美国佛州磷矿重选废水絮凝脱水及底泥输送流变特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前世界范围内,磷矿重选废水由于其悬浮物具有典型的胶体特性,使其固液分离非常困难,绝大部分废水贮存于大型水池、尾矿库或地下废矿井中,这种将废水贮存起来的处置方式,不仅造成土地资源、水资源的巨大浪费,而且还存在决堤、渗漏的潜在威胁。由于现有处理技术难以实现工业化应用,寻找一种技术上可行、经济上合理的处理工艺,一直是全世界关注的问题。美国佛罗里达的磷矿重选废水处理长期未能解决,对环境及水资源利用造成了很大压力。本文针对佛罗里达磷矿重选废水处理及水循环利用工艺进行探讨,在分析了国内外迄今为止的有关矿山废水及磷矿选矿废水处理工艺的基础上,依据相关理论和研究手段,开始了对该废水的小型处理工艺条件的实验研究,在取得最佳综合条件的基础上,进行了半工业化实践,并取得了与小型实验相吻合的结果,在此基础上进行了工业性实验的技术设计。该研究不仅对解决佛罗里达磷酸盐公司的水污染问题及水资源、土地资源的回用有非常重要的意义,而且对我国磷矿选矿废水的处理也有十分得要的借鉴作用。
     1.本文采用美国Ciba化学工业公司生产的具有特殊分子结构的新型有机高分子絮凝剂,解决了磷酸盐矿重选废水的高效絮凝问题,确定了絮凝效果与絮凝剂浓度、剂量及溶液pH的关系。
     2.通过多次加药和加尾砂的助凝试验研究,明确了在有机高分子絮凝剂的浓度、剂量和混合方式相同的情况下,絮凝效果随加砂量和加药次数的变化关系,为最佳絮凝工艺的选择提供依据。
     3.根据胶体颗粒的组成及表面性质分析,认为颗粒的底面和侧面具有不同的表面性质,颗粒的活性部位主要位于侧面上。
     4.通过K~+、Ca~(2+)和Al~(3+)与有机高分子絮凝剂的协同作用研究,认为絮凝剂长链在悬浮颗粒表面的吸附位置在颗粒侧面的活性点上。K~+对絮凝的促进作用大大优于Ca~(2+)和Al~(3+),在一定浓度和pH范围内,Ca~(2+)和Al~(3+)对絮凝有抑制作用,这种现象与传统的Schulze-Hardy聚沉规则相反。本文从胶体与表面化学和溶液化学的角度出发对这一现象进行了分析。
     5.通过对多次加药和尾砂助凝的动力学研究,发现投加尾砂后,增加了絮凝反应中的晶核颗粒数,在涡旋惯性离心力和剪切力作用下,使脱稳胶体迅速成长;多次加药能够增加颗粒间的有效碰撞次数,絮凝的半衰期随之大大缩短。
     6.通过对废水进行脉冲电絮凝研究,发现在各种电极配置和脉冲供电条件下,电絮凝均未能取得理想的效果。将电絮凝与物化絮凝相结合也未取得理想的效果,研究认为电场对有机高分子絮凝剂DPW-1-1355的絮凝起到抑制作用。
     7.综合所有絮凝试验,“小试”得出的最佳絮凝工艺是:废水加10~(-3)M KCl和5%的尾砂,然后五次平均加入18×10~(-6)g Ciba絮凝剂DPW-1-1355,该工艺条件下的絮凝沉降速度大、上清液浊度低、底泥含固率高。该研究结果为半工业化试验提供了依据。
     8.根据实验研究,得出最佳絮凝工艺条件下底泥的流变性规律:
     (1)底泥的表观粘度随切变速度的增大而增大,粘土含固率为15%和20%时,二者之间符合幂律关系η_α=kD~(n-1),且n>1,因此底泥符合胀流体的特性,即越搅越稠。
     (2)底泥的切应力随粘土含固率的增加而增大,二者之间存在一元二次方程的关系:τ=5.436C~2-80.489C+215.67,相关系数R~2=0.9639。
     (3)粘土含固率为20%底泥的切应力随温度的升高而缓慢降低,二者间存在较好的线性关系:τ=-0.7264T+829,相关系数R~2=0.9528。
     (4)通过流变性与时间的关系研究,发现当切变速率不变时,粘土含固率为20%底泥的粘度随旋转时间的增加而降低,由此可以判断底泥具有触变性。
     (5)通过pH对底泥流变性的影响研究,发现pH=8时粘土含固率为20%底泥的切应力最小。
     (6)通过底泥流变性的改良试验,发现改良剂DP-203具有降低底泥切应力的作用。
     9.将Ciba絮凝剂和KCl复配使用,采用多次加药、尾砂助凝工艺,以深锥形浓密机为主要设备进行了半工业化试验,试验结果表明处理出水水质达到回用要求,底泥含固率满足地下矿井回填的需要。研究不仅解决了磷矿重选废水的净化与底泥浓缩问题,而且实现了废水和底泥的资源化利用。
     10.通过工业化模拟设计,说明研究成果在工业化应用中的投资和运行费用经济合理,具有广阔的应用前景。
At present phosphatic waste clay produced from phosphate weight -beneficiation has typical colloidal character and it is very difficult to separate solids from suspension in the world.Most of phosphatic waste clay was stored in huge clay ponds,tailing dams or useless mines of underground,which leads large areas of land to be occupied and a lot of water resource to be wasted,this store phosphatic waste clay approach also brings potential danger of dam failure and seepage.So how to find an economical and practical technology for processing phosphatic waste clay is a crucial problem in the world.The phosphate weight -beneficiation waste clay cann't be solved in Florida of USA,so there was a great pressure on entironment and water resources used.This paper discussed the technology that how to treat phosphate weight-beneficiation waste clay and reuse water in Florida.Through analyzing treatment technology of mine wastewater and phosphate beneficiation wastewater in the world,according to correlative theories and research methods to study experimental treatment technology for processing phosphatic waste clay.Base on the best integration experimental conditions,and pilot scale tests were done which results was accorded with experimental tests.Then design the technology of industrial test use for processing phosphatic waste clay.This research is not only significant for solving the pollution of phosphate waste clay,reusing water and land resource for phosphate company in Florida,but also is a important for consulting on processing phosphatic waste clay in China.
