疏水缔合水凝胶的交联结构与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要围绕疏水缔合水凝胶(简称HA-gels)的交联结构与各项性能进行研究和探讨,以丙烯酰胺(AM)为亲水主单体,辛基酚聚氧乙烯10醚丙烯酸酯(OP10~AC)为疏水单体,在表面活性剂十二烷基硫酸钠(SDS)的水溶液中通过自由基胶束聚合制备一系列HA-gels。论文首先研究了SDS的浓度对HA-gels各方面性质的影响,包括凝胶的机械性能、光学透明性、溶胀行为及溶胀稳定性,根据HA-gels宏观性质的变化规律推测出凝胶内部的交联结构和胶束聚集形式,一方面研究了表面活性剂与疏水修饰的水溶性聚合物之间的相互作用关系,一方面探讨了凝胶的网络结构特点和构筑机理。我们分别采用拉伸和压缩的测试方法得到HA-gels在不同状态下的应力松弛曲线,通过广义的Maxwell模型对松弛曲线进行拟合,利用得到的松弛参数来描述HA-gels的粘弹性质,同时也通过HA-gels的应力松弛行为研究探讨了表面活性剂在凝胶网络结构中的重要作用。我们制备了一系列不同浓度的HA-gels,通过测试其弹性模量得到相应的网链参数,并探究了聚丙烯酰胺分子链缠结程度同凝胶浓度之间的标度关系,建立相应的数学模型,进而可以求出HA-gels在不同浓度下的缠结分子量。此外,我们还以N-异丙基丙烯酰胺(NIPAM)为主单体,辛基酚聚氧乙烯4醚丙烯酸酯(OP4~AC)为疏水单体,辛基酚聚氧乙烯10醚(OP10)为表面活性剂制备出具有温度敏感性的疏水缔合水凝胶(NI-HA-gels),并对其机械强度、光学透明性、溶胀/消溶胀行为、温度敏感性及其可逆性进行了系统的研究,由于特殊的构筑机理,NI-HA-gels展现出很多优异的性能。
Hydrogels have been widely applied in many fields because of their special properties, and the synthesis and modification of intelligent gels and high mechanical strength gels becomes a subject concerned by scientists all over the world. Recently, more novel hydrogels with high mechanical strength have been emerged constantly, which improved the mechanical strength and optical transparency of hydrogels well. However, the development, modifying, and mechanism researching about novel hydrogels is still a long-term task.
     At present, the study on the interaction between surfactants and hydrophobically modified water-soluble polymers most were focused on the semi-dilute solution system and the characterization method is limited, so that research progress is slow. How to describe and characterize the interaction between them directly is also a topic that needs of further research. Moreover, people paid little attention to the rubber elasticity and viscoelasticity of hydrogels, especially about chain entanglements effect, swelling effect, the limited tensibility of network chains, stress-relaxation behavior and so on. Hence, research on these contents needs more attentions and further developments.
     Last two years, a new kind of physical hydrogels has been synthesized in our lab, which is named hydrophobic association hydrogels (HA-gels). This kind of hydrogels not only exhibits ideal mechanical strength, swelling property and optical transparency, but also possesses self-recovery and remold property. In this paper, the HA-gels were prepared via a micelle copolymerization and acrylamide was adopted as main monomer, a small amount of octylphenol polyoxyethylene ether acrylate with10ethoxyl units (OP10-AC) was used as hydrophobic monomer, and sodium dodecylsulfate (SDS) was acted as surfactant. On the basis of our previous results, we made a further research on the cross-linked structure and various properties of HA-gels.
     Firstly, we studied the effects of surfactant content on the mechanical properties, network structure, and transparency of HA-gels. Three series of HA-gels with different OP10-AC concentrations were prepared in this test. We changed SDS contents and adopted the molar ratio of SDS and OP10-AC (R) as a variable. Tensile test was used to measure the mechanical properties of HA-gels, and obtained the strength parameters, i.e. tensile strengths and elongations at breakpoints. The results showed that the tensile strength of HA-gels exhibited a "down-up-down" trend as R increased, and at the same time, the minimum and maximum points on the variation curves for three series HA-gels occurred at the similar positions. The optical transparencies of HA-gels were measured through UV-vis spectroscopy and exhibited the same tendency as tensile strengths with R increasing. The results indicated that when R was different, the network structures of HA-gels were different, and the difference between operation and aggregation form of SDS and OP10-AC was great. Moreover, we also took an analysis on the effect of OP10-AC contents on the properties of HA-gels. Through the experiments of this chapter we found that the optimal property of HA-gels could be obtained when R was in the range of1-2and the OP10-AC content was around2%.
     The effect of SDS content on the swelling behaviors of HA-gels was also researched, and the used samples in the test were the same as mechanical test. The results of swelling test for hydrogels and re-swelling test for xero-gels showed that the swelling ratios for all three series gels exhibited an "up-down-up" tendency with R increasing (the same as tensile results), which illustrated that the network sizes of HA-gels under various R were different. At the same time, we also followed the weight losses of gels during the swelling process, which also showed an "up-down-up" tendency as R increased. The experimental results still indicated the weight losses of HA-gels during the initial stage of swelling process were mainly made up by redundant SDS molecules in the network. Furthermore, introducing more OP10~AC units could decrease the effective cross-linking density of HA-gels, so that the swelling rate would be accelerated and the swelling stability turned poor. In brief, when R was between1and2, and OP10-AC content was around2%, the obtained HA-gels possessed the optimal swelling property, which was well consistent with the experimental results in mechanical tests.
     Next, we made an analysis on the stress-relaxation behaviors of HA-gels, and adopted generalized Maxwell model to fit the stress-relaxation curves, and then calculated the relaxation times of HA-gels in all stages. Experimental results showed that under the constant external forces (drawing or compressing force), HA-gels would firstly undergo a rapid relaxation process of polymer chains, which was mainly decided by the conformational change of polymer chains, and we could evaluate it via various structure parameters. And then, because the disassociation process would occur for the associated micelles after a long enough time, HA-gels would undergo a lengthy relaxation process of cross-linking points and the stress would relax to zero. Moreover, the addition of SDS made a greatly effect on the relaxation behaviors of HA-gels, which must be closely related to the structure and strength of mixed micelles. All in all, through stress-relaxation test, we could get a more in-depth understanding on the viscoelasticity of HA-gels, and their properties could be adjusted well by changing the addition of SDS.
     A series of HA-gels with different monomer concentrations were prepared in this paper, whose concentration range was changed from10wt%to40wt%, and the molar ratio was fixed on1.23(R=1.23). First, the gel fraction could be obtained from swelling test, and then we could calculate the density and volume fraction of HA-gels. The parameters of elasticity, network chains density and molecular weight between adjacent cross-linking points were measured by tensile tests. These parameters could be used to further calculate the proportion of the contributions from hydrophobic association cross-linking points and physical chain entanglements in the network. An exponential equation about volume fraction of gels and network chains density of chain entanglements was built via iteration and self-consistent derivation method, and the exponential factor was2.684. Furthermore, we also calculated the entangled molecular weight and hydrophobic association molecular weight of HA-gels with different monomer concentrations. It can be seen that the tensile strength of HA-gels showed a growth by exponential form as monomer concentration increased, which must be related to the chain entanglements effect in the network of HA-gels. The experimental results could provide us more theoretical support for the further research on construction mechanism of HA-gels.
