亚铵法草浆废液固氮技术及木质素磺酸盐结构与性能的规律
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
系统研究了麦草亚硫酸铵法制浆废液的固氮技术及超滤技术提取高分子木质素的工艺和木质素的化学结构与物化性能之间的规律性,找到了合适的处理和应用该废液的技术及其规律性。对废液固氮技术的研究解决了氨挥发对环境的污染问题,并提高了缓释氮肥中铵态氮含量。适宜的甲醛用量为10%,此时,残余亚铵已耗尽,游离氨基本固定,反应后的pH值为6.0-6.5。固氮前后的磺酸基分别为1.474 mmol·g~(-1)和1.918 mmol·g~(-1),增加的磺酸铵为30.12%,其中木质素磺酸铵占87.4%。同时表明,温度对固氮规律影响不明显。
     研究了超滤技术处理麦草亚铵法废液过程中的规律,给出了超滤膜的选择、温度、操作压力等操作参数对超滤过程的影响。研究表明:截留分子量为10kDa的超滤膜较适合于分离此废液,并具有较好的抗污染性;在操作压力200kPa、温度为25℃下进行超滤,随着体积浓缩倍数的增加,灰分的透过率增加,截留液被浓缩。对超滤处理前后的废液进行了物化性能的对比研究表明:超滤后截留液中的木质素高分子量部分比例增加;截留液中的主要官能团—磺酸基、羧基和酚羟基的含量均比废液中的高;组成与结构上的变化对物化性能的影响表现在:截留液在1%水溶液中的表面张力为54.7 mN/m,较原液下降了2.2mN/m;净浆流动度提高了45.7%,即通过超滤能增强废液的应用性能。
     采用超滤法处理该废液时可以得到不同纯度木质素溶液样品,随着超滤时间的延长,木质素的含量从31.96%提高到68.67%;而灰分含量从23.10%下降到6.25%;糖类物质从45.52%下降到25.08%;超滤使截留液中木质素高分子量部分所占比例增加;截留液中的磺酸基、羧基和酚羟基的含量也都增加,但随着超滤的进一步进行,各基团含量的变化趋势都是先升高后降低;各样品都能降低水的表面张力,并且超滤后截留液的表面张力较原液有所降低;不同纯度木质素截留液对水泥的净浆流动度是原液的1.5倍;各样品都对二氧化钛-水体系有一定的分散能力,随着样品的加入量的增加,对二氧化钛的分散作用提高,除原液外,各截留液的用量达到1.0%时,对二氧化钛-水体系的分散作用稳定,不再增加。
     废液中木质素分子量对废液的应用性能有很重要的影响。论文讨论了几种改性方法对木质素的分子量分布和性能的影响。氧化反应同时发生了氧化降解和氧化缩合反应,羟甲基化反应过程中也发生了缩合反应,尤其活性基团含量高时缩合反应也越剧烈;氧化反应能提高木质素作为表面活性剂的表面活性,木质素改性用于制备表面活性剂时氧化反应较适合;有适当的相对分子质量是木质素磺酸盐减水剂的必要条件,发现羟甲基化改性效果明显,对水泥的净浆流动度提高幅度较大;但在利用氧化反应制备木素磺酸盐的减水剂时,要控制氧化反应的条件,使它主要以缩合反应为主。通过对磺化度和分子量综合研究发现,提高磺化度和分子量都能提高对水泥的净浆流动度,但在一定的磺酸基含量下,提高分子量对物化性能的影响更大。
     研究了亚硫酸铵法废液与Fe~(2+)的氧化螯合反应及其结构特性。研究表明:木质素磺酸铵较适宜的螯合条件是:pH值3,H_2O_2用量10%,FeSO_4用量40.93%,反应温度50℃,反应时间30 min,此时对Fe~(2+)的螯合率为15.08%,此螯合物在碱性条件下不生成Fe(OH)_3沉淀。同时研究了在螯合反应过程中,不同H_2O_2用量对木质素磺酸铵结构特性的影响。发现氧化后木质素磺酸铵中能与金属离子螯合的羧基、酚羟基和共轭羰基的含量增加,因此,木质素磺酸铵对Fe~(2+)的螯合能力增强。此外,还发现氧化后木质素磺酸铵高分子量部分比例增加,说明在氧化过程中发生了氧化降解和氧化缩合等反应,但以氧化缩合为主,说明木质素分子量的增加也有利于木质素磺酸铵螯合能力的提高。
Nitrogen fixation of the ammonia sulfite pulping spent liquor of wheat straw by using formaldehyde and the amount of ammonium lignosulfonate increased by nitrogen fixation were introduced.The results showed:formaldehyde could make the ammonium fixed in the spent liquor and the ammonium nitrogen transformed into organic nitrogen,so the spent liquor had better developmental prospect as slow release nitrogen fertilizer.The appropriate amount of formaldehyde was 10%,at this time,the residual ammonium sulfite was used up and free ammonia was basically fixed.When the reaction ended up,the pH of the spent liquor was 6.0-6.5. In order to understand the amount of ammonium lignosulfonate by the nitrogen fixation,the amount of ammonium sulfonate before and after nitrogen fixation was investigated.Experimental results indicated that the amount of ammonium sulfonate before and after nitrogen fixation was 1.474 mmol·g~(-1)and 1.918 mmol·g~(-1),respectively.As a result,ammonium sulfonate incresed by 30.12%,in which ammonium lignosulfonate was 87.4%and Carboxymethyl ammonium sulfonate was 12.6%.Meanwhile,we found that the influence of temperature on nitrogen fixation was not obvious.