     1.This paper uses American Ciba UMA organic macromolecule flocculants came from Ciba chemical company to treat phosphate waste clays.High effective flocculation can be performed to phosphatic waste clay produced from phosphate weight-beneficiation.The relationships between flocculation effects and flocculant's concentration,dosages and pH values is mastered.
     2.By adding flocculants time after time and adding sand to help flocculate,the relationship between flocculating effects with adding sand dosage and flocculant times had been found when flocculant's concentration,dosage and mixing style is constant.All these will be used to choose the best flocculation technology.
     3.According to colloid particles' composition and surface characters,it is found that particle' base faces are different from edge faces in surface character,particle's active position.is on its edge faces.
     4.When we combined K~+ ion,Ca~(2+)ion and Al~(3+)ion with organic macromolecule flocculants together to research,it is found that the place flocculant's long trains was adsorbed on was located on particles' edge faces.The promotion effect of K~+ ion on flocculation is much better than the action of Ca~(2+)ion and Al~(3+)ion,Ca~(2+)ion and Al~(3+) ion even has an averse effect on flocculation in a certain range of concentrations and pH values,this phenomena deviates from traditional Schulze-Hard aggregating settling- rule.This paper analyzed this phenomena according to colloid-surface chemistry and solution chemistry.
     5.Through dynamics researches on adding flocculants time after time and adding sand,it is found that crystal-core particles' amounts is increased in flocculation reaction after sand is added,by action of inertia centrifugal power and yield stress, the unstabilized particles grow up quickly.Adding flocculants time after time can increase effective impact times between particles,making flocculation's half life to be shorten.
     6.Our research did some tests about pulse- electric flocculation,but it is found there was a bad flocculent action in various different conditions of electrode stations and pulse-electric current.When we combine pulse-electric flocculation with physical-chemistry flocculation together,no good result was get,it was found that the electric field has a restraining effect on flocculating of organic macromolecule flocculant DPW-1-1355.
     7.According to all the flocculation tests,it was found that the best technics of pilot-scale testing is KCl,5%sands arid 18×10~(-6)gram flocculant DPW-1-1355 is added into 482ml suspension in turn and KCl's concentration is 10~(-3)M,flocculant DPW-1-1355 is averagely added five times.In this condition the flocculent settling rate is fast,supernatant turbidity is low,underflow solid concentration is high,and run cost is low.