     Finally, thermosensitive hydrophobic associated hydrogels (NI-HA-gels) were prepared by free radical micelle copolymerization in aqueous solution of N-isopropylacrylamide (NIPAM), a small amount of hydrophobic monomer octylphenol polyoxyethylene4acrylate (OP4-AC), and nonionic surfactants octylphenol polyoxyethylene10ether (OP10). The effects of OP4-AC content on the various properties of NI-HA-gels together with phase transition behavior were studied via tensile test, UV-vis spectroscopy, and swelling/de-swelling kinetics. Experimental results indicated that with the increasing of OP4-AC content, the mechanical strength of gels enhanced markedly and the swelling ratio exhibited a down tendency. Furthermore, NI-HA-gels possessed a rapid response to changes in temperature, and the most prominent characteristic of NI-HA gels was that the change of OP4-AC content had no obvious effect on the response rate and transition temperature. We also followed the swelling/de-swelling behaviors of NI-HA-gels, and the results indicated that NI-HA-gels possessed excellent swelling/de-swelling switching behavior and swelling stability.
     In conclusion, we made a more in-depth research on the surfactant effect, chain entanglements effect, stress-relaxation behavior and intelligent modification of HA-gels, and then we got a more profound understanding on the cross-linked structure and construction mechanism of HA-gels.
引文
[1]Wichterle O, Lim D. Hydrophilic gels for biological use [J]. Nature,1960,185:117-118.
    [2]Hoffman A S, Schmer G, Harris C, Kraft W G. Covalent binding of biomolecules to radiation-grafted hydrogels on inert polymer surfaces [J]. Trans. Am. Soc. Artif Intern. Organs,1972,18:10-18.
    [3]Ratner B D, Hoffman A S. Synthetic Hydrogels for Biomedical Applications [M]. in: Hydrogels for Medical and Related Applications. Washington D C:ACS Symposium Series, American Chemical Society,1976,31:1-36.
    [4]Peppas N A (Ed.). Hydrogels in Medicine and Pharmacy [M]. CRC Press:Boca Raton, FL,1987,1-111.
    [5]Park K, Shalaby W S W, Park H (Eds.). Biodegradable Hydrogels for Drug Delivery [M]. Technomic, Lancaster, PA,1993.
    [6]Harland R S, Prud'homme R K (Eds.). Poly electrolyte Gels:Properties, Preparation, and Applications [M]. Washington, DC:American Chemical Society,1992.
    [7]Ulbrich K, Subr V, Podperova P, Buresova M. Synthesis of novel hydrolytically degradable hydrogels for controlled drug release [J]. J. Controlled Release,1995,34:155-165.
    [8]Hoffman A S. Intelligent Polymers [M]. in:Park K (Ed.). Controlled Drug Delivery. American Chemical Society, Washington, DC,1997.
    [9]Harris J M, Zalipsky S (Eds.). Poly(ethylene glycol) Chemistry and Biological Applications [M], ACS Symposium Series, American Chemical Society, Washington, DC,1997.
    [10]Lim F, Sun A M. Microencapsulated islets as bioartificial endocrine pancreas [J]. Science,1980,210:908-910.
    [11]Yannas I V, Lee E, Orgill D P. Synthesis and characterization of a model extracellular matrix that induces partial regeneration of adult mammalian skin [J]. Proc. Natl. Acad. Sci. USA,1989,86:933-937.
    [12]Gin H, Dupuy B, Baquey A, et al. Lack of responsiveness to glucose of microencapsulated islets of Langerhans after three weeks'implantation in the rat-influence of complement [J]. J. Microencapsul.,1990,7:341-346.
    [13]Matthew H W., Salley S O, Peterson W D, et al. Complex coacervate microcapsules for mammalian cell culture and artificial organ development [J]. Biotechnol. Prog.,1993,9:510-519.
    [14]Hsu F Y, Tsai S W, Wang F F, et al, The collagen-containing alginate/poly(L-lysine)/alginatemicrocapsules [J]. Artif Cells Blood Substit. Immobil. Biotechnol.,2000,28:147-154.
    [15]Sefton M V, May M H, Lahooti S, et al. Making microencapsulation work:conformal coating immobilization gels and in vivo performance [J]. J. Controlled Release,2000,65:173-186.
    [16]Woerly S. Porous hydrogels for neural tissue engineering [J]. Porous Mater. Tiss. Eng.,1997,250:53-68.
    [17]Hubbell J A. Synthetic biodegradable polymers for tissue engineering and drug delivery [J]. Curr. Opin. Solid State Mater. Sci.,1998,3:246-251.
    [18]Dillon J P, Yu X J, Sridharan A, et al. The influence of physical structure and charge on neurite extension in a3D hydrogel scaffold [J]. J. Biomater. Sci. Polym. Ed.,1998,9:1049-1069.
    [19]Cao Y L, Rodriguez A, Vacanti M, et al. Comparative study of the use of PGA, calcium alginate and pluronics in the engineering of autologous porcine cartilage [J]. J. Biomater. Sci. Polym. Ed.,1998,9:475-487.
    [20]Borkenhagen M, Clemence J F, Sigrist H, et al. Three-dimensional extracellular matrix engineering in the nervous system [J]. J. Biomed. Mater. Res.,1998,40:392-400.
    [21]Kim B S, Nikolovski J, Bonadio J, et al. Cyclic mechanical strain regulates the development of engineered smooth muscle tissue [J]. Nat. Biotechnol.,1999,17:979-983.
    [22]Peppas N A (Ed.). Hydrogels in Medicine and Pharmacy [M]. CRC Press, Boca Raton, F L,1986, Vol. I-III.
    [23]Rosiak J M, Yoshii F. Hydrogels and their medical applications [J]. Nucl. Instrum. Methods Phys. Res. Sec. B,1999,151:56-64.
    [24]Galaev I Y, Mattiasson B. Smart polymers and what they could do in biotechnology and medicine [J]. Trends Biotechnol.,1999,17:335-340.
    [25]Baldwin S P, Saltzman W M. Materials for protein delivery in tissue engineering [J]. Adv. Drug Deliv. Rev.,1998,33:71-86.
    [26]Gombotz W R, Pettit D K. Biodegradable polymers for protein and peptide drug Delivery [J]. Bioconjug. Chem.,1995,6:332-351.
    [27]Peppas N A, Bures P, Leobandung W, et al. Hydrogels in pharmaceutical Formulations [J]. Eur. J. Pharm. Biopharm.,2000,50:27-46.
    [28]Peppas N A, Huang Y, Torres-Lugo M, et al. Physicochemical foundations and structural design of hydrogels in medicine and biology [J]. Annu. Rev. Biomed. Eng.,2000,2:9-29.
    [29]Gehrke S H. Synthesis and properties of hydrogels used for drug delivery [J]. Drugs Pharm. Sci.,2000,102:473-546.
    [30]Park K, Shalaby W S W, Park H (Eds.). Biodegradable Hydrogels for Drug Delivery [M]. Basle:Technomic,1993.
    [31]Campoccia D, Doherty P, Radice M, et al. Semisynthetic resorbable materials from hyaluronan esterification [J]. Biomaterials,1998,19:2101-2127.
    [32]Prestwich G D, Marecak D M, Marecak J F, et al. Controlled chemical modification of hyaluronic acid [J]. J. Controlled Release,1998,53:93-103.
    [33]Okumura Y, Ito K. The polyrotaxane gel:A topological gel by figure-of-eight cross-links [J]. Adv. Mater.,2001,13:485-487.
    [34]Gong J P, Katsuyama Y, Kurokawa T, et al. Double network hydrogels with extremely high mechanical strength [J]. Adv. Mater.,2003,15:1155-1158.
    [35]Haraguchi K, Takehisa T. Composite hydrogels:A unique organic-inorganic network structure with extraordinary mechanical, optical, and swelling/deswelling properties [J]. Adv. Mater.,2002,14:1120-1124.
