路面表面功能加速加载系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国预防性养护技术的不断发展,各种路面处置措施应用也越来越广泛,由于开展高速公路维修和预防性养护的系统研究的周期比较短,相关工艺和技术还仅仅处于学习、引进和模仿的初级阶段,而套用国外现成的路面处置措施并不适合我国实际情况。与此同时,多年来国内外道路科技界偏重于路面结构承载能力方面的研究,对路面的功能性损坏,以及由此带来的对结构性损坏的影响重视不够,而且缺乏必要的经验和数据储备。这其中,最突出的问题是缺乏适宜而有效的路面表面功能评价方法和手段。由于试验条件的限制,以往的路面表面处置相关研究很难对路面性能影响因素(环境、材料、工艺)和路面性能指标进行有效控制和定量评价,仅由承包商从商业利益的角度提出一些指标,显然这些指标缺乏科学性,并不能适应路面工程实际需要,从而无法很好地指导实际施工及质量评价,致使一些工程固有问题如雾封层抗滑、碎石封层降噪等的研究停滞不前,无法得到彻底解决。因此,有必要对现有路面预防性养护措施性能评价进行系统的研究,以完善表面处置型养护材料的应用,推动预防性养护技术的发展。
     本研究的目的是:优化路面性能指标评价体系,探讨封层处置后路面性能衰变规律,优化施工工艺,为路面表面处置方式的定量评价以及新技术和新材料的开发奠定良好的基础。论文的主要工作和创新成果如下:
     分析国内外现有各类加速加载试验机的特点和作用机理,结合机械原理,设计开发出主驱动轮式路面材料加速加载试验系统,主要用于路面表面功能的评价和研究。对试模进行改进,通过几何演算,指出传统的弧形碾压板与开发的试模并不匹配,而采用直板碾压是适宜的。
     分析不同工况下轮胎与路面的摩擦作用机理,指出主驱动方式最宜用于加速加载试验。分析汽车行驶时的全受力状况,指出圆周类的加速加载方式如环道试验并不十分符合实际状况,而只有轮胎行驶方向与路面中心线方向相一致时,才能真正地进行模拟试验。
     基于所开发的加速加载系统,提出路面表面功能相关测试方法、规程,对各试验条件和参数作出具体规定,确保试验结果的稳定、可靠。主要对路面摩擦和噪音两种功能进行测试和评价。试验发现荷载对摩擦系数的影响最大,其次是胎压和速度,温度在两种工况下的作用基本上不明显;另外,湿润状况下的摩擦系数总是低于干燥状况的,因此雨天行车危险系数更高。噪音测试结果表明速度对噪声的影响较大,回归方程的相关系数达到0.913。通过对获得的频谱图进行分析,发现轮胎/路面噪音的峰值出现在800Hz~1000Hz的范围内。
     基于逆向工程的思想,提出路面逆向设计概念并重塑旧沥青路面,发现重塑路面与原路面具有较高的相似度,而且相似度随加速加载次数的增加而增大;对表面实时封层处置,系统的熵值变大,表明表面处置的结果是使得不同系统或系统内部子系统之间功能更加趋于一致,使整体结构更加稳定。
     重点对雾封层类养护措施进行加速加载试验研究,得到结论有:
     (1)通过研究Do-Nothing条件下路面性能的衰减情况,发现各指标的衰减近似符合“S”型函数特征,并得到拟合方程,相关系数均在0.9以上;
     (2)选定四种材料用量对重塑路面进行封层处置,将测试结果与未处置(通过曲线拟合得到)时相比,根据计算所得性能跃迁率,发现0.5kg/m2的用量效果最好,同时也发现后处理即撒砂的工艺比仅仅涂刷沥青得到的路面性能效果更好,平均性能跃迁率高50%;
     (3)雾封层工后适宜地撒砂能够提高路面抗滑力,对撒砂工艺及作用机理进行深入的探讨,研究砂的粒径、撒布量、材质和棱角性对路面性能的影响。试验结果表明,1.18mm的砂效果最好,用量以0.5kg/m~2左右为宜,考虑到耐久性、表面美观和价格因素,推荐采用辉绿岩、玄武岩作为撒砂石料。研究还发现,天然砂(即河沙)由于表面多圆滑,与沥青的粘结力弱,撒布效果较差,甚至有可能带来负面作用(滚珠效应),而且颗粒越大,这种负作用越明显,因此,不推荐采用天然砂对雾封层进行后处理。
With the continuous development of our country’s preventive maintenance technology, kinds of pavement treatment measures are widely applied. Foreign ready-made pavement treatment measures do not fit the actual situation in China, because the cycle of system study of carrying out highway maintenance and preventive maintenance is too short, and related processes and technologies are still at the initial stage of learning, introducing and imitating. In the meanwhile, domestic and international road sector emphases on bearing capacity of pavement structure in past years, but functional damage to the road and the resulting impact on the structural damage are paid insufficient attention to. In addition, it is lack of the necessary experience and reserves data and related research methods. The outstandiang problem is that there are always not appropriate and effective pavement surface functional evaluation methods. The indicators, raised by contractors from the standpoint of commercial profits, are so lack of scientificity that they are not suitable for actual projects and for construction and quality assessment, which induces that many inherent problems such as skid resistance decline after fog seal, noise deduction of chip seal and so on have never been figured all out. Therefore it is necessary to improve and optimize existing pavement preventive maintenance measures and to better the application of maintenance materials on surface treatment and to improve the development of preventive maintenance.