     The ammonia sulfite pulping spent liquor of wheat straw by ultrafiltration was introduced. In the ultrafiltration process,the effect of membrane with different cut-offs,temperature,pressure and volume concentration were researched.Experimental results indicated that the membrane with a cut-off of 10kDa was suitable for concentrating wheat straw spent liquor and had good anti-fouling property against the spent liquor.Under the operating pressure 200 kPa,temperature 25℃,following the increasing of the volume reduction,the permeability of ash was higher and the retentate was concentrated as the volume reducing during ultrafiltration of spent liquor. Ultrafiltration treatment of the ammonia sulfite pulping spent liquor of wheat straw and its influence on chemical structure characteristics and physical properties were studied.The results showed:after ultrafiltration,the molecular weight of lignin in retentate was higher than spent liquor;the content of sulfogroup,carboxyl,phenolic hydroxyl groups which are the main functional groups in retentate were all more than that in spent liquor.Meanwhile,after ultrafiltration,the retentate had better performance than spent liquor as surfactant,as additive in concrete and as dispersant,in which compared with spent liquor,surface tension at 1wt%was 54.7 mN/m,dropped 2.2 mN/m;Clean solution's fluidity improved from 70mm to 102mm.
     In the spent liquor,the lignin molecular weight had a very important influence to its application performance.The influence of several modified methods to the lignin molecular weight distribution and the performance were discussed.The results indicated that oxidation-degradation and oxidation-condensation took place at the same time in the process of the oxidation,The condensation reaction took place in the hydroxyl methylolation,and the higher active group contents had higher responding activeness.The oxidized reaction could enhance the surface activity of lignosulfonate as surfactant,higher molecular weight was the dominating factors influencing the increase of dispersing and strengthening performance of lignosulfonate as additive in concrete and as dispersant.In the lignosulfonate products after hydroxyl methylolation,clean solution's fluidity improved greatly.But when the major reaction was oxidation-condensation,oxidation reaction was advantageous as additive in concrete and as dispersant.In addition,higher molecular weight and higher sulfonic group content were the dominating factors influencing the increase of dispersing and strengthening performance of lignosulfonate,but under suitable sulfonic group content,the influence of improving the molecular weight to strengthen performance became much bigger.