    [36]Gibson H W, Bheda M C, Engen P T. Rotaxanes, catenanes, polyrotaxanes, polycatenanes and related materials [J]. Prog. Polym. Sci.,1994,19:843-945.
    [37]Sauvage J P, Dietrich-Buchecker C. Molecular Catenanes [M]. In:Rotaxanes and knots. Weinheim:Wiley-VCH,1999.
    [38]Karino T, Okumura Y, Ito K, et al. SANS studies of spatial inhomogeneities of slide-ring gels [J]. Macromolecules,2004,37:6177-6182.
    [39]Granick S, Rubinstein M. Polymers:A multitude of macromolecules [J]. Nat. Mater.,2004,63:586-587.
    [40]Fleury G, Schlatter G, Brochon C, et al. From high molecular precursor polyrotaxanes to supramolecular sliding networks. The "Sliding Gels"[J]. Polymer,2005,46:8494-8501.
    [41]Ito K. Novel cross-linking concept of polymer network:synthesis, structure, and properties of slide-ring gels with freely movable junctions [J]. Polym. J.,2007,39:489-499.
    [42]Murata N, Konda A, Urayama K, et al. Anomaly in stretching-induced swelling of slide-ring gels with movable cross-links [J]. Macromolecules,2009,42:8485-8491.
    [43]Sakai T, Murayama H, Nagano S, et al. Photoresponsive slide-ring gels [J]. Adv. Mater.,2007,19:2023-2035.
    [44]Ito K. Slide-ring materials using topological supramolecular architecture [J]. Curr. Opin. Solid State Mater. Sci.,2010,14:28-34.
    [45]Li J. Cyclodextrin inclusion polymers forming hydrogels [J]. Adv. Polym. Sci.,2008,222:79-113.
    [46]Karino T, Okumura Y, Zhao C, et al. SANS studies on deformation mechanism of slide-ring gels [J]. Macromolecules,2005,38:6161-6167.
    [47]Shinohara Y, Kayashima K, Okumura Y, et al. Small-angle X-ray scattering study of the pulley effect of slide-ring gels [J]. Macromolecules,2005,39:7386-7391.
    [48]Graessley W W, Pearson D S. Stress-strain behavior in polymernetworks containing nonlocalized junctions [J]. J. Chem. Phys.,1977,66:3363-3370.
    [49]de Gennes P-G. Sliding gels [J]. Physica A,1999,271:231-237.
    [50]Gong J P. Friction and lubrication of hydrogels-its richness and complexity [J]. Soft Matter,2006,2:544-552.
    [51]Tominaga T, Tirumala V R, Lin E K, et al. The molecular origin of enhanced toughness in double-network hydrogels:A neutron scattering study [J]. Polymer,2007,48:7449-7454.
    [52]Huang M, Furukawa H, Tanaka Y, et al. Importance of entanglements between first and second components in high-strength double network gels [J]. Macromolecules,2007,40: 6658-6664.
    [53]Webber R E, Creton C, Brown H R, et al. Large strain hysteresis and Mullins effect of tough double-network hydrogels [J]. Macromolecules,2007,40:2919-2927.
    [54]Tirumali V R, Timinaga T, Lee S, et al. Molecular model for toughening in double-network gels [J]. J. Phys. Chem. B,2008,112:8024-8033.
    [55]Tominaga T, Tirumali V R, Lee S, et al. Thermodynamic interactions in double-network hydrogels [J]. J. Phys. Chem. B,2008,112:3903-3909.
    [56]Tanaka Y, Kawauchhi Y, Kurokawa T, et al. Localized yielding around crack tips of double-network gels [J]. Macro. Rapid Commun.,2008,29:1514-1520.
    [57]Yang W, Furukawa H, Gong J P. Highly extensible double-network gels with self-assembling anisotropic structure [J]. Adv. Mater.,2008,20:4499-4503.
    [58]Furukawa H, Kuwabara R, Tanaka Y, et al. Tear velocity dependence of high-strength double-network gels in comparison with fast and slow relaxation modes observed by scanning microscopic light scattering [J]. Macromolecules,2008,41:7173-7178.
    [59]Tominaga T, Tanaka Y, Furukawa H, et al. Friction of a soft hydrogel on rough substrates [J]. Soft Mater,2008,4:1645-1652.
    [60]Yu Q M, Tanaka Y, Furukawa H, et al. Direct observation of damage zone around crack tips in double-network gels [J]. Macromolecules,2009,42:3852-3855.
    [61]Nakajima T, Furukawa H, Tanaka Y, et al. True chemical nature of double-network hydrogels [J]. Macromolecules,2009,42:2184-2189.
    [62]Yue Y, Sheng X, Wang P. Fabrication and characterization of microstructured and pH sensitive interpenetrating networks hydrogel films and application in drug delivery field [J]. Eur. Polym. J.,2009,45:309-315.
    [63]Fernandez E, Mijangos C, Guenet J-M, et al. New hydrogels based on the interpenetration of physical gels of agarose and chemical gels of polyacrylamide [J]. Eur. Polym.J.,2009,45:932-939.
    [64]Jha A K, Hule R A, Jiao T, et al. Structural analysis and mechanical characterization of hyaluronic acid-based doubly cross-linked networks [J]. Macromolecules,2009,42:537-546.
    [65]Dai T, Qing X, Lu Y, Xia Y. Conducting hydrogels with enhanced mechanical strength [J]. Polymer,2009,50:5236-5241.
    [66]Podsiadlo P, Kaushik A K, Shim B S, et al. Can nature's design be improved upon? High strength, transparent nacre-like nanocomposites with double network of sacrificial crosslinks [J]. J. Phys. Chem. B,2008,112:14359-14363.
    [67]Zhang X, Guo X, Yang S, et al. Double-network hydrogel with high mechanical strength prepared from two biocompatible polymers [J]. J. Appl. Polym. Sci.,2009,112:3063-3070.
    [68]Flory P J. Elasticity of polymer networks cross-linked in states of strain [J]. Trans. Faraday Soc.,1960,56:722-743.
    [69]Kaang S, Gong D, Nah C. Some physical characteristics of double-networked natural rubber [J]. J. Appl. Polym. Sci.,1997,66:917-924.
    [70]Mott P H, Roland C M. Mechanical and optical properties of double network rubbers [J]. Macromolecules,2000,33:4132-4137.
    [71]Santangelo P G, Roland C M. Role of strain crystallization in the fatigue resistance of double network elastomers [J]. Rubber Chem. Technol.,2003,76:892-898.
    [72]Wang J, Hamed G R, Umetsu K, Roland C M. The Payne effect in double network elastomers [J]. Rubber Chem. Technol.,2005,78:76-83.
    [73]Sperling L H. Interpenetrating Polymer Networks and Related Materials [M]. New York: Plenum Press,1981.
    [74]Kaneko D, Tada T, Kurokawa T, et al. Mechanically strong hydrogels with ultra-low frictional coefficients [J]. Adv. Mater.,2005,17:535-538.
    [75]Lee W F, Fu Y T. Effect of montmorillonite on the swelling behavior and drug-release behavior of nanocomposite hydrogels [J]. J. Appl. Polym. Sci.,2003,89:3652-3660.
    [76]Haraguchi K, Li H-J. Control of the coil-to-globule transition and ultrahigh mechanical properties of PNIPA in nanocomposite hydrogels [J]. Angew. Chem. Int. Ed. Engl.,2005,44:6500-6204.
    [77]Nie J, Du B, Oppermann W. Swelling, elasticity, and spatial inhomogeneity of poly(N-isopropylacrylamide)/clay nanocomposite hydrogels [J]. Macromolecules,2005,38:5729-5736.
