多孔切口杆状发射药燃烧性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高装填密度装药是发射装药技术的重点发展方向之一。多孔发射药具有较高的燃烧渐增性,但装填密度较低。多孔杆状发射药兼有高装填密度和高燃烧渐增性的特点,但侵蚀燃烧较严重,限制了其应用。本文采用对多孔杆状发射药进行横向切口的方法解决其侵蚀燃烧问题。设计了用于实验样品制备的切口简易设备,并通过密闭爆发器实验和中止实验,研究了不同切口宽度、切口间距对多孔长杆状药燃烧性能的影响。研究结果表明:在本研究实验条件下,切口的宽度1mm,切口间距0.835cm的多孔切口杆状发射药的燃烧性能与长度为0.835cm(L/d0为25.57,L/D为1.17)的多孔发射药的燃烧性能相近。将这种多孔切口杆状发射药在装药时进行有序排列,必然可以提高装填密度,对多孔长杆状发射药的应用具有一定的实际应用价值。
The propellant charge technology which has high loading density is a key direction in the area of propelling charge. The porous propellant has a better progressive combustibility, while its loading density is lower. The rod-shaped porous propellant has high loading density as well as good progressive combustibility, but its erosive burning is serious, which makes its application limited. This paper tries to deal with the problem of erosive burning by making some horizontal incision in the porous rod-like propellant. A special mold using for experiments was designed, and the rod-shaped porous propellant with different incision width and interval was made in this mold. The closed bomb test and the suspension of combustion were done for the further study of the erosion mechanism, and the combustion performance effect was studied by the factors of the length, incision width, spacing and other factors. The results show that: the porous propellant with incision whose width is 1mm, and the distance between the two immediate incision is 0.835cm, has a similar combustion performance with the porous propellant whose length is 0.835cm(L/do is 25.57, LID is 1.17)under this experiment conditions. If this propellant arranged orderly when it was charged, the loading density must be improved. So this study has some practical value in the application of long rod-shaped propellant.
引文
[1]王泽山.火药装药设计原理[M].北京:兵器工业出版社,1995
    [2]路德维希,施蒂弗尔.火炮发射技术[M].北京:兵器工业出版社,1993
    [4]M. K. Choudhri, S. N. Asthana, etal. Studies on High Energy LOVA Compositions.24th International Annul Conference of ICT,1993
    [5]Simmons, R. L. Guidelines to higher energy gun propellants.27th International Annual Conference of ICT,1996.6
    [6]Simmons, R. L. Designing advanced gun propellants with improved energy release.32th International Annul conference of ICT,2001
    [7]王泽山.有关发射药和推进剂发展问题的一些观点.中国工程科学,2002,4(1):92-93
    [8]Laveritt C. S. Relative erosivity of nitramine gun propellants with thermoplastic/elastomer binder systems [ER]. MD:Army Research Lab, Aberdeen Proving Ground,2001
    [9]八○一研究室.内弹道学[M],1986
    [10]G. R. Miller(University of Maryland College Park, MD). A Review of the Crystal Structures of Common Explosives. Naval Research Laboratory(NRL/MR/612001-8585), Washington, DC 20375-5320
    [11]Michael G.leadore. High-Rate Mechanical Response of BAMO/GAP/RDX High-Energy Gun Propellant. ARL-TR-2597. September 2001
    [12]Robert J. Lieb Joseph M.heimerl. Characteristics of JAX gun propellant. AD-A283 644. ARL-TR-465, June 1994
    [13]黄振亚,廖昕.高能硝胺发射药在高膛压火炮上的使用安全性.火炸药学报,2003,(1):8~19
    [14].王泽山,发射药技术的展望[J].华北工学院学报,2001,36~40
    [15]徐复铭.21世纪先进发射药:低敏感高能发射药(1)——新材料和新实验技术[J].南京理工大学学报,2003,(5):551~560.