     The chelating reaction and structure properties of ammonium lignosulfonate with Fe~(2+)by oxidation were introduced.Experimental results indicated that the suitable chelating reaction condition of ammonium lignosulfonate and Fe~(2+)was determined as follows:the pH was 3,the amount of hydrogen peroxide was 10%,the dosage of FeSO_4 was 40.93%,and the reaction was 50℃for 30 min.Under this reaction condition,the chelating rate of Fe~(2+)was 15.08%,and the chelating compound of ammonium lignosulfonate with Fe~(2+)was stable and no Fe(OH)_3 pricipitation in alkaline water solution.At the same time,The effects of the amount of hydrogen peroxide in the chelating reaction on structure properties of ammonium lignosulfonate were investigated.It was shown that the amount of phenolic Carboxyl group,hydroxyl group and carbonyl group in the chelating compound of oxidized ammonium lignosulfonate which could enhence the chelating performance of ammonium lignosulfonate was more than that of the no-oxidized ammonium lignosulfonate.As a result,the oxidized ammonium lignosulfonate had higher chelating efficiency than that of the no-oxidized ammonium lignosulfonate.In addition, the molecular weight of the oxidized ammonium lignosulfonate more than 4950 was higher than that of the no-oxidized ammonium lignosulfonate by Gel Chromatography.It was found that degradation and condensation took place at the same time in the process of the oxidation,but the major reaction was oxidation-condensation under the reaction condition.
引文
[1]贺延龄.废水的厌氧生物处理.北京:中国轻工业出版社,1998.
    [2]中国造纸协会.中国造纸工业2006年度报告.造纸信息,2007.
    [3]林乔元.中国造纸工业非木材制浆污染防治的评价与展望.中国造纸,2006,25(5).
    [4]张珂.造纸工业污染技术与环境管理.北京:轻工业出版社,1998.
    [5]联合国环境署.制浆造纸工业环境管理.联合国环境署工业环境管理网(NIEM)中国专家组译,北京:中国轻工业出版社,1998.
    [6]俞正千.中国造纸碱回收五十年技术进步实录.国际造纸,1999 18(1):1-13.
    [7]林乔元.麦草浆废液治理及其中段废水达标排放技术的评价.中国造纸,1999(1):50-55.
    [8]Macek,A..Research on Combustion of Black-Liquor Drops.Progress in Energy and Combustion Science,1999,25(3)275-304.
    [9]杨卫明,石颐.酸析木质素法处理造纸废液的改进与应用,环境工程,1997,15(2)3-6.
    [10]戴友芝.碱法草浆废液酸析回收木质素.环境科学与技术,1995(1)40-42.
    [11]唐新德.酸化法提取木质素在造纸废液治理中的应用探析.环境工程,1996,14(2).
    [12]周长玲等.草浆废液硫酸酸析的木质素的工艺条件.东北林业大学学报,2000,28(1)45-47.
    [13]邹文中,谢来苏,等.麦草烧碱-AQ法废液碱木质素的特性和酸化沉淀过程.中国造纸,1993(4)40-44.
    [14]周建红,罗文谦.絮凝法处理造纸废水现状与发展趋势.安康师专学报,2002,14(1)65-67.
    [15]张兆立,赵荣.草浆造纸厂废液处理技术研究.天津造纸,2006(2)32-33.
    [16]杨久义,周广芬,等.膨润土复合絮凝剂制备及造纸废液治理.非金属矿,2004,27(6)50-52.
    [17]周平,刘东.利用天然蛙石处理造纸废液.环境科学研究,2001,14(14)37-39.
    [18]熊正为,袁华山,刘金香.铁质粘土混凝沉淀处理造纸废液的应用研究.南华大学学报(理工版),2004,18(2)17-19.
    [19]Golike,G.P,Pu,Q.,Holman,K.L,et.al..A New Method for Calculating Equilibrium Solubility of Burkeite and Sodium Carbonate in Black Liquor.Tappi Journal,2000,183(7)68.
    [20]Wallberg,O.,Joensson,A-S..Wimmerstedt,R..Ultrafiltration of Kraft Black Liquor with A Ceramic Membrane.Desalination,2003,156(1-3):145-153.
    [21]韩怀芬,金漫彤.膜生物反应技术处理造纸废水实验.水处理技术,2001,27(2)96-98.
    [22]Wallberg O.,Joensson,A-S..Wimmerstedt,R..Fractionation and Concentration of Kraft Black liquor with A Ceramic Membrane.Desalination,2003,154(2)187-199.
    [23]潘碌亭,朱亦仁.乳状液膜法处理造纸废液的研究.环境保护,1998(1)20-22.
    [24]Helmy,SM.,Rafie,S.,Ghaly,MY..Bioremediation Post-photo-oxidation and Coagulation for Black Liquor Effleunt Treatment,Desalination,2003,158(1)331-339.