    [78]Haraguchi K, Li H-J. Mechanical properties and structure of polymer-clay nanocomposite gels with high clay content [J]. Macromolecules,2006,39:1898-1903.
    [79]Haraguchi K. Nanocomposite gels:new advanced functional soft materials [J]. Macromol. Symp.,2007,256:120-130.
    [80]Shibayama M, Miyazaki S, Endo H, et al. Deformation studies on polymer-clay nanocomposite gels [J]. Macromol. Symp.,2007,256:131-136.
    [81]Haraguchi K. Nanocomposite hydrogels [J]. Curr. Opin. Solid State Mater. Sci.,2007,11:47-54.
    [82]Shin M K, Kim S I, Kim S J, et al. Controlled magnetic nanofiber hydrogels by clustering ferritin [J]. Langmuir,2008,24:12107-12111.
    [83]Jiang G Q, Liu C, Liu X L, et al. Construction and properties of hydrophobic association hydrogels with high mechanical strength and reforming capability [J]. Macromol. Mater. Eng.,2009,294:815-820.
    [84]Jiang G Q, Liu C, Liu X L, et al. Network structure and compositional effects on tensile mechanical properties of hydrophobic association hydrogels with high mechanical strength [J]. Polymer,2010,51:1507-1515.
    [85]Yang M, Liu C, Li Z Y, et al. Temperature-responsive properties of poly(acrylic acid-co-acrylamide) hydrophobic association hydrogels with high mechanical strength [J]. Macromolecules,2010,43:10645-10651.
    [86]Jiang G Q, Liu C, Liu X L, et al. Self-healing mechanism and mechanical behavior of hydrophobic association hydrogels with high mechanical strength [J]. J. Macromol. Sci. A,2009,47:335-342.
    [87]Liu C, Yu J F, Jiang G Q, et al. Thermosensitive Poly(N-isopropylacrylamide) hydrophobic associated hydrogels:Optical, swelling/de-swelling and mechanical Properties [J]. J. Mater. Sci.,2013,48:774-784.
    [88]姜国庆.疏水改性聚丙烯酰胺水溶液和水凝胶的制备与性质研究[D].吉林:吉林大学化学学院,2010.
    [89]杨猛.水凝胶的结构评价与环境敏感性研究[D].吉林:吉林大学化学学院,2011.
    [90]陈清瑞.基于环糊精的包结复合凝胶与疏水缔合凝胶的制备及其性质研究[D].吉林:吉林大学化学学院,2010.
    [91]吕雪.表面活性剂及凝胶薄膜的电化学表征和应用研究[D].吉林:吉林大学化学学院,2012.
    [92]赵国玺.表面活性剂物理化学[M].北京:北京大学出版社,1991,第一章.
    [93]Hayakawa K, Kwak J C T. Surfactant-Polyeleetrolyteinieractions. I. Binding of dodecyltrimethylammoniurn ions by sodium dextransulfate and sodium Poly (styrenesulfonate) in aqueous solution in the presence of sodiumchloride [J]. J. Phys. Chem.,1982,86:3866-3870.
    [94]Sehulz D N, Kaladas J J, Maurer J J, et al. Copolymers of acrylamide and surfactant macromonomers:synthesis and solution properties [J]. Polymer,1987,28:2110-2115.
    [95]Effing J J, McLennan I J, Kwak J C T. Associative phase separation observed in a hydrophobically modified Poly(acrylamide)/sodium dodecyl sulfate system [J]. J. Phys. Chem.,1994,98:2499-2502.
    [96]Hansson P. Self-assembly of ionic surfactants in polyelectrolyte solutions:a model for mixtures of opposite charge [J]. Langmuir,2001,17:4167-4108.
    [97]Bakshi M S, Kaur I. Aggregates of cationic surfactants and anionic polyelectrolytes in fluenced by bulky head group modifications [J]. Colloids Surf. A:Physicochem. Eng. Aspects,2003,224:185-197.
    [98]Jones M N. The interaction of sodium dodecyl sulfate with polyethylene oxide [J]. J. Colloid Interface Sci.,1967,23:36-42.
    [99]Schwuger M J. Mechanism of interaction between ionic surfactant and polyglycol ethers in water [J]. J. Colloid Interface Sci.,1973,43:491-498.
    [100]Goddard E D. Interactions of Surfactants with Polymers and Proteins [M]; Goddard E D, Ananthapadamanabham K P.(Eds.). CRC Press:Boea Raton,1993, pp123.
    [101]Jones M N. Dye solubilization by a polymer-surfactant complex [J]. J. Colloid Interface Sci.,1968,26:532-533.
    [102]Aiai H, Murara M, Shinoda K. The interaction between polymer and surfactant:The composition of the complex between polyviylpyrrdidone and sodium alkyl sulfate as revealed by surface tension, dialysis, and solubilization [J]. J. Colloid Interface Sci.,1971,37:223-227.
    [103]Holmberg C, Nilsson S, Singh S K, et al. Hydrodynamic and thermodynamic aspects of the SDS-EHEC-water system [J]. J. Phys. Chem.,1992,96:871-876.
    [104]Andrey V, Dobrynin R H, Colby M R. Scaling theory of polyelectrolyte solutions [J]. Macromolecules,1995,28:1859-1871.
    [105]Shirahama K, Himuro A, Takisawa N. Binding of hexadecylammonium surfactants to water-soluble neutral polymers [J]. Colloid Polym. Sci.,1987,96:265-272.
    [106]Witte E M, Engberts J B F N. Micelle-polymer complexes:Aggregation numbers, micellar rate effects and factors determining the complexation process [J]. Colloid Surf,1989,36:417-426.
    [107]Gao Z, Wasylishen R E, Kwak J C T. NMR studies in surfactant and polymer-surfactant systems:micelle formation of sodium co-Phenyldecanoate and interaction with poly (ethyleneoxide)[J]. J. Colloid Interface Sci.,1990,137:137-146.
    [108]Saito S, Yukawa M J. Interactions of polymers and cationic surfactants with thiocyanate as counterions [J]. J. Colloid Interface Sci.,1969,30:211-218.
    [109]Treiner C, Duy N. Interactions of copper dodecyl sulfate aggregates with Poly(ethyleneoxide) or Poly(vinylpyrrolidone)[J]. J. Phys. Chem.,1990,94:2021-2026.
    [110]Treiner C, Makayssi A. Interactions of cadmium dodecyl sulfate micells with poly(ethyleneoxide) or poly(vinylpyrmlidone):A dotentiometric investigation [J]. J. Colloid Interface Sci.,1992,150:314-323.
    [111]Pluektaveesak N, Konop A J, Colby R H. Viscosity of polyelectrolyte solutions with oppositely charged surfactant [J]. J. Phys. Chem. B.,2003,107:8166-8171.
    [112]Magne I G, Willy N, Harald H. Interactions between poly (ethylene oxide) and sodium dodecyl sulfate as studied by NMR, conductivity, and Viscosity at283.1-298.1K [J]. J. Colloid Interface Sci.,1998,197:191-197.
    [113]Holmberg C, Sundelof L O. Temperature dependence of hydrodynamic properties and surfactant-polymer interaction in solution. The EHEC/SDS/water system [J]. Langmuir,1996,12:883-889.
    [114]Anthony O, Zana R. Interactions between water-soluble polymers and surfactants: effect of the polymer hydrophobicity. I. Hydrophilic polyelectrolytes [J]. Langmuir,1996,12:1967-1975.
    [115]Wang X, Wang J, Wang Y, et al. Micellization of a series of dissymmetric gemini surfactants in aqueous solution [J]. J. Phys. Chem. B.,2003,107:11428-11432.