     8.According to various tests,the underflow rheology law under the best technics condition is get:
     (1)The underflow's apparent viscosity is increased with shear rate increasing.When clay concentration is 15%and 20%,both relationship is accord with power relation(η_α=kD~(n-1)and n>1,so underflow is characterized by an increasing viscosity with an increase in shear rate that is namely dilatant.It means that the underflow is more denser with stirring going on.
     (2)The underflow's yield stress is increased with clay solid concentration increasing.It was found that relationship between both them can be expressed by a unitary quadratic equation:τ=5.436C~2-80.489C+215.67,correlative coefficient R~2 is 0.9639.
     (3)It is found that the yield stress of underflow that its clay solid concentration is 20%is slowly decreased with increasing temperature.The relationship between both them can be expressed by a linear equation:τ=-0.7264T+829,correlative coefficient R~2 is 0.9528.
     (4)By the research of relationship between theology and time,when clay solid concentration is 20%and under condition of a constant shear rate,the viscosity of underflow is depressed with increasing rotating time is found.So it can be judged that underflow is thixotropic..
     (5)By the research of pH's effect on rheology,it is found that when pH value is 8, and unerflow clay solid concentration is 20%,the yield stress of unerflow will reaches the lowest.
     (6)By the research of modifying under-paste' s rheology,it was found that modifier DP-203 had an effect on reducing under-paste ' s yield stress.
     9.Ciba flocculant and K~+ ion was complexed together to be used.Half-industrialized test was performed that "deep cone thickener" was the primary equipment,added flocculants time after time and added tailing sand to help flocculation.It was found that outlet water's quality was fit for being reused and under-paste's solid concentration is fit for filling underground mine well.This research not only solved purifying problems of phosphatic waste clay produced from phosphate weight -beneficiation and under-paste's concentrating problems,but also came true resource uses of wastewater and under-paste.
     10.Through industrialized simulative design,it is found if research results is performed in industry,the project's investment and run cost will be cost-effective,it is also proved that there will be a wide application foreground for research results.
引文
[1]於方,过孝民,张强.中国矿业的废水污染现状分析与防治政策[J].资源科学,2004,26(2):46-53。
    [2]杨承祥.建设无公害矿山初探[J].云南冶金,1999.28(5):6-9。
    [3]D.J.赫佐格等.如何评价矿山废弃物对地下水和地表水的潜在影响[J].国外金属矿山,1997.(2)。
    [4]马利军,蒋文举.澳大利亚矿山酸性废水的管理与处理[J].四川环境,2002,19(2):32-34。
    [5]徐昌伟,高宏亮.磷矿浮选废水治理的现状及发展趋势[J].环境技术,2004.(4):25-28。
    [6]吕贻峰,曹金绪等.磷矿山环境污染的形成与防治[J].矿产保护与利用,2002.12,No.6:10-15。
    [7]洪建军,罗建中等.清洁生产技术在选矿废水净化处理中的应用[J].矿业安全与环保,2004.4,Vol.31 No.2:33-35。
    [8]王茂,付艳红.膜分离技术在矿井废水回用中的应用[J].工业水处理,2004.10,Vol.24 No.10:67-68。
    [9]赵永斌,袁增伟等.混凝吸附处理选矿废水的研究[J].广东工业大学学报,2001(12):Vol.18 No.4:94-97。
    [10]谢光炎,孙水裕等.选矿废水的回用处理研究与实践[J].环境污染治理技术与设备,2002(2),Vol 3 No.2:67-70。
