect of acidic oligosaccharide sugar chain on scopolamine-induced memory impairment in rats and its related mechanisms [J]. Neuroscience letters,2005,374(3): 222-226.
    [14]尚游,丙泊酚对大鼠空间学习记忆能力影响的实验研究[D].武汉:华中科技大学同济医学院,2006.
    [1]Cain D P, Saucier D. The neuroscience of spatial navigation:focus on behavior yields advances [J]. Reviews in the neurosciences,1996,7(3):215-231.
    [2]Zheng P. Neuroactive steroid regulation of neurotransmitter release in the CNS:action, mechanism and possible significance [J]. Progress in neurobiology,2009,89(2):134-52.
    [3]Zou X H, Li H M, Wang S, et al. The effect of 3-hydroxybutyrate methyl ester on learning and memory in mice [J]. Biomaterials,2009,30(8):1532-41.
    [4]Yamamoto Y, Shioda N, Han F, et al. Nobiletin improves brain ischemia-induced learning and memory deficits through stimulation of CaMKII and CREB phosphorylation [J]. Brain research, 2009,1295:218-29.
    [5]Frisch C, De Souza-Silva M A, Sohl G, et al. Stimulus complexity dependent memory impairment and changes in motor performance after deletion of the neuronal gap junction protein connexin36 in mice [J]. Behavioural brain research,2005,157(1):177-185.
    [6]Ellman G L, Courtney K D, Andres jr V, et al. A new and rapid colorimetric determination of acetylcholinesterase activity [J]. Biochemical Pharmacology,1961,7(2):88-95.
    [7]Senola F S, Orhana I, Celepb F, et al. Survey of 55 Turkish Salvia taxa for their acetylcholinesterase inhibitory and antioxidant activities [J]. Food Chemistry,2010,120(1): 34-43.
    [8]林航,叶建新,穆军山,等bFGF对血管性痴呆大鼠海马乙酰胆碱含量及胆碱酯酶活性的影响[J].脑与神经疾病杂志,2009,17(5):359-362.
    [9]Blomgren K, Hagberg H. Free radicals, mitochondria, and hypoxia-ischemia in the developing brain [J]. Free radical biology & medicine,2006,40(3):388-397.
    [10]Apelt J, Bigl M, Wunderlich P, et al. Aging-related increase in oxidative stress correlates with developmental pattern of beta-secretase activity and beta-amyloid plaque formation in transgenic Tg2576 mice with Alzheimer-like pathology [J]. International Journal of Developmental Neuroscience,2004,22(7):475-484.
    [11]Resende R, Moreira P I, Proenca T, et al. Brain oxidative stress in a triple-transgenic mouse model of Alzheimer disease [J]. Free radical biology & medicine,2008,44(12):2051-2057.
    [12]Shen C, Chen Y, Liu H, et al. Hydrogen Peroxide Promotes Aβ Production through JNK-dependent Activation of y-Secretase [J]. The Journal of Biological Chemistry,2008, 283(25):17721-17730.
    [13]Tabner B, El-Agnaf O, Turnbull S, et al. Hydrogen Peroxide Is Generated during the Very Early Stages of Aggregation of the Amyloid Peptides Implicated in Alzheimer Disease and Familial British Dementia [J]. Journal of Biological Chemistry,2005,280(43):35789-35792.
    [14]Hammerschmidt T, Terwel D, Kummer M, et al. Norepinephrine deficiency aggravates learning and memory impairment independent of amyloid-beta levels in APP PS1 mice [J]. Alzheimer's and Dementia,2009,5(4, Supplement):P499.
    [15]Wilson J X. Antioxidant defense of the brain:a role for astrocytes [J]. Canadian journal of physiology and pharmacology,1997,75(10-11):1149-1163.
    [16]Marcus D L, Thomas C, Rodriguez C, et al. Increased Peroxidation and Reduced Antioxidant Enzyme Activity in Alzheimer's Disease [J]. Experimental Neurology,1998,150(1):40-44.
    [17]Fan Y, Hu J, Li J, et al. Effect of acidic oligosaccharide sugar chain on scopolamine-induced memory impairment in rats and its related mechanisms [J]. Neuroscience letters,2005,374(3): 222-226.
    [18]El-Sherbiny D A, Khalifa A E, Attia A S, et al. Hypericum perforatum extract demonstrates antioxidant properties against elevated rat brain oxidative status induced by amnestic dose of scopolamine [J]. Pharmacology, biochemistry, and behavior,2003,76(3-4):525-533.
    [19]Lee M R, Yun B S, Park S Y, et al. Anti-amnesic effect of Chong-Myung-Tang on scopolamine-induced memory impairments in mice [J]. Journal of ethnopharmacology,2010, 132(1):70-4.
    [20]周兰兰.银杏叶提取物的促智作用研究[J].安徽医科大学学报,2000,35(4):321.
    [21]Gao Y, Li C, Yin J, et al. Fucoidan, a sulfated polysaccharide from brown algae, improves cognitive impairment induced by infusion of AJ3 peptide in rats [J]. Environmental toxicology and pharmacology,2012,33(2):304-311.
    [22]Blecharz-Klin K, Piechal A, Joniec I, et al. Pharmacological and biochemical effects of Ginkgo biloba extract on learning, memory consolidation and motor activity in old rats [J]. Acta neurobiologiae experimentalis,2009,69(2):217-231.
    [23]于凌慧,王泽剑,殷明.5-羟色胺及其受体与阿尔茨海默病的关系[J].药学服务与研究,2007,7(1):3740.
    [24]Gibbs M E, Hutchinson D S, Summers R J. Noradrenaline release in the locus coeruleus modulates memory formation and consolidation; roles for alpha- and beta-adrenergic receptors [J]. Neuroscience,2010,170(4):1209-22.
    [25]Birthelmer A, Stemmelin J, Jackisch R, et al. Presynaptic modulation of acetylcholine, noradrenaline, and serotonin release in the hippocampus of aged rats with various levels of memory impairments [J]. Brain research bulletin,2003,60(3):283-296.
    [26]Miao M, Gao J, Zhang G, et al. Effect of Schisandra chinensis polysaccharide on intracerebral acetylcholinesterase and monoamine neurotransmitters in a D-galactose-induced aging brain mouse model [J]. Neural Regeneration Research,2009,4(9):687-693.
    [27]Ballard C G, Greig N H, Guillozet-Bongaarts A L, et al. Cholinesterases:roles in the brain during health and disease [J]. Current Alzheimer research,2005,2(3):307-318.
    [28]张尤新,铅暴露对大鼠脑海马CaMKⅡ及下游信号分子的影响机制研究[D].沈阳:中国医科大学,2007.
    [29]Adams J P, Sweatt J D. Molecular psychology:roles for the ERK MAP kinase cascade in memory [J]. Annual review of pharmacology and toxicology,2002,42:135-163.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700