    [116]Sesta B, Segre A L, D'Aprano A, et al.1HNMR, surface tension, viseosity, and volume evidence of micelle-polymer hydrophobic interactions:LiPFN-PVP system [J]. J. Phys. Chem. B.,1997,101:198-204.
    [117]Shirahama K, Tohdo M, Murahashi M. The interaction between surfactant and polymer as observed by a spin probe method [J]. J. Colloid Interface Sci.,1982,86:283-284.
    [118]Brasher L L, Kaler E W. A small-angle neutron scattering (SANS) contrast variation investigation of aggregate composition in catanionic surfactant mixtures [J]. Langmuir,1996,12:6270-6276.
    [119]An S W, Lu J R, Thomas R K, et al. Apparent anomalies in surface excesses determined from neutron reflection and the gibbs equation in anionic surfactants with particular reference to perfluorooctanoates at the air/water interface [J]. Langmuir,1996,12:2446-2453.
    [120]Brown W, Fundin J, Miguel M G. Poly(ethylene oxide)-sodium dodecyl sulfate interactions studied using static and dynamic light scattering [J]. Macromolecules,1992,25:7192-7199.
    [121]Akiba I, Jeong Y, Sakurai K. Mesomorphic organization and phase diagram of mixtures of polymer terminated with ionic group and oppositely charged surfactant [J]. Macromolecules,2003,36:8433-8439.
    [122]Seng W P, Tam K C, Jenkins R D, et al. Calorimetric studies of model hydrophobically modified alkali-soluble emulsion polymers with varying spacer chain length in ionic surfactant solutions [J]. Macromolecules,2000,33:1727-1733.
    [123]唐善法,罗平亚.疏水缔合水溶性聚合物的研究进展[J].现代化工,2002,22:10-15.
    [124]于志纲,贾朝霞,任兆刚.疏水缔合水溶性聚合物的研究新进展[J].钻井液与完井液,2005,22:62-65.
    [125]Ringsdorf H, Venzmer J, Winnik F M. Fluoresecnce studies of hydrophobically modified poly (N-isopropylacrylamides)[J]. Macromolecules,1991,24:1678-1686.
    [126]Philippova O E, Hourdet D, Audebert R, et al. pH-responsive gels of hydrophobically modified poly (acrylic acid)[J]. Macromolecules,1997,30:8278-8285.
    [127]Li M, Jiang M, Zhang Q. Fluorescence studies o fhydrophobic association of fluorocarbon-modified Poly(N-isopropylacrylamide)[J]. Macromolecules,1997,30:470-478.
    [128]蒋锡夔,张劲涛.有机分子的簇集和自卷[M].上海:上海科学技术出版社,1996,第一章.
    [129]罗开富,张熙,黄荣华.疏水缔合水溶性聚合物的合成[J].油田化学,1999,16:282-285.
    [130]冯玉军,郑焰,罗平亚.疏水缔合聚丙烯酞胺的合成及溶液性能研究[J].化学研究与应用,2000,12:70-72.
    [131]Cathebras N, Collet A, Viguier M. Sythesis and linear viscoelasticity of fluorinated hydrophobically modified ethoxylated urethanes (F-HEUR)[J]. Macromolecules,1998,31:1305-1311.
    [132]邱星屏等.荧光法研究含长链烷基聚丙烯酞胺的疏水微区结构[J].高等学校化学学报,1995,16:1321-1323.
    [133]Wang Y L, Lu D H, Long C F, et al. Interactions between sodium dodecyl sulfate and hydrophobically modified Poly(acrylamide)s studied by electron spin resonance and transmission electron microscopy [J]. Langmuir,1998,8:2050-2054.
    [134]Kevelam J, van Breemen J F L, Blokzijl W, et al. Polymer-surfactant interactions studied by titration microcalorimetry:influence of Polymer hydrophobicity, electrostatic forces, and surfactant aggregational state [J]. Langmuir,1996,12:4709-4717.
    [135]Biggs S, Selb J, Candan F. Effect of surfactant on the solution properties of hydrophobically modified Polyacrylamide [J]. Langmuir,1992,3:838-847.
    [136]耿同谋,吴文辉.表面活性剂对孪尾缔合聚合物水溶液表观黏度的影响[J].旧用化学工业,2005,35:279-283.
    [137]徐鹏.疏水缔合水溶性聚合物溶液微观结构研究及表面活性剂对其流变性的影响[D].四川:西南石油学院,2001.
    [138]崔平,马俊涛,黄荣华.PABA疏水缔合水溶性共聚物溶液的合成与性能研究[J].化学研究与应用,2002,14:167-170.
    [139]Winnik F M. Association of hydrophobic polymers in water:fluorescence studies with labeled (hydroxypropyl) celluloses [J]. Macromolecules,1989,22:734-742.
    [140]Yekta A, Duhamel J, Adiwidjaja H. Association structure of telechelic associative thickeners in water [J]. Langmuir,1993,9:881-883.
    [141]耿同谋.疏水缔合水溶性聚合物P(AM/NaAA/DiAC16)的合成与性能[J].化学研究与应用,2007,19:390-394.
    [142]Anthony O, Zana R. Interactions between water-soluble polymers and surfactants: effect of the polymer hydrophobicity.2. Amphiphilic polyelectrolytes (polysoaps)[J]. Langmuir,1996,15:3590-3597.
    [143]Kulicke W-M, Arendt O, Berger M. Rheological characterization of the dilatant flow behavior of highly substituted hydroxypropylmethyl-cellulose solutions in the presence of sodium lauryl sulfate [J]. Colloid Polym. Sci.,1998,276:617-626.
    [144]Bokias G, Hourdet D, Iliopoulos I, et al. Hydrophobic interactions of poly(N-isopropylacrylamide) with hydrophobically modified poly(sodium acrylate) in aqueous solution [J]. Macromolecules,1997,30:8293-8297.
    [145]Holmberg C, Nilsson S, Satish K, et al. Hydrodynamic and thermodynamic aspects of the SDS-EHEC-water system [J]. Phys.Chem.,1992,96:871-876.
    [146]Hammarstrom A, Sundelof L-O. NMR study of polymer surfactant interaction in the system HPMC/SDS/water [J]. Colloid Polym. Sci.,1993,271:1129-1133.
    [147]刘雨文.阴离子表面活性剂对疏水缔合聚合物溶液粘度的影响研究[J].油气地质与采收率,2003,10:67-68.
    [148]Volpert E, Selb J, Caudau F. Associating behaviour of polyacrylamides hydrophobically modified with dihexylacrylamide [J]. Polymer,1998,39:1025-1033.
    [149]Tom A, Riehard B, Rammile E, et al. Influence of surfactants on the rheology of associating polymers in solution [J]. Langmuir,1994,10:1060-1070.
    [150]Zhang Y X, Da A H, Bbutler G B, et al. A fluorine-containing hydrophobically associating polymer. I. Synthesis and solution properties of copolymers of acrylamide and fluorine-containing acrylates or methacrylates [J]. J. Polym. Sci. Part A:Polym. Chem.,1992,30:1383-1391.
    [151]罗开富,叶林,黄荣华.AM/MEDMDA阳离子型疏水缔合水溶性聚合物的合成与表征[J].油田化学,1999,16:261-264.
    [152]冯玉军,郑焰,罗平亚.疏水缔合聚丙烯酞胺的合成及溶液性能研究[J].化学研究与应用,2000,12:70-73.
    [153]McCormick C L, Chang Y. Water-soluble copolymers:57. Amphiphilic cyclocopolymers of diallylalkoxybenzyl-methylammonium chloride and diallyl-dimethylammonium chloride [J]. Polymer,1994,35:3503-3512.