     The purpose of this study is to optimize evaluation system of pavement performance evaluation system, determine pavement performance attenuation laws and optimize construction technology, laying the foundation for quantitatively evaluating pavement surface treatment modes and developing new skills and technologies. The main work and innovation are concluded as follows:
     The feature and mechanism of current accelerated loading test machines in china and abroad are analyzed, and a new type of main-drive-wheel pavement surface material accelerated loading test system is designed and exploited according to mechanical principles, as well as the test molds, which will be mainly applied on evaluation research of pavement surface functions. Then geometric calculation is carried out, which indicates that the traditional arc press plate doesn’t match with the exploiting test models, while a straight plate is appropriate.
     The friction effect mechanism between the tire and pavement is analyzed under different working conditions, which concludes that the initiative drive-wheel model is most suitable to the accelerated loading test. In addition, by analyzing the complete stress situation when the car is moving, it is indicated that the cycle type accelerated loading models such as circular track test is not very consistent with practical situation. The simulation test can be done only when the tire ran direction is coincidence with the direction of the pavement center line.
     Based on the new accelerated loading system, corresponding test methods and regulations are prescribed and experimental conditions and parameters are determined to ensure the stability and reliability of test results. Two functions pavement friction and noise are tested and evaluated. It is found that load affects pavement friction coefficient most, followed by tire pressure and speed, but the influence of temperature is feeblish. In addition, the friction coefficient of moist pavement is always lower than that of dry pavement, so it is more dangerous to travel in rain days. The result of noise test shows that speed greatly influences tire/pavement noise, and the correlation coefficient of the regression equation reaches 0.913. According to the frequency spectrogram, the peak value of tire/pavement noise lies in the spectrum 800Hz~1000Hz.
     Based on the idea of reverse engineering, the concept of pavement converse design is proposed, and old asphalt pavements are remodeled. The results show that remodeling pavement has high similarity to the original pavement, and the similarity gets better with the time of accelerated and loading test. The entropy of pavement skid resistance raises after surface treatment, indicating that pavement maintenance tends to unify each subsystem and make the function of the whole structure more stable.
     According to fog seal treatment research by accelerated loading test, important achievements are scored as follows:
     (1) The attenuation of pavement performance under‘Do-Nothing’conditions is reviewed, and the indicators are found to be consistent with‘S-type’function characteristics. And equation are fitted with correlation coefficients higher than 0.9.
     (2) Four different dosages of asphalt materials are used on remold pavement, the jump rate of pavement performance is calculated by comparing test results with untreated pavement, concluding that the best dosage is 0.5kg/m2. In the meanwhile, performance of pavement post-treated with sand spray is better than brushing asphalt only, and the average performance jump rate increased by 50%.
     (3) After fog sealing, sanding process can increase the pavement anti-slide performance. Sanding process and mechanism are discussed, and factors, such as sand particle size, spreading volume, quality, angularity which could affect pavement performance, are focused on. Ii is concluded that sand with 1.18mm particle size is the best choice, and the suitable dosage is about0.5kg/m2. Diabase and basalt are good for spraying considering the durability, surface vision and price. It is also found that natural sand with smooth surface is weak in bonding with the asphalt, leading to negative results, for example roll ball effect. Besides, it may even cause negative effects, which will get more serious with larger particles. Therefore, natural sand is not recommended to be used for post-processing of fog sealing.