    [25]Sricharoenchaikul,V.,Hicks,A.L.,Frederick,W.J..Carbon and Char Residue Yields from Rapid Pyrolysis of Kraft Black Liquor.Bioresource Techonology,2001,77(2)131-138.
    [26]李洪仁,王敬涛,胡晓静.湿式氧化法处理工业污水的应用与展望.工业水处理,1999,19(3)10-11.
    [27]王永仪,杨志华,蒋展鹏,等.废水湿式催化氧化处理研究进展.环境科学进展,1995,3(2)35-40.
    [28]李锋,汪海峰,朱丹.超临界水氧化技术的研究与应用进展.上海电力学院学报,2002,18(1)17-22.
    [29]Perezm.Metal Photocatalytic Treatment of Paper Pulp Bleach Effluents.Quim.Anal.,1997,16(3)211.
    [30]Vinje M.G.,Kuntz G.P..Testing of Naturally Occurring Materials to Aid Pulp Mill Environmental Control.Pulp & Paper Canada,2000,101(6)33-36.
    [31]Lara MA.,Rodriguez-Malaver AJ.,Rojas OJ.,et.al..Black Liquor Lignin Biodegradation by Trametes Elegans,International Biodeterioration &Biodegradation.2003,52(3)167-173.
    [32]Buzzini AP.,Pires EC..Cellulose Pulp Mill Effluent Treatment in an Upflow Anaerobic Sludge Blanket Reactor.Process Biochemistry,2002,38(5)707-713.
    [33]Villar J.C.,Caperos A.,Garcia-Ochoa F..Treatment for Residual Sulfate Black Liquors:The Effect of Operational Variables on Effluent Pollutant Load.Appita Journal,2000,53(2)6.
    [34]谢慧芳.锰过氧化物酶的制备春花及其用于到草浆生物漂白的研究.南京林业大学博士论文,2006.
    [35]张一丁,王宏韬,郑丽娜.浅谈污水活性污泥处理法的革新和替代技术.国土与自然资源研究,2002(2)54-55.
    [36]柳荣展,王广建.白腐菌在制浆造纸工业中的应用进展.青岛大学学报(工程技术版),2001,16(3)46-50.
    [37]赵立军,滕登用,刘金玲,等.废水厌氧生物处理技术综述与研究进展.环境污染治理(技术与设备),2001,2(5)58-66.
    [38]陈叶福,郭雪娜,王正祥,等.木质素生物降解与纸浆工业废水脱色.工业微生物,2001,31(4)49-53.
    [39]管运涛,蒋展鹏,祝万鹏,等.两相厌氧膜—生物系统处理造纸废水.环境科学,2000(4)51-56.
    [40]李剑超,褚君达,丰华丽,等.我国稳定塘处理的研究与实践.工业用水与废水,2002,33(1)1-3.
    [41]骆艳娥,李华,刘树文.固定化细胞生物反应器的应用及研究进展.微生物学杂 志,2002,22(2)36-39.
    [42]罗建中,张新霞,乔庆霞,等.固定化细胞技术用于废水深度处理.环境污染治理技术与设备,2002,3(6)69-73.
    [43]成琼,杜晓燕,等.亚铵法废液高温厌氧消化的可能性研究.四川大学学报,2005,42(3).
    [44]杨润昌,周书天.硫酸对草浆造纸废液催化作用的研究.环境科学,1993,15(5)46-48
    [45]白成志,等.造纸废液制取水煤浆添加剂的研究.环境保护,2000(11)43-44.
    [46]殷惠民,海颖,等.废液水煤浆技术在造纸废液处理中的应用.环境科学研究,2000,13(3)55-56.
    [47]钟学才,廖斌.利用造纸废液制取水煤浆添加剂的研究.上海环境科学,1995,14(12)22-23.
    [48]马斐,陈嘉翔,等.碱法制浆废液改性为钻井泥浆降粘剂的研究.华南理工大学学报,1996,24(12)193-196.
    [49]杨问波,穆环珍,等.AS法制浆废液改性减水剂实验研究.上海环境科学,2001,20(4)182-183.
    [50]李成海,丁植才,等.利用造纸废液制取木质素磺酸盐减水剂.水处理技术,1991,17(5)338-342.