    [154]Semchyschyn D J, Carbone M A, Macdonald P M. Anionic polyelectrolyte binding to mixed cationic-zwitterionic surfactant micelles:A molecular perspective from2H NMR spectroscopy [J]. Langmuir,1996,12:253-260.
    [155]董宏伟,孙玉海,陈志.疏水缔合聚丙烯酰胺与阳离子双子表面活性剂的相互作用[J].合成化学,2007,15:165-168.
    [156]Philippova O E, Hourdet D, Khokhlov A R, et al. Interaction of hydrophobically modified poly(acrylic acid) hydrogels with ionic surfactants [J]. Macromolecules,1996,29:2822-2830.
    [157]Nilsson S, Thuresson K, Hansson P, et al. Mixed solutions of surfactant and hydrophobically modified Polymer controlling viscosity with micellarsize [J]. J. Phys. Chem. B,1998,102:7099-7105.
    [158]陈爱民,徐桂英,郑立强等.十二烷基氧丙基-β-轻基三甲基溴化铵与阴离子聚电解质的缔合作用[J].高等学校化学学报,2002,23:665-669.
    [159]张松梅,娄清香,毛国梁等.阳离子聚电解质与阴离子表面活性剂大分子复合物的形成及其溶液流变性能[J].化学世界,2005,2:79-83.
    [160]冯先华,董爱娥.表面活性剂与聚合物的相互作用[J].日用化学工业,2002,32:43-45.
    [161]董国君,樊明红,陈雨.表面活性剂与聚合物相互作用的研究[J].化学工程师,2004,3:64-65.
    [162]马德柱,徐种德,何平笙等.高聚物的结构与性能[M].(第二版).科学出版社,1995.
    [163]刘凤岐,汤心颐.高分子物理[M].(第二版).高等教育出版社,2004.
    [164]Flory P J. Principles of Polymer Chemistry [M]. Cornell University Press:Ithaca, NY,1953.
    [165]Treloar L R G. The Physics of Rubber Elasticity [M].3rd ed. Clarendon Press:Oxford, U.K.,1975.
    [166]Mark J E. Rubber elasticity [J]. J. Chem. Educ.,1981,58:898-903.
    [167]Eichinger B E. The theory of high elasticity [J]. Annu. Re. Phys. Chem.,1983,34:359-387.
    [168]Eichinger B E. Polymer Networks [M]. San Diego'92Ed, Macromolecular Symposia,1993, Vol.76.
    [169]Gent A N. Rubber Elasticity:Basic Concepts and Behavior. In Science and Technology of Rubber [M].2nd ed.; Mark J E, Erman B, Eirich F R, Eds. Academic Press:San Diego, CA,1994, pp1.
    [170]Mark J E, Erman B. Rubberlike Elasticity:A Molecular Primer [M]. Wiley-Interscience: New York,1988.
    [171]Morawetz H. Polymers:The Origins and Growth of a Science [M]. Wiley-Interscience: New York,1985.
    [172]James H M, Guth E. Theory of the increase in rigidity of rubber during cure [J]. J. Chem. Phys.,1947,15:669-683.
    [173]James H M, Guth E. Statistical thermodynamics of rubber elasticity [J]. J. Chem. Phys.,1953,21:1039-1048.
    [174]Wall F T. Statistical thermodynamics of rubber. Ⅱ.[J]. J. Chem. Phys.,1942,10:485-488.
    [175]Wall F T, Flory P J. Statistical thermodynamics of rubber elasticity [J]. J. Chem. Phys.,1951,19:1435-1439.
    [176]Flory P J, Rehner J. Statistical mechanics of cross-linked polymer network Ⅰ. Rubber elasticity [J]. J. Chem. Phys.,1943,11:512-520.
    [177]Flory P J, Rehner J. Statistical mechanics of cross-linked polymer network Ⅱ. Swelling [J]. J. Chem. Phys.,1943,11:521-526.
    [178]Erman B, Mark J E. Structures and Properties of Rubberlike Networks [M]. Oxford University Press:New York,1997.
    [179]Mooney M. The theory of large elastic deformation [J]. J. Appl. Phys.,1940,11:582-592.
    [180]Rivlin R S. Large elastic deformation of isotropic materials-Ⅳ. Further developments of the general theory [J]. Philos. Trans. R. Soc. London, Ser.,1948, A241:379-397.
    [181]Mullins L. Determination of degree of crosslinking in natural rubber vulcanizates. Part I [J]. J. Appl. Polym. Sci.,1956,19:225-236.
    [182]Moore C G, Watson W F. Determination of degree of crosslinking in natural rubber vulcanizates. Part II [J]. J. Appl. Polym. Sci.,1956,19:237-254.
    [183]Meissner B. Structure and properties of rubber network. Part I.[J]. J. Polym. Sci.1967, C16:781-792.
    [184]Meissner B, Klier I, Kucharik S. Structure and properties of rubber network. Part II.[J]. J. Polym. Sci.,1967, C16:793-804.
    [185]Deam R T, Edwards S F. The theory of rubber elasticity [J]. Philos. Trans. R. Soc. London Ser. A,1976,280:317-353.
    [186]Ball R C, Doi M, Edwards S F, et al. Elasticity of entangled network [J]. Polymer,1981,22:1010-1018.
    [187]Edwards S F, Vilgis T. The effect of entanglements in the rubber elasticity [J]. Polymer,1986,27:483-492.
    [188]Ronca G, Allegra G. An approach to rubber elasticity with internal constraints [J]. J. Chem. Phys.,1975,63:4990-4997.
    [189]Flory P J. Theory of elasticity of polymer networks. The effect of local constraints on junctions [J]. J. Chem. Phys.,1977,66:5720-5729.
    [190]Flory P J, Erman B. Theory of elasticity of polymer netwroks.3[J]. Macromolecules,1982,16:800-806.
    [191]Kloczkowski A, Mark J E, Erman B. A diffused-constraint theory for the elasticity of amorphous polymer networks.1. Fundamentals and stress-strain isotherms in elongation [J]. Macromolecules,1995,28:5089-5096.
    [192]Kloczkowski A, Mark J E, Erman B. A diffused-constraint theory for the elasticity of amorphous polymer networks.2. Molecular deformation tensors and strain birefringence [J]. Comp. Polym. Sci.,1995,5:37-46.
    [193]Erman B, Monnerie L. Theory of elasticity of amorphous networks:effect of constraints along chains [J]. Macromolecules,1989,22:3342-3348.
    [194]Graessley W W. Entangled linear, branched and netwrok polymer systems molecular theory [J]. Adv. Polym. Sci.,1982,47:67-117.
    [195]Langley N R. Elastically effective strand density in polymer network [J]. Macromolecules,1968,1:348-352.
    [196]Rennar N, Oppermann W. Swelling behavior and mechanical properties of end-linked poly(dimethylsiloxane) network and randomly crosslinked polyisoprene networks [J]. Colloid. Polym. Sci.,1992,270:527-536.
    [197]Erman B,Wagner W, Flory P J. Elasticity modulus and degree of cross-linking of poly(ethyl acrylate) networks [J]. Macromolecules,1980,13:1554-1558.
    [198]de Gennes P G. Reputation of a polymer chain in the presence of fixed obstacles [J]. J. Chem. Phys.,1971,55:572-579.
    [199]de Gennes P G. Scaling Concepts in Polymer Physics [M]. Cornell University Press: Ithaca, NY,1979.
    [200]Doi M, Edwards S F. The Theory of Polymer Dynamics [M].2nd ed. Clarendon Press: Oxford, England,1988.