引文
[1] Robert M. Davies and Jim Sorenson. "Pavement Preservation: Preserving Our Investment in Highways". Public Roads, January/February 2000·Vol. 63·No. 4. pp.7-8.
    [2] "Pavement Preventive Maintenance Guidelines". Foundation for Pavement Preservation, January 2001 (Updated March 27, 2001). pp.2
    [3] Geoffrey Lamptey, Samuel Labi, Zongzhi Li. "Decision support for optimal scheduling of highway pavement preventive maintenance within resurfacing cycle". Decision Support Systems 46(2008): pp. 379.
    [4] N. Bandara, M. Gunaratne. "Current and Future Pavement Maintenance Prioritization Based on Rapid Visual Condition Evaluation". Journal of Transportation Engineering /Match/April 2001. pp. 116-122.
    [5]陶华,汤凯.沥青路面状况的非线性可拓综合评价[J].中南公路工程,2006,31(4):10-13.
    [6]曾峰,张肖宁,李智.应用聚类分析法确定沥青路面预防性养护方案[J].华南理工大学学报(自然科学版),2008,36(6):67-71.
    [7] D.G.PESHKIN, T.E. HOERNER, K.A. ZIMMERMAN. Optimal Timing of Pavement Preventive Maintenance Treatment Applications. NCHRP Report 523, TRANSPORTAT!ON RESEARCH BOARD, WASHINGTON, D.C, 2004.pp. 8-10.
    [8]董瑞琨,孙立军,彭勇.路面预防性养护时机确定方法探讨[J].中国安全科学学报,2004,14(3):31-34.
    [9]董瑞琨,孙立军,彭勇,张永兴.基于沥青路面功能性能的预防性养护时机指标[J].地下空间与工程学报,2005,1(2):292-294.
    [10]姚玉玲,任勇,陈拴发.沥青路面的预防性养护时机[J].长安大学学报(自然科学版),2006,26(6):34-38.
    [11]任勇.基于生命周期费用的沥青路面预防性养护时机研究[D],长安大学,2006.4:45-55.
    [12]资建民,王海军,邓海龙,周伟.基于效用模型的沥青路面预防性养护研究[J].公路交通科技,2006,23(12):2-5.
    [13]交通部公路科学研究院.微表处和稀浆封层技术指南[S].人民交通出版社,2006.
    [14] Stephen R. Mueller. "Chip seal-best practices", NCHRP Synthesis 342.pp.15-16.
    [15]孙祖望.沥青路面养护维修技术的发展与新材料、新工艺、新技术的应用(二)[J].建设机械技术与管理,2004.9:49.
    [16]贺华.改性乳化沥青及微表处性能研究[D].长安大学,2006:10.
    [17]马翔.高速公路修复工程中多种类型沥青混合料性能对比研究[D].东南大学, 2006: 3.
    [18]程永春等.超薄磨耗层沥青混合料路用性能试验研究[J].公路,2008(3):13-16.
    [19]焦继成.超薄磨耗层在高速公路养护中的应用[J].公路交通科技(应用技术版),2007:60-63
    [20]曹卫东,沈建荣,韩恒春.超薄沥青混凝土面层技术研究及应用简介[J].石油沥青,2005,19(4):56-58.
    [21]任明艳,左谔群.高速公路沥青路面典型病害及分析[J].黑龙江交通科技,2006(2):2.
    [22]李保红,朱毅军.高速公路沥青混凝土路面病害调查与分析[J].公路,2006(8):209.
    [23]刘孔杰.高速公路路面检测评价是确定维修方案的前提[J].交通标准化,2005.9:39.
    [24]刘国华.河南省高速公路车辙产生层位分析[J].河南科学,2008,26(6):700~702.
    [25]徐世法等.沥青铺装层病害防治与典型实例[M].人民交通出版社,2005:3.
    [26]沙庆林.高速公路沥青路面早期破坏现象及预防[M].人民交通出版社,2004:181-189.
    [27] JTG H20-2007.公路技术状况评定标准[S].
    [28]虎增福.对我国微表处技术推广应用中一些问题的思考[J].石油沥青,2004.12:3.
    [29] An Overview of Surface Rehabilitation Techniques for Asphalt Pavements. Publication No. FHWA-PD-92-008.pp.1-2.