    [16]徐复铭.21世纪先进发射药:2):低敏感高能发射药——新配方、装药、点火和理论模拟技术[J].火炸药学报,2003,26(4):1~5
    [17]Horst A W, Baker P, Rice B, etal. Insensitive high energy propellants for advanced gun concepts[A]. Interlaken, Switzer land: Vetter Druck AG,2001,17-24
    [18]程石,孙耀琪.液体发射药火炮及其发展趋势[J].国防技术基础,2008,(4),51~55
    [19]王洪杰.发射药洁净燃烧技术研究进展[J].山西化工,2008,28(3):26~28
    [20]黄辉,王泽山,黄亨建.李金山.新型含能材料的研究进展[J].火炸药学报.2005,28(4):9-13
    [21]王小军,杨彩云,宋磊,曹端林,李永祥,王建龙.新型含能材料1.甲基-2,4,5-三硝基咪唑的研究进展[J].山东化工.2009,38:40-43
    [22]何金选,杨通辉,张海林.新型含能材料二硝酰胺胍的合成及性能测试固体火箭技术[J].2001,24(4):53-55
    [23]李欣.可燃药简装药对弹丸初速或然误差影响的分析[J].弹道学报.1994,(2):24~29
    [24]任玉立,陈少镇.火药化学与工艺学[M].北京:国防工业出版社,1981
    [25]陆安舫,云小侃,陈小泉.球形药的新进展[J].火炸药学报.1998,21(2):39~42
    [26]肖正刚,周伟良,应三九,施杰.球扁药应用于大口径火炮高装填密度发射装药[J].火炸药学报,1999,36(4):36~38
    [27]翁春生,袁亚雄,金志明.开槽管状药内弹道模型及计算[J].弹道学报,1993,(4):14~19
    [28]覃光明,王大安,李旭利,苏艳玲.开槽管状药在速燃发动机中的应用[J].兵工学报火化工分册,1996,(2):42~44
    [29]. Frederick W. Robbins, Albert W. Horst. DETAILED CHARACTERIZATION OF THE INTERIOR BALLISTICS OF SLOTTED STICK PROPELLANT. AD-A147 499,1994.
    [30]潘清,王琼林,显微红外光谱法测定EI发射药中钝感剂扩散系数[J].含能材料,2008,:16(5):521-524
    [31]王琼林.高能钝感发射药原理及技术基础[D].南京:南京理工大学,2000.
    [32]王琼林,杨文宝.钝感包覆发射药燃烧规律研究[J].兵工学报(火化工分册),(1),1996,28—30
    [33]何卫东,董朝阳.高分子钝感发射药的低温感机理[J].火炸药学报,2007,30(1):9-12
    [34]堵平,何卫东,王泽山.低温感发射药包覆层的力学性能[J].火炸药学报,28(2),2005,35—38
    [35]萧忠良,贺增弟,刘幼平等.变燃速发射药的原理与实现方法[J].火炸药学报,2005,28(1):25—27
    [36]He Zeng—di, Liu You—ping, M a Zhong—liang. et al,. Combustion property of variable—burning rate gun propellant[J]. Chinese Journal of Explosives and Propellants,2004, 27 (3):10—12
    [37]张丽华,马忠亮,刘幼平等.几何尺寸对管状变燃速发射药燃烧性能的影响[J].火炸药学报,2007,30(2):13-16
    [38]贺增弟,刘幼平,萧忠良.变燃速发射药微观结构及对燃烧的影响[J].中北大学学报,2005,26(6):424-427
    [39]王泽山,何卫东,徐复铭.火药装药设计原理[M].北京:北京理工大学出版社,2005
    [40]范文洲.程序控制开裂棒状发射药的燃烧性能[J].火炸药学报,1996,(4):4-5
    [41]. JANNA F propulsion meeting,1990,1-335
    [42]张洪林.侵蚀燃烧在发射装药内弹道中的应用研究[J].兵工学报,2008,(2):129-133
    [43]罗运军,余永刚.增能钝感包覆火药的燃烧与弹道性能[J].弹道学报,1998,(1):7-12
    [44]梁勇,王琼林,于慧芳.增能钝感单基药的燃烧特性[J].含能材料,2007,(6):597-599
    [45]魏学涛,卿辉,崔鹏腾.叠氮硝胺发射药燃烧性能调控技术[J].火炸药学报,2004,(4):46-49
    [46]王琼林,刘少武,于慧芳.高性能改性单基发射药的制备与性能[J].火炸药学报,2007,(6):68-71
    [47]吴毅,董朝阳,李幼临.105mm炮射导弹发射装药的一种优化设计方案[J].弹道学报,2006,(2):60-63
    [48]黄振亚,杨丽霞,李丽.发射药膛内动态燃速规律研究[J].兵工学报火化工分册,1996,(2):11-13
    [49]黄振亚,王泽山,张远波.发射药燃速压力指数变化规律的研究[J].含能材料,2006,(2):123-126
    [50]张柏生.炮药侵蚀燃烧的理论分析[J].南京理工大学学报,1986,27(2):446-472
    [51]张柏生.火药燃烧导论[M].南京:南京理工大学出版社,1988,180-183
    [52]王泽山等,火药实验方法[M].北京:兵器工业出版社,1996,3
    [53]王泽山.含能材料概论[M].哈尔滨:哈尔滨工业大学出版社,2008.08:14-15

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700