    [51]汪永辉,蒋志贤,等.超滤法从造纸废液中提取木质素制备活性炭.上海环境科学,1994,12(2)10-13.
    [52]赵立军,滕登用,等.废水厌氧生物处理技术综述与研究进展.环境污染治理技术与设备,2001,2(5)58-66.
    [53]Lignin:A challenge for future scientific research,Indian pulp and paper,1980,7-8.
    [54]Useful method 205 acid soluble lignin in wood and pulp,Tappi fall,1975.
    [55]劳善根.造纸废液资源化治理途径.浙江大学学报,2000,26(1)85-88.
    [56]Application of MB filtration in the pulp and paper industry DDS-RD Division,Pa,1976
    [57]Molecular weight distribution of lignin during alkaline pulping.Svensk paperstidning,1973.
    [58]UF solute rejection behavior of black liquor,RO and UF,1980,17:312-323.
    [59]P.Narong,A.E.James.Effect of the ζ-potntial on the micro/ultra-filtration of yeast suspensions using ceramic membranes,separation and purification technology.2005,SEPPUR-8422:33-36.
    [60]T.Moritz,S.Bebfe.Influence of the surface charge on the permeate flux in the dead-end filtration with ceramic membranes.separation and purification technology,2001,25:501-508.
    [61J.Brinck,A.S.Jonsson.Influence of pH on the adsorptive fouling of ultra-filtration membranes by fatty acid.Journal of membrane science,2000,164(1-2)187-194.
    [62]任承霞.草浆废液的超滤纯化和草类碱木质素的氧化降解研究.南京林业大学博士论文,2001.
    [63]谭绍早,陈中豪,贾凤莲.超滤法处理造纸工业废液.辽宁城乡环境科技,2001,21(6)48-50.
    [64]张珂,周思毅主编.造纸工业蒸煮废液的综合利用与污染防治技术.中国轻工业出版社,1992.
    [65]李仲民,童张法.超滤法回收造纸废液中木质素的研究.化学工程,2003,21(6)48-50.
    [66]孙守亮 陈中豪 李友明.化工环保,1998,(18)373.
    [67]潘学军,谢来苏,隆言泉.草浆废液的超滤浓缩.中国造纸,1995,(3)27-30.
    [68]M.J.Rosa,M.N.Depihno,J.Membr,Sci..1995,(102)155.
    [69]郑大锋,邱学青,楼宏铭.木质素的结构及其化学改性进展.精细化工,2005,22(4)249-252.
    [70]洪树楠,刘明华,范娟.木质素吸附剂研究现状及进展.造纸科学与技术,2004,23(2)38-43.
    [71]R.J.A.Gosselink,M.H.B.Snijder,A.Kranenbarg,et al.,Characterisation and application of NovaFiber lignin,Industrial Crops and Products,2004(20)191-203.
    [72]苏寿承.木质素的化学结构和利用[J].浙江林学院学报,1990,7(1)87-96.
    [73]周建,曾荣,罗学刚.木质素化学改性的研究现状.纤维素科学与技术,2006,14(3)59-66.
    [74]岳萱,乔卫红,申凯华,等.曼希尼反应与木质素的改性[J].精细化工,2001,18(11):670-673.
    [75]Donald G Rachor,Charles H Ludwig.Lignin composition and process for its preparation[P].US 3912706.1975.
    [76]Peter Dilling,Gamini S Samaranayake,Staci L Waldrop.Amine modified sulfonated lignin for dispersedye[P].US 5972047.1999.
    [77]Peter Dilling,Gamini S Samaranayake.Mixtures of amine modified lignin with sultonated lignin for dispersedye[P].US 5989299.1999.
    [78]曾祥钦,王晓红.改性木质素的电泳[J].精细化工,2001,18(4)196-199.
    [79]王晓红,陈文瑾,曾祥钦.木质素的胺化改性[J].贵州工业大学学报(自然科学版),2000,29(3):65-69.
    [80]王晓红,郝臣,曾祥钦.木素胺的合成及改性率的测定[J].上海环境科学,2002,21(4):224-228.
    [81]Matsushita,Yasuda.Reactivity of a condensed-type lignin model compound in the Mannich reaction and preparation of cationic surfactant from sulfuric acid lignin[J].Journal of Wood Science,2003,49(2):166-171.