    [11]高崇峰,张林等.选矿废水过滤性能的实验研究[J].环境保护科学,2001.4,Vol 27 No.104:11-13。
    [12]张学洪,陈志强等.混凝沉淀法处理钨矿选矿废水生产实践研究[J].吉林工业大学学报,2000(9),Vol.17 No.3:38-40。
    [13]许国强.高悬浮物选矿矿废水处理技术研究与工程实践[J].矿冶,2005(6),Vol.14,No.2:P28-32。
    [14]陈喜红.银金矿总废水处理研究[J].湖南有色金属,2006,16(5)。
    [15]张志等.微电解-中和沉淀法处理酸性金属矿山地下水的试验研究,有色金属(选矿部分),2002,(2)。
    [16]张景来.冶金工业污水处理技术及工程实例[M].北京:化学工业出版社, 2003,7。
    [17]谢光炎.硫化沉淀浮选法处理矿井下废水研究[J].有色金属(选矿部分),2003(2)。
    [18]MareeJ.P.Al.,A Biological Treatment of Mining Effluents[J],Environ.tech.Letters.1987(8).
    [19]李亚新、苏冰琴.利用硫酸盐还原菌处理酸性矿山废水研究[J].中国给水排水,2000 Vol.16,No.2。
    [20]孙家寿.世界生物处理矿山废水技术的进展[J].国外金属矿选矿,1998(8)。
    [21]阳承胜.宽叶香蒲人工湿地对铅/锌矿废水净化效能的研究[J],深圳大学学报,2000(17):2-3。
    [22]唐述虞.铁矿酸性排水的人工湿地处理[J],环境工程,1996,Vol.14:No.4。
    [23]宋文等.用菜油脚研制高硅镁低磷磷矿石特效浮选剂[J].贵州工业大学学报,2002.31(1):79-83。
    [24]黄大雨等.我国磷矿资源概况及主要选别流程[J].化工矿山技术,1983(2):40-44。
    [25]下川胜义,关口逸马.选矿回水研究[J].国外非金属矿,1988(4):9。
    [26]朱玉霜,朱建光.浮选药剂原理[M].中南工业大学出版社,1999,12:276。
    [27]余世鑫,王玉林等.电化学处理选磷尾矿水的回水选矿实验[J],化工矿山技术,1998,27(2):24-26。
    [28]严瑞煊.水处理剂应用手册[M].化学工业出版社,2000:42-46。
    [29]齐孟文,刘凤娟.城市水体富营养化的生态危害及其防治措施[J].环境科学动态,2004(1):44-26。
    [30]Bromwell,G.,1982."Physico-chemical of Florida properties of Florida phosphatic clays,"Final Report on FIPR 83-02-003,Florida Institute of Phosphate Research.
    [31]Abu-Hejleh,A.N.,Znidarcic,D.,andBarnes,B.L.,1996."Consolidation Characteristics of phosphatic clays,"Journal of Geotechnical Engineering,4:295-301.
    [32]NTP Corporation(Pittusburgh,PA),1983."Thermal process for rapid dewatering and separation of phosphatic clay waste,"FIPR OFR-82-02-21,Florida Institute of Phosphate Research.
    [33]邓玉珍等.化学混凝法处理矿山废水的试验研究[J].黄金,1997,18(3): 48-52。
    [34]严发真,钟涛.磷矿浮选废水治理的探索与实践[J].IM&P化工矿物与加工,1999,No.9:16-18。
    [35]孙家寿,李文勇.用还铁矿烧渣处理选磷废水[J].化工矿山技术,1997,26(1):43-45。
    [36]张泽强,钟年康.选磷废水循环利用试验研究[J].化学与生物工程,2004(1):47-48。
    [37]余世鑫,孙雯等.选磷厂废水电化学处理循环利用[J].工业水处理,2002.2,Vol.22,No.2:12-14。
    [38]B.A.强图里亚.武汉化工学院讲学资料[M],1992。
    [39]孙家寿.EC法处理选磷废水的研究[J].四川环境,1995,Vol.14,No.2:26-31。
    [40]孙家寿,钱仁俊.EF法处理选磷废水的研究[J].有色金属,1999(1):19-21。
    [41]裴风蓉.磷矿反浮选废水生物接触氧化法治理工艺研究[J].化工矿山技术,1991,Vol.21,No.5:44-47。
    [42]徐昌伟.曝气生物滤池处理选磷废水[武汉理工大学硕士论文].2005.5.30。
    [43]杨智宽,韦进宝.污染控制化学[M].武汉大学出版社,2002。
    [44]刘衍宣.磷矿脱镁废水中Mg~(2+)-NH_4~+交换动力学研究[J].四川大学学报(工程科学版),1999,Vol.13,No.6:572-575。
    [45]H.El-Shall and Partrickm Zhang,2004."Process for dewatering and utilization of mining wastes",Minerals Engineering 17(2004):269-277.
    [46]Chamberlain,R.J.and Ellwanger,R.E,1980."Anionic polymeric combination for settling phosphate slimes,U.S.Patent No.4251363.
    [47]Nair,K.V.and Somasundaran,P.,1986."Dewatering phosphate slimes",U.S.Patent No.4563285.
    [48]M.K.Abd-ElRahman,Central Metallurgical R & D Institute(CMRDI),P.O.Box 87 Helwan,Cairo,Egypt.
    [49]Fuhua Sun.,1995.United States Patent."Process for the dewatering of Phosphate slimes" U.S.Patent No.4 251363.
    [50]Packham,R.F.,1965."Some studies of the coagulation of dispersed clays with hydrolyzing salts,"J.Colloid Sci.,20:81-92.
    [51]Deason,D.M.,1980."Controlled dispersion and coagulation phenomena in phosphate slime dewatering,"(M.s.Thesis)University of Florida.
    