    [201]Doi M J. Explanation for the3.4-power law for viscosity of polymeric liquids on the basis of tube model [J]. Polym. Sci., Polym. Phys. Ed.,1983,21:667-684.
    [202]Klein J. The onset of entangled behavior in semidilute and concentrated polymer solutions [J]. Macromolecules,1978,11:852-858.
    [203]Daoud M, de Gennes P G. Some remarks on the dynamics of polymer melts [J]. J. Polym. Sci.:Polym. Phys. Ed.,1979,17:1971-1981.
    [204]Struglinksi M J, Graessley W W. Effects of polydispersity on the linear viscoelastic properties of entangled polymers. I. Experimental observations for binary mixtures of linear polybutadiene [J]. Macromolecules,1985,18:2630-2643.
    [205]Marrucci G. Relaxation by reputation and tube enlargement:a model for polydisperse polymers [J]. J. Polym. Sci., Phys. Ed.,1985,23:159-177.
    [206]Andrady A L, Llorente M A, Mark J E. Model networks of end-linked polydimethylsioxane chains. VII. Networks designed to demonstrate non-Gaussian effects related to limited chain extensibility [J]. J. Chem. Phys.,1980,72:2282-2290.
    [207]Mark J E. Thermoset Elastomers. In Applied Polymer Science:21st Century [M]. Craver C D, Carraher C E, Eds. American Chemical Society:Washington, DC,2000, pp209.
    [208]Steffe J F. Rheological Methods in Food Process Engineering [M]. East Lansing, MI, USA.:Freeman Press,1992.
    [209]Bruno M, Moresi M. Viscoelastic properties of Bologna sausages by dynamic methods [J]. J. Food Eng.,2004,63:291-298.
    [210]Correia L R, Mittal J S. Viscoelastic properties of meat emulsions. In Rao M A, Steffe J F, Eds. Viscoelastic Properties of Foods [M]. London:Elsevier Applied Science,2002, pp.185-204.
    [211]Mitchell J. R, Blanshard J M V. Rheological properties of nalginate gels [J]. Journal of Texture Studies,1976,7:219-234.
    [212]Mohsenin N N, Mittal J P. Use of rheological terms andcorrelation of compatible measurements in food texture research [J]. Journal of Texture Studies,1977,8:395-408.
    [213]Mohsenin N N. Physical Properties of Plant and Animal Materials [M]. Gordon&Breach, New York,1986.
    [214]Hort J. Cheddar cheese:its texture, chemical composition and rheological properties [D]. Ph.D. Thesis, Sheffeld Hallam University,1997.
    [215]Masi P. Characterization of history-dependent stress relaxation behaviour of cheeses [J]. Journal of Texture Studies,1989,19:373-388.
    [216]Limanond B, Castell-Perez M E, Moreira R G. Modeling the kinetics of corn tortilla staling using stress relaxation data [J]. J. Food Eng.,2002,53:237-247.
    [217]Hassa B H, Alhamdan A M, Elansari A M. Stress relaxation of dates at khalal and rutab stages of maturity [J]. J. Food Eng.,2005,66:439-445.
    [218]Mancini M, Moresi M, Rancini R. Mechanical properties of alginate gels:empirical characterization [J]. J. Food Eng.,1999,39:369-378.
    [1]Rubinstein M, Dobrynin A V. Associations leading to formation of reversible networks and gels [J]. Curr. Opin. Colloid Interface Sci.,1999,4:83-87.
    [2]Yang Y, Schulz D, Steiner C A. Physical gelation of hydrophobically modified polyelectrolytes. I. Homogeneous gelation of alkylated poly (acrylamide-co-sodium acrylate)[J]. Langmuir,1999,15:4335-4343.
    [3]Deb N, Shannigrahi M, Bagchi S. Use of fluorescence probes for studying Kamlet-Taft solvatochromic parameters of micellar system formed by binary mixture of sodium dodecyl sulfate and Triton-X100[J]. J. Phys. Chem. B,2008,112:2868-2873.
    [4]Shannigrahi M, Bagchi S. Novel fluorescent probe as aggregation predictor and micro-polarity reporter for micelles and mixed micelles [J]. Spectrochimica Acta Part A,2005,61:2131-2138.
    [5]Piculell L, Thuresson K, Ericsson O. Surfactant binding and micellisation in polymer solutions and gels:binding isotherms and their consequences [J]. Faraday Discuss.,1995,101:307-318.
    [6]Piculell L. Guillemet F, Thuresson K, et al. Binding of surfactants to hydrophobically modified polymers [J]. Adv. Colloid Interface Sci.,1996,63:1-21.
    [7]Relogio P, Martinho J M G, Farinha J P S. Effect of surfactant on the intra-and intermolecular association of hydrophobically modified poly(N,N-dimethylacrylamide)[J]. Macromolecules,2005,38:10799-10811.
    [8]Nascentes C C, Arruda M A Z. Cloud point formation based on mixed micelles in the presence of electrolytes for cobalt extraction and preconcentration [J]. Talanta,2003,61:759-768.
    [9]Valaulikar B S, Manohar C. The mechanism of clouding in triton X-100:The effect of additives [J]. J. Colloid Interface Sci.,1985,108:403-406.
    [10]Shaw D J. Introduction to Colloid and Surface Chemistry [M].4th ed. Reed Educational and Professional Publishing Ltd:Oxford,1992, Chapter4.
    [11]Mark J, Ngai K, Graessley W, et al. Physical Properties of Polymers [M].3rd ed. Cambridge University Press:Cambridge,2004, Chapter1.
    [12]Flory P J. Theory of elasticity of polymer networks. The effect of local constraints on junctions [J]. J. Chem. Phys.,1977,66:5720-5729.
    [13]Erman B, Flory P J. Relationships between stress, strain, and molecular constitution of polymer networks. Comparison of theory with experiments [J]. Macromolecules,1982,15:806-811.
    [14]Flory P J, Erman B. Theory of elasticity of polymer networks.3[J]. Macromolecules,1982,15:800-806.
    [15]Erman B, Monnerie L. Theory of elasticity of amorphous networks:effect of constraints along chains [J]. Macromolecules,1989,22:3342-3348.
    [16]Fontaine F, Morland C, Noel C, et al. Mechanical properties of dry and swollen cis-l,4-polyisoprene networks in simple tension:experiment and comparison with theory [J]. Macromolecules,1989,22:3348-3352.
    [17]Fontaine F, Noel C, Monnerie L, et al. Stress-strain-swelling behavior of amorphous polymeric networks:comparison of experimental data with theory [J]. Macromolecules,1989,22:3352-3355.
    [18]Mark J E. The constants2C1and2C2in phenomeno-logical elasticity theory and their dependence on experimental variables [J]. Rubber Chem. Technol.,1975,48:495-512.
    [19]Ltorente M A, Mark J E. Model networks of end-linked poly(dimethylsiloxane) chains.8. Networks having cross-links of very high functionality [J]. Macromolecules,1980,13:681-685.
    [20]Andrady A L, Llorente M A, Mark J E. Model networks of end-linked polydimethylsiloxane chains. Ⅶ. Networks designed to demonstrate non-Gaussian effects related to limited chain extensibility [J]. J. Chem. Phys.,1980,72:2282-2290.
    [21]Llorente M A, Andrady A L, Mark J E. Model networks of end-linked polydimethylsiloxane chains. XI. Use of very short network chains to improve ultimate properties [J]. J. Polym. Sci. Polym. Phys. Ed.,1981,19:621-630.