    [82]中野准三编.木质素的化学—基础与应用[M].高洁,等译.北京:轻工业出版社,1988:279.
    [83]谌凡更,李忠正.麦草碱木素与环氧乙烷共聚的研究[J].纤维素科学与技术,1998,6(1):48-54.
    [84]王海洋,陈克利.木质素的氢解及其合成环氧树脂探索[J].化工时刊,2004,18(3):27-30.
    [85]谌凡更,欧义芳,李忠正.木质素磺酸钙与环氧丙烷共聚的研究[J].纤维素科学与技术,1998,6(3):52-58.
    [86]赵斌元,李恒德,胡克鳌,等.木质素基环氧树脂合成及其表征[J].纤维素科学与技术,2000,8(4):19-26.
    [87]Hirose,Hatakeyama,Hatakeyama.Curing and glass transition of epoxy resins from ester-carboxylic acid derivatives of mono- and disaccharides,and alcoholysis lignin[J].Macromolecular Symposia,2005(224):343-353.
    [88]Simoinescu,Rusan,Macoveanu.Lignin/epoxy composites[J].Composites Science and Technology,1993,48(1-4):317-323.
    [89]赵斌元,胡克鳌,吴人洁,等.木质素磺酸钠的酚化改性初步研究[J].高分子材料科学与工程,2000,16(1):158-160.
    [90]Jolly S.The methylolation of sulfuration lignin[J].Cellulose Chem.Technol.,1982,16:511.
    [91]Clarke.Methylolated kraft lignin polymer resin[P].U.S.Patent,4113675.1978.
    [92]蒋挺大,木质素[M].北京:化学工业出版社,2001.
    [93]周强,陈昌华,陈中豪.碱木素的多相催化羟甲基化[J].中国造纸学报,2000,15:120-122.
    [94]杨东杰,邱学青,陈焕钦.木素磺酸钙的氧化改性研究[J].精细化工,2001,18(3):128-131.
    [95]尉小明,刘庆旺,殷国强.木质素磺酸盐(LLS)氧化改性研究[J].钻采工艺,2000,23(6):63-65.
    [96]Daavydov V.D,Tedoradze G.A.Tezisy Dokl-vses Konf Khim Ispol'z Lignina,6th[C].1975:122.
    [97]薛建军,钟飞.木质素电氧化的影响因素研究[J].林产化学与工业,2002,22(3):37-40.
    [98]Glasser.Polyurethane intermediates and products and methods of producing same from lignin[P].U.S.4017474.1977.
    [99]刘全校,杨淑蕙,李建华,等.改性麦草氧碱木素在聚氨酯合成中的应用[J].中国造纸学报,2003,18(1):11-14.
    [100]刘育红,席丹.以木质素为原料合成聚氨酯的研究进展[J].聚氨酯工业,2003,18(3):5-7.
    [101]杨益琴,李忠正.改性木材硫酸盐木质素制备染料分散剂的研究[J].林产化学与工业,2003,23(4)31-36.
    [102]樊耀波,穆环珍,徐良才.麦草碱木质素水泥混凝土减水剂研究[J].环境科 学,1995,16(4)46.
    [103]郑雪琴,黄建辉,刘明华,等.碱木素磺化改性制备减水剂及其性能的研究[J].造纸科学与技术,2004,23(5)29-32.
    [104]王海燕.麦草浆臭氧—TCF漂白规律性和草类碱木质素臭氧氧化改性的研究.南京林业大学博士学位论文,2003.
    [105]Lin,S.Y.,U.S.Patent,1981,No.4,308,203.
    [106]Lin,S.Y.,J.Am.Assoc.,Textile Chem.Colorists,1981,13(11):261.
    [107]Flaig W.,Soechtig H.,Pollution control through utilization of spent sulfite liquors from the pulp industry as organic nitrogen fertilizer,Neth.J.Agri.sci,1974 22(4)255-261.
    [108]刘秋娟,张学恭.利用稻草碱木素生产肥料的研究[J].中国造纸,2002(4)29-32.
    [109]马涛,詹怀宇,王德汉,等.木质素微肥的研制及生物实验[J].广东造纸,1999(3)9-13.
    [110]浙江农业大学主编.植物营养与肥料.农业出版社,1991.