    [52] Onoda, G.Y., J Deason, D.M., and Chlatre, R.M., 1980. "Flocculation and dispersion phenomena affecting phosphate slime "in Fine Particles Processing:Proc.Int. Symp. AIME, Las Vegas, NV, Feb.24-28, American Institute of Ming,Metallurgical and Petroleum Engineering, pp. 1000-1011.
    
    [53] Clark, S,W., 1982."Gardinier,Inc.Superflocculation process for phosphate clay disposal," in Phosphatic Clay Workshop (FIPR 02-020-012), ed.S.W.Clark, Brtow,FL., Florida Institute of Phosphate Research, PP. 65-75.
    
    [54] Scheiner, B.J., Smelly, A,G.,Brooks, D.R., 1982."Large-scale dewatering of phosphatic clay waste from central Florida," RI-8611,U.S. Bureau of Mines.
    
    [55] Scheiner, B.J.and Stanley,D.A.,1985. "The phosphatic clay waste problem flocculation as a possible solution, "Miner.Process.Technol. Rev., (3-4):347-361.
    
    [56] Scheiner, B.J. and Stanley, D.A.,1993. "A historical view of dewatering of phosphatic clay waste using polyethylene oxide." In Beneficiation of Phosphate:Theory and Practice, eds. H. El-Shall, B.M. Mougil and R. Wiegel, Littleton, CO,Society for Mining, Metallurgy, and Exploration, Inc., PP. 455-468.
    
    [57] Brooks D.R. and Scheiner,BJ., 1986."Large-scale dewatering of phosphate clay waste from Polk county, FL," RI -9016, U.S.Bureau of Mines.
    
    [58] Concha, F.and Bustos,M.C.,1986. "Theory of sedimentation of flocculated fine particles, " in Phosphatic Clay Workshop(FIPR 02-020-012),ed. S.W.Clark. Bartow,FL., Florida Institute of Phosphatic Research ,PP.65-74.
    