    [30] Pavement Surface Analysis Laboratory.http://www.tfhrc.gov/about/pavesurf.htm.
    [31] Asphalt Emulsion——Section4 Testing. AEMA, 2004:pp.1.
    [32]张登良.沥青路面工程手册[M].人民交通出版社,2003: 190-191.
    [33] Research Protocols for Pavement Preservation. AASHTO Lead States‘Work Plan, 1999:2-5.
    [34] Nina McLawhorn. Pavement Preventive Maintenance. Transportation Synthesis Report, 2003.7:5-7.
    [35] Kathleen T. Hall, Carlos E. Correa, Amy L. Simpson. Performance of Flexible Pavement Maintenance Treatments in the LTPP SPS-3 Experiment. TRB 2003 Annual Meeting CD-ROM:2-15
    [36] R. Gary Hicks, Stephen B. Seeds, David G. Peshkin. Selecting a Preventive Maintenance Treatment for Flexible Pavements. Foundation for Pavement Preservation, 1999:30-36
    [37] Kathryn A. Zimmerman, David G. Peshkin. Integrating Preventive Maintenance and Pavement Management Practices. Proceedings of the 2003 Mid-Continent Transportation Research Symposium:4-8
    [38] R. Gary Hicks, James S. Moulthrop. Framework for selecting effective preventive maintenance treatments for flexible pavements. Draft for 1997 TRB Annual Meeting, 1996:9-14
    [39]杜文杰.长益高速公路路面养护管理技术的开发与应用[D].长沙理工大学,2007.4:49-52.
    [40]左秋英.LASTIKA薄层沥青罩面应用技术研究[D].长沙理工大学,2007.4:23-33
    [41]施伟.基于费用分析的高等级公路沥青路面养护决策研究[D].扬州大学,2007.6:39, 64,78.
    [42]张文宇.项目级沥青路面养护决策的多目标优化研究[D].北京交通大学,2006.12:10,27-30,56.
    [43]陈希梅,王朝辉,王选仓.沥青混凝土路面再生处置优化[J].公路,2008.3:189-193.
    [44]胡霞光,王秉纲.应用遗传算法技术优化路面养护决策[J].公路,2002(4):121-125.
    [45] JTJ 052-2000.公路工程沥青及沥青混合料试验规程[S].
    [46]王随原,熊峰,谭巍.车辙仪技术发展水平综述[J].公路交通技术,2007(3):32-35.
    [47]谢俊伟.沥青混凝土路面辙槽破坏分析及车辙试验改进[J].公路,2004(10):42-45.
    [48]李智,徐伟,王绍怀,张肖宁.沥青混合料压实状态的数字图像分析[J].岩土工程学报,2002,24(7):452-455.
    [49]吴文亮,李智,张肖宁.基于数字图像技术的沥青混合料车辙试验研究[J].筑路机械与施工机械化,2008.3:55-57.
    [50]王明宇.路面分析仪车辙试验与旋转车辙仪加载模式比较分析[J].公路,2007(8):95-99.
    [51] Abdullah I. Al-Mansour, Abdulrahman Al-Suhaibani, Saad Al-Sayyari. Pavement skid resistance analysis and evaluation of highway network in Saudi Abrabia. First Gult Conference on Roads-Kuwait 11-13 March 2002.pp.597-598.
    [52]郭艳红.快速无损检测设备在高等级公路路面质量检测中的应用研究[D].东南大学,2006:5-6.
    [53]庄晔.轮胎动摩擦特性研究及其对车辆操纵稳定性的影响[D]吉林大学,2004:14-18.
    [54]和松.《公路路基路面现场测试规程》释义手册[M].人民交通出版社,2008:182-197.
    [55]http://training.ce.washington.edu/WSDOT/Modules/09_pavement_evaluation/09-4 body.htm
    [56] Basic Asphalt Recycling Manual. Asphalt Recycling Reclaiming Association 2001 Manual.pp.43-46.
    [57]刘建华.路面抗滑性能检测与评价技术研究[D].郑州大学,2002:25-31.
    [58] Gerardo W. Flintsch, Edgar de Leon, Kevin K. McGhee, Imad L. Al-Qadi. Pavement Surface-macro Texture Measurement and Application. TRB 2003 Annual Meeting CD-ROM:6.
    [59] Douglas I. Hanson, Robert S. James, Brian Waller. Kansas Tire/Pavement Noise Study. www.asphaltalliance.com. 2005, 6, pp.1-5.
