推进剂加注系统建模与故障模式仿真分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
推进剂加注系统保证了火箭发动机的推进剂供应,是发动机试验台的重要组成部分。为确保和提高其可靠性和安全性,需探寻系统的故障特征以实现准确有效的故障检测。然而加注系统的故障数据非常有限,因此在正常模型的基础上通过故障仿真的方式进行故障模式分析和研究成为可行的研究方案
     本文针对液体火箭发动机加注系统,结合面向对象建模方法,应用Modelica语言和Dymola建模工具,对气、液路子系统进行了模块化建模和故障仿真的研究,主要研究内容包括:
     (1)详细归纳了面向对象的概念和建模方法,并对面向对象的建模工具Dymola和Modelica语言进行了概述和总结。
     (2)在对加注系统实际物理结构认知的基础上,应用模块化建模思想,对系统进行了合理的模块化分解。
     (3)分别针对气路和液路两个子系统,按照先建立数学模型再编写Modelica模型的顺序,依次构建了接口、介质、气源、贮箱、传输元件和控制元件等模块,进而构建了加注系统的两个子模块库——气路库Gas和液路库Liquid;然后依据“部件模块——子系统模型——系统模型”的步骤,从模块库中选取合适的模块逐步搭建系统模型;输入合适的参数,进行正常模型的仿真输出,并通过仿真结果与实际试验数据的对比来检验仿真精度。
     (4)在正常状态的模型基础上,对泄漏和堵塞两种故障模式进行了仿真,并以此总结出了故障仿真中调用模块、修改模块和设置模块参数等三种仿真方法,通过这些方法可建立故障模式仿真数据库。
     仿真结果表明,基于面向对象的加注系统建模与故障仿真是有效的,该技术对于后续完善推进剂加注系统故障模式库和提高液体火箭发射试验系统的安全性具有重要意义。
Propellant filling system, which provides fuel and oxidant for rocket engine, is an important composition of test-bed. In order to ensure and improve its reliability and security, it is urgent to collect fault characters, which are used for accurate and effective fault detection. However, as the real fault data are very limited, it is considered that fault mode analysis based on fault simulation is a feasible research method.
     In this paper, the research based on object-oriented modeling method, is carried out on the moduar modeling and fault simulation of liquid rocket engine propellant filling system. The main contents of this thesis include:
     (1) The concept and principle of object-oriented modeling method are described in detail, and the overviews of modeling platform Dymola and language Modelica are covered.
     (2) Based on the understanding of real physical constitutions of filling system, the work of modular decomposition is done with the idea of modular modeling.
     (3) For pneumatic and hydraulic sub-system of the filling system, there build modules of real compenents including sources, medium, transport lines and otherwise in the order of first mathematic formulas and then Modelica sentences. These modules compose two model libraries-pneumatic library Gas and hydraulic library Liquid, from where we can take modules to build model of the whole filling system in terms of“parts model-sub-system model-system model”. And then parameters are set appropriately and the model is made to simulate, the simulation precision is checked after that by contrasting simulation results and real test data.
     (4) Based on the normal ones, models under the conditions of leak and block are simulated, during which three methods for fault simulation are summarized: adding/ detracting modules, modifying modules and setting parameters of modules. By using of these methods, data library of fault simulation can be established.
     The simulation results show that normal and fault simulations of the filling system based on object-oriented modeling are efficient. This method has great significance for consummating fault mode liabrary and improving the security of liquid rocket launching test.
引文
[1]颜之初.液体火箭发动机状态监控与故障诊断技术的发展.导弹与航天运载技术,1994(2):8~17
    [2]张森,张永华.新型火箭地面加注系统设计难点与应用.航天发射技术,2001(4):31~36
    [3]田永利,邹慧君,郭为忠.机电一体化系统建模技术与仿真软件的研究与分析.机械设计与研究,2003,19(4):15~19
    [4] Shor S.W.Modula Modeling System (MMS).Vol.5,Summary Report,EPRICS/NP-3016,1987
    [5]魏鹏飞,吴建军,刘洪刚,陈启智.液体火箭发动机一种通用模块化仿真方法.推进技术,2004,2(26):147~150
    [6]陈阳,高芳,张振鹏,陈锋.液体火箭发动机试验台贮箱增压系统模块化仿真.航空动力学报,2005,20(2):339-344
    [7]刘昆,张育林,程谋森.液体火箭发动机系统瞬变过程模块化建模与仿真.推进技术,2003,24(5):401~405
    [8]曹源.涡扇发动机模块化模型库及其应用.系统仿真学报,2004,16(10):2201~2204
    [9]王勇,吴先福,张勇.面向对象的建模思想及其在液压仿真中的应用.计算机辅助设计与制造,1997,12:16~18
    [10]高芳,陈阳,张振鹏.液体火箭发动机实验台液路系统工作过程仿真.航空动力学报,2006,21(2):417~420
    [11]张育林,吴建军.基于模型的推进系统故障检测与诊断.推进技术,1994,5(1):1~8
    [12]吴建军,张育林,陈启智.液体火箭发动机稳态故障仿真及分析.推进技术,1994,6(3):6~13
    [13]吴建军.液体火箭发动机故障检测与诊断研究.长沙:国防科学技术大学,1995
    [14]张育林.液体火箭发动机健康监控——故障分析与仿真.推进技术,1997,18(1):8~12
    [15]黄敏超.液体火箭发动机故障的神经网络诊断研究.长沙:国防科学技术大学,1998