    [59] Dixon,J.B. and Golden.D.C.,1987."Dewatering,flocculation,and strengthening of phosphatic clays, " FIPR-OFR-84-02-049,Florida Institute of Phosphate Research.
    
    [60] El-Shall, Hassan, Labban, M., and Scheiner, B., 1989. "Dewatering of phosphatic clays-role of polymer flocculation," in Flocculation and Dewatering,Proc. Eng. Found. Counf.,1988, eds. BrijM.Moudgil and B.J.Scheiner, New York,NY, Engineering Foundation , PP. 263-278.
    
    [61] El-Shall, Hassan and McFarlin,R., 1992."Rapid dewatering of phosphate clay slurries using fibers," Adv. Filtr.Sep.Technol., 5:154-161.
    
    [62] Scheiner,B.J.and Standley,D.A.,1995. "Dewatering of phosphatic clay waste using polyethylene oxide: theory and practice."Fluid/Particle Separation Journal,8:96-105.
    [63]Nguyen,Q.D.and Boger,D.V.,1998."Application of rheology to solving railings disposal problems," International Journal of Mineral Processing,54:217-233.
    [64]Anazia,I.and Misra,M.,1989."Enzymatic dewatering of Florida phosphate slimes," Mineraals and Metallurgical Processing,6(2):93-95.
    [65]Smith,R.W.,Misra,M.,Dubel,J.,1992."Bacterial flocculation of phosphate wastes using a hydrophobic bacterium," in Residues Effl]uents:Process.Environ.Cosid.,Proc.Ins.Symposium.,eds Ramana G.Reddy,William P.Imrie and Paul B.Queneau,Warrendale,PA:Miner.Met.Mater.Soc.,pp:747-756.
    [66]Freeman.,M.P.,1982."Vacuum electrofiltration," Chemical Engineering Progress,78(8):74-79.
    [67]Laros,T.J.,1990."Flocculating agent combinations for mineral slime filtration systems,U.S.Patent No.4931190.
    [68]Agerbaek,M.L.and Keiding,K.,1993."On the origin of specific resistance to filtration," Water Sci.Technol.,280):159-168.
    [69]Raden,D.J.,1982."Dewatering phosphate clay waste using the Enviro-clear thickener,"in:Proceedings of the Consolidation and Dewatering of Fine Particles Conference,University of Alabama,August 10-12,Tuscoloosa,AL,U.S.Bureau of Mines,PP.205-224.
    [70]]Ghalambor,A.,Foreman,W.E.,and Hayatdavoudi,A.,1990."Optimization of thickener performance," Miner.Metall.Process.,7(4):189-197.
    [71]Hoff,R.and Bunnaul,P.,1992."Sediment compressibility in thickening of flocculated suspensions,"Miner.Metall.Process.,9(4):184-188.
    [72]Nair,K.V.and Somasundaran,p.,1986."Dewatering phosphate slimes," U.S.Patent No.4563285.
    [73]M.K.Abd-El Rahman."Dewatering of Phosphatic Clay waste by Flocculation"[J],Chem.Eng.Technol.2000,23(5):457-461.
    [74]杨丽芳,何家宁,徐晓军等.磷酸盐矿选矿废水的分次加药及加尾砂絮凝沉降[J].金属矿山,2006(10):61-64。
    [75]NGUYEN QUOC DZUY and D.V.Boger,1983."Yield Stress Measurement for Concentrated Suspensions," Inc.Journal of Rheology,27(4),321-349(1983).
    [76]N.Pashias and D.V.Boger,1996."A fifty cent rheometer for yield stress measurement, " The Society of Reeology, Inc.J.Rheol.40(6),1996.
    [77] ASTM,1998.Annual Book of ASTM Standards.Designation:C 143/C 143M-97 Standard Test Method for Slump of Hydraulic-cement Concrete, Vol.04.02,Concrete and Aggreg- Ates,ASTM,89-91.
    
    [78] S.Clayton,T.G.Grice,D.V.Goger.2003."Analysis of the slump test on-site yield Stress measurement of mineral suspensions,"International Journal mineral processing 70(2003)3-21.
    