    [60] Kuemmel, D. A., R. C. Sonntag, James Crovetti, Y. Becker, "Noise and Texture on PCC Pavements一Results of a Multi-state Study," Wisconsin Report SPR 08-99. June 2000
    [61] Yuen-Ting Fiona Leung, Susan Tighe, Gary MacDonald, Scott Penton. Development of Tools to Evaluate Quiet Pavement in the Laboratory and Field. Paper prepared for presentation of the 2006 Annual Conference of the Transportation Association of Canada Charlottetown.pp.8.
    [62] International Organization for Standardization, Measurement of the Influence of Road Surfaces on Traffic Noise- Part 1,Statistical Pass-by Method 11819-1
    [63] Lee, Cynthia S.Y., and Gregg G. Fleming, Measurement of Highway-Related Noise, FHWA-PD-96-046,May 1996
    [64] International Organization for Standardization, Measurement of the Influence of Road Surfaces on Traffic Noise- Part 2, Close-Proximity Method ISO Standard 11819-2, 1997
    [65] "Tire Testing Using Acoustical Intensity," General Motors North American Operational Center, Noise and Vibration Center, Undated
    [66]尹永胜.低噪声沥青路面的研究[D].长安大学,2005:6-7.
    [67] Crocker, M., D. Hanson, "Measurement of the Acoustical and Mechanical Properties of Porous Road Surfaces and Their Relationship to Tire/Road Noise," Submitted to the Transportation Research Board for the January 2004 Meeting
    [68] Sound pressure and intensity evaluations of low noise pavement structures with open-graded asphalt mixtures P14 NCAT Report 07-02
    [69]张登良.沥青路面工程手册[M].人民交通出版社,2003.4
    [70]沈金安.沥青及沥青混合料路用性能[M].人民交通出版社,2000.7
    [71]贾倩,赵强,王勇.小型公路路面加速加载试验设备MMLS1/3[J].设备管理与维修技术, 2009.8:78-79.
    [72]彭旭东,谢友柏,郭孔辉.轮胎摩擦学的研究与发展.中国机械工程,1999,10(2)
    [73]邓述慈.机械设计手册(第三版第3卷)[M].化学工业出版社,1993.
    [74]王端宜,雷超旭.一种主驱动轮式路面材料加速加载测试方法及装置:中国,200910038827.0[P]. 2009-09-16.
    [75]王野平.论轮胎与路面间的摩擦[J].汽车技术,1999,(2):11-13.
    [76]王成焘,姚振强,陈铭.汽车摩擦学[M].上海交通大学出版社,2002:410-413.
    [77]庄继德.汽车轮胎学[M].北京理工大学出版社,1997.174-178.
    [78] Powell J R, Compton D A C. Automated FTIR Spectrometry for Monitoring Hydrocarbon-based Engine Oils. Lubrication Engineering, 49(3):223~239.
    [79]李象榕,刘红,徐杰.汽油机在使用过程中羧酸类化合物的GPC定量分析[J].石油炼制与化工,1994,25(11):57~61.
    [80] Kirk T B, Stachowiak G W, W. Batchelor A. Fractal Parameters and Computer Image Analysis Applied to Wear Particles Isolated by Ferrograph. Wear, 1991, 145:347~365
    [81] Thomas A D H, et al. Computer Image Analysis for Identification of Wear Particles. Wear. 1991, 142:213~226.
    [82]酒井秀男.关于橡胶以及轮胎的接触压力分布的测定和图像处理的研究[J].橡胶工业,1995,(42):682-683;690.
    [83]张文春.汽车理论[M].机械工业出版社,2007.7:12-23.
    [84]张铁柱,霍炜.汽车原理教程[M].国防工业出版社,2003,9:211-214.
    [85]吴光强.汽车理论[M].人民交通出版社,2007,2:142-146.
    [86]杨公源.可编程控制器(PLC)原理与应用[M].电子工业出版社,2004.
    [87]廖常初.FX系列PLC编程及应用[M].机械工业出版社,2005.
    [88]李景福,孙伟春.基于PLC的PID温度智能控制系统的研究[J].机械制造与自动化,2008,6:151-153.
    [89]陶永华.新型PID控制及其应用[M].机械工业出版社,2002,11.101-103.