    [1]Ende M T, Peppas N A. Transport of ionizable drugs and proteins in crosslinked poly(acrylic acid) and poly(acrylic acid-co-2-hydroxyethyl methacrylate) hydrogels. II. Diffusion and release studies [J]. J. Controlled Release,1997,48:47-56.
    [2]Saraydin D, Oztop H N, Karadag E, et al. Influence of some amino acids on the dynamic swelling behavior of radiation-induced acrylamide hydrogel [J]. Appl. Biochem. Biotechnol.,1999,82:115-125.
    [3]Yoshida R, Okuyama Y, Sakai K, et al. Sigmoidal swelling profiles for temperature-responsive poly(N-isopropylacrylamide-co-butyl methacrylate) hydrogels [J]. J. Membr. Sci.,1994,89:267-277.
    [4]Enscore D J, Hopfenberg H B, Stannett V T. Effect of particle size on the mechanism controlling n-hexane sorption in glassy polystyrene microspheres [J]. Polymer,1977,18:793-800.
    [5]Zhang X Z, Zhou R X. Synthesis of temperature-sensitive poly(N-isopropylacrylamide) hydrogel with improved surface property [J]. J. Colloid Interface Sci.,2000,223:311-313.
    [6]Korsmeyer R W, Peppas N A. Controlled Release Delivery Systems [M]. New York: Marcel Dekker,1983.
    [7]Jabbari E, Nozari S. Swelling behavior of acrylic acid hydrogels prepared by γ-radiation crosslinking of polyacrylic acid in aqueous solution [J]. Eur. Polym. J.,2000,36:2685-2692.
    [8]Peppas N A, Franson N M. The swelling interface number as a criterion for prediction of diffusional solute release mechanisms in swellable polymers [J]. J. Polym. Sci.:Polym. Phys. Ed.,1983,21:983-997.
    [9]Biggs S, Hill A, Selb J, et al. Copolymerization of acrylamide and a hdydrophobic monomer in an aqueous micellar medium:effect of the surfactant on the copolymer microstructure [J]. J. Phys. Chem.,1992,96:1505-1511.
    [1]Ferry J D. Viscoelastic Properties of Polymers [M].2nd ed. New York:Wiley,1980, Vol.3.
    [2]Aklonis J J, Machnight W J. Introduction to Polymer Viscoelasticity [M].2nd ed. New York:John Wiley,1983, Vol.3.
    [3]Ward I M. Mechanical Properties of Solid Polymer [M].2nd ed. London: Wiley-Intevscience,1980, Vol.3-5.
    [4]Jimenez-Regalado E, Selb J, Candau F. Effect of surfactant on the viscoelastic behavior of semidilute solutions of multisticker associating polyacrylamides [J]. Langmuir,2000,16:8611-8621.
    [5]Guillemet, These F. Universite Pierre et Marie Curie (Paris VI)[M]. France, Paris:1995.
    [1]Mark J E. The constants2C1and2C2in phenomenological elasticity theory and their dependence on experimental variables [J]. Rubb. Chem. Tech.,1975,48:495-510.
    [2]Fetters L J, Lohse D J, Richter D, et al. Connection between polymer molecular weight, density, chain dimensions, and melt viscoelastic properties [J]. Macromolecules,1994,27:4639-4647.
    [3]Graessley W W. The entanglement concept in polymer rheology [J]. Adv. Polym. Sci.,1974,16:1-179.
    [4]Raju V R, Menezes E V, Marin G, et al. Concentration and molecular weight dependence of viscoelastic properties in linear and star polymers [J]. Macromolecules,1981,14:1668-1676.
    [5]Isono Y, Fujimoto T, Takeno N, et al. Viscoelastic properties of linear polymers with high molecular weights and sharp molecular weight distributions [J]. Macromolecules,1978,11:888-893.
    [6]Riande E, Markovitz H, Plazek D J, et al. Viscoelastic behavior of polystyrene-tricresyl phosphate solutions [J]. J. Polym. Sci. Symp.,1975,50:405-430.
    [7]Graessley W W, Edwards S F. Entanglement interactions in polymers and the chain contour concentration [J]. Polymer,1981,22:1329-1334.
    [8]Osaki K, Nishimura Y, Kurata M. Viscoelastic properties of semidilute polystyrene solutions [J]. Macromolecules,1985,18:1153-1157.
    [9]Graessley W W. Some phenomenological consequences of the Doi-Edwards theory of viscoelasticity [J]. J. Polym. Sci:Polym. Phys. Ed.,1980,18:27-34.
    [10]Doi M, Edwards S F. The Theory of Polymer Dynamics [M]. Oxford Science Publications:Oxford,1986.
    [1]Lyon L A, Nayak S. Soft nanotechnology with soft nanoparticles [J]. Angew. Chem. Int. Ed.,2005,44:7686-7708.
    [2]Li Y, Tanaka T. Kinetics of swelling and shrinking of gels [J]. J. Chem. Phys.,1990,92:1365-1371.
    [3]Moselhy J, Wu X Y, Nicholov R, et al. In vitro studies of the interaction of poly(NIPAm/MAA) nanoparticles with proteins and cells [J]. J. Biomater. Sci. Polym. Ed.,2000,11:123-147.
    [4]Duracher D, Sauzedde F, Elaissari A, et al. Cationic amino-containing N-isopropylacrylamide-styrene copolymer latex particles:1-Particle size and morphology vs. polymerization process [J]. Colloid Polym. Sci.,1998,276:219-231.
    [5]Ogawa K, Wang B, Kokufuta E. Enzyme-regulated microgel collapse for controlled membrane permeability [J]. Langmuir,2001,17:4704-4707.
    [6]Heskins M, Guillet J E. Solution properties of poly(N-isopropylacrylamide)[J]. J. Macromol. Sci. Chem.,1968, A2:1441-1445.
    [7]Hirokawa Y, Tanaka T. Volume phase transition in a nonionic gel [J]. J. Chem. Phys.,1984,81:6379-6380.
    [8]Shibayama M, Tanaka S, Norisuye T. Static inhomogeneities and dynamic fluctuations of temperature sensitive polymer gels [J]. Phy. A,1998,249:245-252.
    [9]Shibayama M. Spatial inhomogeneity and dynamic fluctuations of polymer gels [J]. Macromol. Chem. Phys.,1998,199:1-30.
    [10]Takigawa T, Araki H, Takahashi K, Masuda T. Effects of mechanical stress on the volume phase transition of poly(N-isopropylacrylamide) based polymer gels [J]. J. Chem. Phys.,2000,113:7640-7645.
    [11]Yoshida R, Uchida K, Kaneko Y, et al. Comb-type grafted hydrogels with rapid deswelling response to temperature changes [J]. Nature,1995,374:240-242.
    [12]Shinde V S, Badiger M V, Lele A K, et al. Core-shell morphology in poly(N-isopropyl acrylamide) copolymer gels induced by restricted diffusion of surfactant [J]. Langmuir,2001,17:2585-2588.
    [13]Xue W, Hamley I W. Thermoreversible swelling behaviour of hydrogels based on N-isopropylacrylamide with a hydrophobic comonomer [J]. Polymer,2002,43:3069-3077.
    [14]Park T G, Hoffman A S. Immobilization and characterization of β-galactosidase in thermally reversible hydrogel beads [J]. J. Biomed. Res.,1990,24:21-38.
    [15]Badiger M V, Lele A K, Bhalerao V S, et al. Molecular tailoring of thermoreversible copolymer gels:Some new mechanistic insights [J]. J. Chem. Phys.,1998,109:1175-1184.
    [16]Huglin M B, Liu Y, Velada J L. Thermoreversible swelling behaviour of hydrogels based on N-isopropylacrylamide with acidic comonomers [J]. Polymer,1997,38:5785-5791.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700