    [79]Jyh-Ping Hsu and Anca Nacu,2004."An experimental study on the rheological pro-Perties ceria dispersions,"Journal of Colloid and Interface Science 274(2004)277-284.
    
    [80]Vincent T. O'Brien and Michael E.Mackay,2002."Shear and elongation flowproperties of kaolin suspensions,"The Society Rheology, Inc.J.Rheol,46(3),557-572.
    
    [81] M.J. Pearse, Historical use and future development of chemicals for solid-liquid separation in the mineral processing industry,Minerals Engineering 16 (2003 103-108.
    
    [82]Pearse,M.J.,Weir,S.,Adkins,S.J.,Moody,G.M.,2001."Advances in mineral flocculation/'Minerals Engineering 14(11),1505-1511.
    
    [83] El-Shall, Hassan, Labban, M., and Scheiner, B., 1989. "Dewatering of phosphatic clays-roles polymer flocculation," in Flocculation and Dewatering,Proc.Eng. Found.Conf., 1988,eds. BrijM.Moudgil and B.J. Scheiner, New York.NY,Engineering Foundation,pp.263~78.
    
    [84] A.Sworska~a, J.S. Laskowski~(a,*), G.Cymerman~b, Flocculation of the Syncrude fine tailings Part I .Effect of pH, polymer dosage and Mg~(2+) and Ca~(2+) cations,I nt.J.Miner.Process. 60(2000)143-152.
    