    [111]南京农业大学主编.土壤农化分析.农业出版社,1981.
    [112]朱禄海.推广长效碳铵开展农化肥服务.化工时刊,1998,12(2),49-50.
    [113]北京农业大学主编.肥料手册,农业大学出版社,1979.
    [114]李宝玉.SFP木质素缓释氮肥的制备及性能研究.南京林业大学硕士论文,2006.
    [115]朱兆华,王德汉,廖宗文.改性造纸废液木质素—氨氧化木质素(AOL)作为缓释氮肥的肥效研究,华南农业大学资源环境学院新肥料资源研究室,广东 广州,农业环境保护,2001,20(2):98-100,119.
    [116]范秀英,等.AOL拌种对作物生长影响的初步研究[J].环境科学,1996,16(4):42-45,48.
    [117]刘可星,等.造纸废液及AOL对磷矿粉活化的研究初报[J].广东造纸,1998,3:14-15.
    [118]Meier K,et al.Conversion of technical lignins into slow-release nitrogenous fertilizer by a m moxidation in liquid phase[J].Bio resource Technology,1994,49(2):121-128.
    [119]Haider.K.Der Mikrobielle Abbau des Ligins und seine Bedeutung fuer den Kreislauf des Kohlenstoffs.Forum Mikrobiologie GIT Verlag.1998,11,477-83.
    [120]张珂等.造纸工业蒸煮废液的综合利用污染防治技术.中国轻工业出版社,1992.
    [121]刘德启.草浆造纸废液改性制备木质素酚醛树脂结合剂[J].耐火材料,200034(6)337-339.
    [122]曹阳,曾祥钦.木质素改性脲醛胶粘剂的研制[J].贵州化工,2002 27(1)17-18.
    [123]Li Y,Miynar J,Sarkanen S.J Polym Sci:Part B:Polym Phys,1997,35:1899.
    [124]Huang J,Zhang L,Wang X.J Appl Polym Sci,2003,89:1685.
    [125]Kai W,He Y,Asakawa N.Inoue Y.J Appl Polym Sci,2004,94:2466.
    [126]A.Wong.Tappi Journal,1980,63(4).
    [127]G.Gellersteclt,Svensk Paperstian,1976,79(16)537.
    [128]王海燕.麦草铵法制浆技术改良的研究.南京林业大学硕士学位论文,2000.
    [129]J.P.Casey,Paper and Pulp Chemical Technology,3rd edition,(1)348-352
    [130]S.A.Rydhom.Pulping Process.Inter,Science,1970 Pat 847.
    [131]霍学文,农垦造纸,1984(1)31-38.
    [132]金适,农垦造纸,1998(3)8-10.
    [133]李与文,王慧丽,制浆造纸分析检测.化学工业出版社,2005.
    [134]南京林业大学.木材化学实验指导书.
    [135]张洁.树木酚类化合物的反应性能及其产物的油田化学效能.南京林业大学博士论文,1998.
    [136]刘昌盛,邬行彦,潘得维,等.膜的污染与清洗[J].膜科学与技术,1996,16(6):25-30.
    [137]王海燕.麦草浆臭氧—TCF漂白规律性和草类碱木质素臭氧氧化改性的研究[D].南京:南京林业大学博士学位论文,2003.
    [138]王哲,李忠正,落叶松栲胶废渣木质素磺酸盐理化性能的研究.林产化学与工业,2006,26(3),59-62.
    [139]王哲,李忠正,高鸿海,改性木质素磺酸钠的混凝土减水性能及其结构特性.中华纸业,2007,28(11).63-65.
    [140]金永灿.工业木质素的开发利用[J].林业科技开发,2002(3):9-10.
    [141]Flaig W.,Soechtig H.,Pollution control through utilization of spent sulfite liquors from the pulp industry as organic nitrogen fertilizer[J].Neth.J.Agri.sci.,1974,22(4):255-261.
    [142]刘秋娟,张学恭.利用稻草碱木素生产肥料的研究[J].中国造纸,2002(4):29-32.
    [143]马涛,詹怀宇,王德汉.木质素微肥的研制及生物实验[J].广东造纸,1999(3):9-13.
    [144]陈小明,童明良.羧基配位结构[J].大学化学.1997,12(6):24-26.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700