    [16]王建波,于达仁,王广雄.液体火箭发动机泄漏故障实时仿真.推进技术,1999,20(5):1~5
    [17]杨尔辅.液体火箭推进系统状态监控和故障诊断正反问题与算法研究.北京:北京航空航天大学,1999
    [18]杨尔辅.液体火箭推进系统故障过程建模与仿真研究.清华大学学报,2001,41(3):104~108
    [19]张青松,张振鹏,杨雪,陈锋.液体火箭发动机试验台气液管路系统故障仿真及分析.航空动力学报,2006,21(2):403~409
    [20]康凤举等.现代仿真技术与应用.北京:国防工业出版社,2006
    [21]中科永联高级技术培训中心.面向对象.http://www.itisedu.com
    [22]李炯.面向对象的发动机系统建模与动态仿真研究.保定:华北工学院,2004
    [23]窦建平.面向对象的航空发动机建模与仿真.南京:南京航空航天大学,2005
    [24] Hilding Elmqvist,Sven Erik Mattsson,Martin Otter.Modelica-A language for physical system modeling,visualization and interaction.IEEE Symposium on Computer-Aided Control System Design,1999,200~208
    [25] C. Schlegel,M. Bross,P. Beater.“HIL-Simulation of the hydraulics and mechanics of an automatic gearbox”.Proceedings of the 2nd International Modelica Conference,2002,67~75
    [26] Q-Z Chen,Y-F Mo,G Meng.“Dymola-based of SRD in aircraft electrical system”.IEEE Trans. Aerospace and Electronic System,2006,42(1):220~227
    [27]李防战.基于特性方程的航空发动机建模与仿真.上海:上海交通大学出版社,2005
    [28]于涛,曾庆良.多体动力学的键合图表达及其在Modelica中的实现.中国机械工程,2006,17(增刊):320~323
    [29] Dag Brück,Hilding Elmqvist,Sven Erik Mattsson,Hans Olsson.Dymola for Multi- Engineering Modeling and Simulation.Proceedings of the 2nd International Modelica Conference,2002,54~63
    [30] Peter Fritzson,Peter Aronsson,Adrian Pop,H'akan Lundval.OpenModelica-A Free Open Source Environment for System Modeling,Simulation,and Teaching.Proceedings of the 2006 IEEE Conference on Computer Aided Control Systems Design Munich,Germany,2006
    [31] Fritzson P,Gunnarsson J,Jirstrand M.MathModelica-An Extensible Modeling and Simulation Environment with Integrated Graphics and Literate Programming.Proceedings of the 2nd International Modelica Conference,2002,41~54
    [32] C Nytsch Geusen.MOSILAB:Development of a Modelica based generic simulation tool supporting model structural dynamics.Proceedings of the 4th International Modelica Conference,2005,527~535
    [33] F L Zhou,L P Chen.MWorks:a Modern IDE for Modeling and Simulation ofMulti-domain Physical Systems Based on Modelica.Proceedings of the 5th International Modelica Conference,2006,725~731
    [34] The Modelica Association.The Modelica Language Specification Version 2.1,2003.http:// www.Modelica.com
    [35] Peter Fritzson,Peter Bunus.Modelica–A General Object-Oriented Language for Continuous and Discrete-Event System Modeling and Simulation.Proceedings of the 35th Annual Simulation Symposium(SSí02),2002
    [36] Michael M Tiller.Introduction to Physical Modeling with Modelica.Kluwer Academic Publishers,2001
    [37]奚旺.航空发动机模块化建模与系统级仿真.上海:上海交通大学,2004
    [38]陆元章.液压系统的建模与仿真.上海:上海交通大学出版社,1989
    [39] Hilding Elmqvist,Dag Bruck,Sven Erik Mattsson.“Dymola-Dynamic Modeling Laboratory User’s Manual”.Dynasim AB,1992
    [40] Modelon.Modeling of Hydraulic Systems-Tutorial for HyLib.Lund:Dynasim,2006
    [41] Modelon.Modeling of Pneumatic Systems-Tutorial for PneuLib.Lund:Dynasim,2006
    [42] G.P.萨顿,O.比布拉兹.火箭发动机基础.北京:科学出版社,2003
    [43]刘国球等.液体火箭发动机试验.北京:宇航出版社,1994
    [44]查理.液体火箭发动机技术.国防科技,2004:25~30
    [45]陶海川.基于Dymola的航空动力系统建模及无刷直流电机仿真.上海:上海交通大学,2004
    [46]徐志梅.涡轮增压柴油机的建模与仿真.上海:上海交通大学,2004
    [47]李永堂,雷步芳,高雨屈.液压系统建模与仿真.北京:冶金工业出版社,2003
    [48]胜帆,罗志骏.液压技术基础.北京:机械工业出版社,1985
    [49]王宝和.流体传动与控制.长沙:国防科技大学,2001
    [50]蔡廷文.液压系统现代建模方法.北京:中国标准出版社,2002
    [51]王庭树,余从睎.液压及气动技术.北京:国防工业出版社,1985
    [52]费国忠,彭光正,赵彤,王涛.气管道流量特性参数理论分析与实验研究.工程设计学报,2004,11(2):77~80
    [53]上海工业大学流控研究室.气动技术基础.北京:机械工业出版社,1982
    [54] Peter Beater.Pneumatic Drive,System Design,Modeling and Control.Spring,2007
    [55]杨文华.液控原理.北京:学术书刊出版社,1990
    [56] Merrit. H. E.Hydraulic Control Systems.New York:John Wiley & Sons,1967
    [57] Ming Gao,Niaoqing Hu,Guojun Qin,Lurui Xia.Modeling and Fault Simulation ofPropellant Filling System Based on Modelica/Dymola.2nd International Symposium on Systems and Control in Aeronautics and Astronautics,2008

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700