    [85]Onoda, G.Y., Jr., Deason, D.M., and Chhatre, R.M., 1980. "Flocculation and dispersion phenomena affecting phosphate slime dewatering,"in Fine Particles Processing:Proc.Int.Symp.AIME,Las Vegas,NV,Feb.24-28,American Institute of Mining,Metallurgical and Petroleum Engineers,pp.1000-1011.
    [86] Keshian,B.Jr.,Ladd, C.C.,and Olson, R.E., 1977. "Sedimentation- consolidation behavior phosphatic clays,"Geotechnical Practice for Disposal of Solid Waste Material,ASCE, New York.pp.188-209.
    [87]Barreiro,L.J.,Austin,R.D.,Kouloheris,A.P.,1977."Compaction of slimes and sand tailings by the Enviro-Clear thickener,"Presented at the Seminar of the Phosphate Clays Project,Lakeland,Florida,January,1977.
    [88]Kjellander,R.,marcelja,S.,pashley,R.M.,Quik,J.P.,1988."Double layer correlation forces restrict calcium clay swelling," J.phys.Chem.,92(23):6489-6492.
    [89]Boger,D.V.,and Nguyen,Q.D.,1998."Application of rheology to solving tailings disposal problems,"International Journal of Mineral Processing,54:217-233.
    [90]汤鸿霄.用水废水化学基础[M].北京:中国建筑工业出版社,1979。
    [91]陈国华,王光信等,电化学方法应用[M].北京:科学出版社,2003.2。
    [92]谢光炎,梁开文.废水净化的电化学方法进展.给水排水[J],1989,24(1):64-68。
    [93]程.电絮凝技术的应用[J].有色冶金设计与研究,2004.12,Vol.25,No.4:67-69。
    [94]贾金平,申哲民等.电化学方法治理废水的研究与进展.上海环境科学[J],1999,18(1):29-31。
    [95]谭蕾,汤正河.电絮凝-空气氧化处理草浆造纸黑液酸析木质素后滤液COD 的研究[J].贵州工业大学学报(自然科学版),2004.2,Vol.33 No.1:79-82。
    [96]龙炳清,曹植菁等.电絮凝处理TNT酸性废水的研究[J].四川师范大学大学学报,2003.7,Vol.26 No.4:404-406。
    [97]回军,赵景霞等.电絮凝法处理洗槽站高乳化含油废水[J].当代化工,2004.6,Vol 33,No.3:172-174。
    [98]王蓉,邓.电絮凝法处理油田污水[J].环境科学研究,1999,Vol.12,No.4:31-33。
    [99]罗亚田,梅建辉.铝阳极脉冲电化学法处理难降解印染废水的实验研究[J].环境技术,2006(6):34-36。
    [100]周祖康,顾人等.《胶体与表面化学》[M].北京:北京大学出版社,1987.5。
    [101]王果庭.《胶体稳定性》[M].北京:科学出版社,1990.8。
    [102]张星,李兆敏等.聚合物流变性实验研究[J].新疆石油地质,2004.4,Vol 27,No.2:197-199。
    [103]张金安,胡玉洁等.P(AN-VAC)/Clay/DMA体系的流变性能[J].材料科学与工艺,2006.4,Vol 14,No.2:212-214。
    [104]李斌,冯春霞等.ZrO_2基陶瓷注凝成型料浆流变性的研究[J].南京工业大学学报,2005.9,Vol.27 No.5:89-92。
    [105]陈泉水,刘嫒.金溪膨润土的流变性研究[J].IM&P化工矿物与加工,2005(6):28-30。
    [106]赵学义,付建卓等.煤泥的流变特性实验研究[J].中国矿业大学学报,2006.1,Vol.35 No.1:75-78。
    [107]Hsu,J.P.and Nacu,A.,2004."An experimental study on the theological properties of aquepus ceria dispersions,"Journal of Colloid and Interface Science,274:277-284.
    [108]刘春秀.丙烯酸胺反相微乳共聚物的流变性研究[J].金山油化纤,2005(3):10-13。
    [109]刘忆明,易中周.表面改性对超细氧化锆悬浮体的流变性影响[J].红河学报,2004.8,Vol.2 No.4:4-7。
    [110]易中周,谢志鹏等.碳化硅浓悬浮体的分散特性和流变性研究[J].硅酸盐学报,2002,Vol.30 No.4:517-520。
    [111]孙光,李惠林.复合加工助剂对HDPE流变发能和力学性能的影响[J].高分子材料科学与工程,2006.3 Vol.22 No.2:173-176。
    [112]MiglerKB,LavalleeC,DillonMP,etal.J.Rheol.,2001,45(2):565-581.
    [113]王果庭.《胶体稳定性》[M].北京:科学出版社,1990.8。
    [114]S.P.Singh,L.Q.Ma,and W.G.Harris.Heavy Metal Interactions with Phosphatic Clay:Sorption and Desorption Behavior,Environ.Qual.30:1961-1968(2001).
    [115][德国]F.利鲍著,席耀忠译.硅酸盐结构化学[M].北京:中国建筑工业出版社,1989.10。
    [116]胡岳华,王毓华,王淀佐等.铝硅矿物浮选化学与铝土矿脱硅[M].北京:科学出版社。
    [117][美国]M.A.安德森,A.J.鲁宾著,刘莲生,张正武,刘国盛译.水溶液吸附化学[M],北京:科学出版社,1989.3。
    [118]王淀佐,胡岳华.浮选溶液化学[M],长沙:湖南科学技术出版社,1988。
    [119]Patience MPtofu,Jonas Addai-Mensah.,Influence of hydrolysable Metal ions on the interfacial chemistry,particle interactions,and de- Watering behavior of kaolinite dispersions,Journal of Colloid and Interface Science 261(2003):349-359.
    [120]徐晓军等.《化学絮凝剂作用原理》[M].北京:科学出版社,2005.10。
    [121]武道吉,马军等.水动力学条件对絮凝体形成的影响[J].工业用水与废水,2007(1),Vol.38 No.1:4-8。
    [122]Metcaff&Eddy,Inc,秦裕珩等译.废水工程处理及回用[M].化学工业出版 社,2003年10月:296-297。
    [123]武道吉,王新文等.再论絮凝动力学致因[J].水处理技术,2001,Vol.27,No.1:19-21。
    [124]章志雄,董曾南.粘性流体力学[M].北京:清华大学出版社,1988.422-440。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700