    [90]成大先.机械设计手册(单行本·气压传动)[M].化学工业出版社,2004.
    [91]中岛弘行.气动机构及回路设计[M].机械工业出版社,1979,1:191-193.
    [92] Guide for Pavement Friction.pp.2-15.
    [93]郑木莲等.纵向摩擦系数在路面抗滑性能评价中的应用.长安大学学报(自然科学版),2005.7,25(4):9-10.
    [94] Girum S. Awoke and Dimitrios Goulias. Review of Maryland’s Pavement Surface and the Impact of Variables Test Speed on Friction Values. TRB 2008 Annual Meeting CD-ROM. pp.5-6.
    [95] Review of Maryland’s Pavement Surface and the Impact of Variables Test Speed on Friction Values. TRB 2008 Annual Meeting CD-ROM. pp.5-6.
    [96] Jim W.Hall. Guide for Pavment Friction. NCHRP Project 1-43.pp.10-13.]
    [97] David A. Noyce, Hussain U. Bahia, Josue M. Yambo and Guisk Kim. Incorporating road safety into pavement management: Maximizing asphalt pavement surface friction for road safety improvements.pp.27.
    [98] Abdullah I. Al-Mansour. Pavement skid resistance analysis and evaluation of highway network in Saudi Arabia. First Gulf Conference on Roads-Kuwait 11-13. March, 2002. pp.604.
    [99]陈魁.试验设计与分析[M].清华大学出版社,2005.7:72.
    [100]陈克安,曾向阳,李海英.声学测量[M].科学出版社, 2005, 8. 5-10.
    [101] Douglas R. Lanman, Design of a Sound Level Meter[Z]. 2005.
    [102] International Organization for Standardization, Measurement of the Influence of Road Surfaces on Traffic Noise- Part 1,Statistical Pass-by Method 11819-1[S].
    [103]贾宁.低频噪声不容忽视(环境与人).人民日报网,www.people.com.cn,2004.10
    [104]金涛,童水光.逆向工程技术[M].机械工业出版社,2003.
    [105]张金萍.反求工程中重构精度的研究及其在凸轮反求设计中的应用[D],昆明理工大学出版社,2002.3:1.
    [106]吴向阳.基于逆向工程的模型重构系统研究[D],西北工业大学出版社,2001.3:1.
    [107] Nikornpon Prapaitrakul, Tom Freeman, Charles J. Glover.“ANALYZE EXISTING FOG SEAL ASPHALTS AND ADDITIVES: LITERATURE REVIEW”, Report 5091-1, Texas Transportation Institute, Texas A&M University, College Station, Texas. pp.7-8.
    [108] Jaejun Leel and Y. Richard Kim.“Performance Evaluation of Chip Seals with Polymer-Modified Emulsions”, Dept. of Civil, Construction, &Environmental Engineering, North Carolina State University.pp.9-12.
    [109] Estakhri C. K. and Agarwal, H.“Effectiveness of Fog Seals and Rejuvenators for Bituminous Pavement Surfaces”, Research Report 1156-1F, Project No. 1156, Texas Transportation Institute, College Station, 1991.
    [110] Scott Shuler and Anthony Lord.“A New Laboratory Test for Predicting Very Early Chip Seal Performance", Rep., Colorado State University.pp.7-10.
    [111]李晓军,张肖宁.CT技术在沥青胶结颗粒材料内部结构分析中的应用[J].公路交通科技,2006,2(22):14-16.
    [112]安建中.利用CT和数字图像处理技术对沥青混合料试件微观结构的识别[J].公路交通科技(应用技术版),2008,10:87-90.
    [113]谢涛.基于CT实时观测的沥青混合料裂纹扩展行为研究[D].西南交通大学,2006:85-88.
    [114]黄绍辉,王博亮,黄晓阳.基于表面与基于体素的医学图像三维重建方法研究[J].厦门大学学报(自然科学版),2002,41(6):744-745.
    [115]邹豪,陈丽华,刘积仁.基于体素的医学图像三维表面模型重建[J].东北大学学学报(自然科学版),2003,24(7):658-659.
    [116]顾本立.CT扫描的岩心分析精度[J].石油地球物理勘探,1994,29(1):117-121.
    [117]马林.间接拉伸试验模式下沥青混合料动态模量研究[D].华南理工大学,2009:72-79.
    [118]吴桂金.燃烧法测定沥青混合料中沥青含量应用的探[J].公路,2004,6:123-125.
    [119]刘雪松.燃烧法测定沥青混合料中沥青含量的试验研究[J].交通科技,2009,2:80-82.
    [120]刘之生,黄纯颖.反求工程技术[M].机械工业出版社,1992.4:64-71.
    [121]辛德刚,王哲人,周晓龙.高速公路沥青路面材料与结构[M].北京:人民交通出版社,2002
    [122] Joshua B. Tenenbaum. Rules and Similarity in Concept Learning. In Advances in Neural Information Processing Systems 12, MIT press, 2000:
    [123] Zhou Meili. Some concepts and Mathematical Consideration of Similarity between Systems Theory. Journal of System Science and Systems Engineering. Vol. No.1, International Academic Publisher, 1992.
    [124] Analyze existing fog seal asphalts and additives: Literatures review.pp:1-5.
    [125] Fog seal guidelines. Pp:1-6.
    [126] Asphalt Seal Coat Treatments.Pp:6-15.
    [127] Jayawickrama, P WThomas, B. Correction of Field Skid Measurements for Seasonal Variations in Texas. Transportation Research Record, 1998.pp.140-155.
    [128] Maintenance Operation Manual, Texas Department of Transportation (TXDOT), Revised September 2005.
    [129] Estakhri C. K. and Agarwal, H., "Effectiveness of Fog Seals and Rejuvenators for Bituminous Pavement Surfaces," Research Report 1156-1F, Project No. 1156, Texas Transportation Institute, College Station, 1991.
    [130] Asphalt System, Inc., "True Story of Rejuvenation," The Solution, http://asiroads.com/theSolution/theSolution.asp, SaltLake City, Utah.
    [131] Gregory McPherson and Jules Muchnick. Effects of street tree shade on asphalt concrete pavement performance. Journal of Arboriculture 31(6): November 2005. pp. 306-307.
    [132] Abushoshah, A.“Effect of Asphalt Mixtures Characteristics on Pavement Skid Resistance”, Senior project, College of Engineering, King Saud University, Riyadh 2000.
    [133] Measuring pavement friction characteristics at variable speeds for added safety. Summary of Final Report, Contract DO-51684 (DO-2022) July 2005.
    [134]吴敏,王端宜,雷超旭.沥青路面性能预测模型研究[J].广东公路交通,2009,1:5-8.
    [135] Muhammad Bilal Khursid, Muhammad Irfan, Samuel Labi. Comparison of methods for evaluating pavement interventions. Transportation Research Board of the National Academics, Washington, D.C., 2009, pp.25-36.
    [136]朱德通.最优化模型与实验[M].同济大学出版社,2003:2-6.
    [137] JTG F40-2004,公路沥青路面施工技术规范[S].
    [138]刘长生.汽车轮胎与公路路面附着系数的研究[J].公路,2006,5,(5):159-163.
    [139]赵占利,张争奇.抗滑表层沥青混合料中细集料的选择[J].公路,2005,4,(4):133-136.
    [140]李诗卓,董祥林.材料的冲蚀磨损与微动磨损[M].机械工业出版社,1987.10:301-304.
    [141] Halliday J.S., Hirst W.Proc.R, Soc.A236, 1956, pp: 409-411.
    [142] Stakston A D, Bahia H U, Bushek J J. Effect of fine aggregate angularity on compaction and shearing resistance of asphalt mixtures [J]. Transportaction Research Record, 2002(1789):16-21.
    [143] Topal A, Sengoz B. Determination of fine aggregate angularity in relationi with the resistance to rutting of hot mix asphalt [J]. Construction and Building Materials, 2005, 19(2):150-160.
    [144]杜少文,洪斌,薛亮。基于成像技术评估粗集料尺寸和形状特征[J].中外公路,2007,27,(1):188-190.
    [145]汪海年,郝培文,肖庆一,刘丽.粗集料棱角性的图形评价方法[J].东南大学学报(自然科学版),2008,38,(4):637-641.
    [146] Norman A Waterman, Fulmer Research Institute. Fulmer Materials Optimizer [M]. Stoke Poges, Vol., pat 2, 1976.
    [147] P.A. Swanson, A.F. Veffer. The Measurement of Abrasive Particle Shape and its Effect on Wear, 39th Annual Meeting in Chicago, Illinois, May 7-10, 1984.
    [148]公路工程集料试验规程[S].JTG E42—2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700