碱减量印染废水处理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以浙江省杭州萧山新中纺实业有限公司碱减量印染废水为对象,调查了废水的来源、水质、水量等。该废水具有高COD、强碱性、高色度等特点,加之碱减量废水的混合,给传统的废水处理工艺增加了困难。本文在国内外碱减量印染废水处理技术的基础上,提出了较为合理、成熟、新颖的处理工艺,即物化预处理-微电解-多级生化处理工艺,经此工艺处理后出水达标排放。
     物化预处理过程中进行单因素研究,一是考查了碱减量废水硫酸酸析,中和pH值,石灰用量等因素的影响。最佳工艺条件:中和酸为硫酸,中和pH值约为3.5,石灰用量为2.0kg/m3,COD去除率约为80%;是考查了混合废水混凝剂,复合铁用量,混凝pH值等因素的影响,最佳工艺条件:混凝pH值为8-9,复合铁用量为1.26kg/m3,COD、色度和浊度的平均去除率分别达到29.4%,56.7和81.2%。物化处理后出水水质为:CODcr1000~1300mg/L,色度700-900倍,浊度90-130度。
     生化处理单因素法考查了溶解氧浓度DO、水力停留时间HRT、过磷酸钙投加量、温度以及进水pH值的影响,得到的最佳工艺条件:DO为3-4mg/L,HRT为9h左右,过磷酸钙投加量为0.1kg/m3,生化适宜温度为20-30℃,适宜pH值为5.5~6.5,生化系统COD、色度和浊度平均去除率达43.8%、74.2%和53.5%。出水CODcr为560~730mg/L,色度为180-240倍,浊度为40~65,不能达标排放。
     针对传统生化法难以降解对苯二甲酸的缺点,采用微电解-生化组合工艺,微电解试验单因素法考查了微电解材料、Fe/C质量比、进水pH值等系列因素的影响,最佳条件为:微电解材料为铁刨花与焦炭,Fe/C质量比5:1,进水pH值5.5-6.5,HRT为9h,电解质用量为0.1kg/m3,DO为3~4mg/L。此工艺处理后COD、色度和浊度三者的平均去除率分别为67.5%,91.3%和70.7%。处理后的出水水质为CODcr 300-500mg/L,色度为50-70倍,浊度为20-40度。并对有关机理进行了探讨。
     本文将实验研究成果运用于工业化研究,研究采用的工艺流程为:碱减量酸析预处理,碱减量印染混合废水物化处理后,进行微电解-多级生化处理联合工艺。整个工艺流程投资少、过程简单、占地面积小,
     可用于含高含量涤纶水解废水印染废水处理,经整个工艺流程处理后的水质为:CODcr<500mg/L,达到国家《纺织染整工业水污染物排放标准(GB4287-92)》三级排放标准,色度<50倍,浊度<40度,达厂方要求。
In this paper,the resource and the water quality and quantity of alkali-minimization printing and dyeing from Xiaoshan New Ninotex Industrial Co.,LTD, Hangzhou, were investigated. The characteristics of the wastewater were high COD, strong alkalinity and high chromaticity color,and alkali-minimization with the wastewater of printing and dyeing which made the traditional technology was incapable in the wastewater treatment.Compared with the treatment methods of alkali-minimization printing and dyeing industry wastewater,a kind treatment method of reasonability, maturity and novelty was brought:The physical-chemical pretreatment-micro-electrolysis multistage-biological contact oxidation method.
     In the physical-chemical process, single-factor experiment was employed.The first was alkali-minimization,and the effects of different factors such as neutralizing acid,pH, lime amount,and The optimal reaction conditions:sulfuric acid,neutralizating pH3.5,lime amount 2.0 kg/m3,COD removed rate 80.0% about.The second was composite wastewater, and effects of different factors such as flocculating agent, muti-function iron amount, and flocculating pH. The optimal reaction conditions:muti-function iron and it's amount 1.26 kg/m3.COD removed rate, colourity and turbidity were 29.4%,56.7% and 81.2% respectively. The wastewater being treated:COD1000~1300mg/L, colourity700~900 times,turbidity 90~130 degree.
     In the biolochemical process, the effects of different factors suchas the dissolved oxygen (DO), hydraulic detention time (HRT),calium superphosphate amount, optimal biological temperature and pH. The optimal reaction conditions:DO3~4mg/L, HRT 9h,calium superphosphate amount 0.1kg/m3,temperature 20~30℃,optimal pH 5.5~6.5.The average removed rates of COD, colourity and turbidity were 43.8%,74.2%, and 53.5% respectively. The wastewater being treated:COD560~730mg/L, colourity180~240 times, turbidity40~65 degree, which didn't reach the standard.
     For the disadvantages of TA which made COD could't reach the standard and was hard degradated in the traditional biolochemical process, the combined process of micro-electrolysis-biochemical process was employed,and the single different factors method were studied.The effects of different factors such as materials, Fe/C(mass),pH, etc.The optimal reaction conditions:micro-electrolysis materials were ironchip and coke, Fe/C(mass)5:1,pH 5.5~6.5,HRT 9h, calium superphosphate amount 0.1kg/m3, DO 3~4mg/L.In the biochemical process,The average removed rate of COD,colourity and turbidity were 67.5%,91.3%,and 70.7% respectively. The wastewater being treated:COD300~500mg/L, colourity50-70 times, turbidity20~40 degree.Then the mechanism of micro-electrolysis was initially dicussed.
     The combined industrialized process was studied.The process: alkali-minimization wastewater could be reclaimed by acidation,then the wastewater,being adjusted pH, and printing-dyeing wastewater were mixed to be further treated by micro-electrolysis multistage-biological contact oxidation method.The process possessed the characteristies of small investment, simple procedure and small floor area,and the process could be fit for dealing with the alkali-minimization printing and dyeing industry wastewater of high concentration.The wastewater being treated: COD<500mg/L, colourity<50 times, turbidity<40 degree. COD reached the third grade discharge standard of "Water Pollutants for Dyeing and Finishing of Textile Industry"(GB4287-92) and colourity and turbidity reached the require of the company.
引文
[1]王国庆,金月祥,沈演松.仿真丝生产中碱减量及染整废水的治理,环境保护,1998,(2):21-23
    [2]沈东升,冯孝善,沈益民,汪雪根.印染碱减量废水处理.中国给水排水,1997,13(5):32-34
    [3]郭茂新,周慧.碱减量废水处理技术试验研究.工业用水与废水,2003,31(2):23-25
    [4]吴星义.TA对印染废水处理效果的影响.环境污染与防治,2001,23(2):84-86
    [5]蒋源隆.从碱减量废水中回收对苯二甲酸的实践.污染防治技术,2002,16(2):63-64
    [6]戴日成,张统,等.印染废水水质特征及处理技术综述.工业排水,2000,26(10):33-37.
    [7]黄长盾,杨西昆,汪凯民.印染废水处理,北京:纺织工业出版社,1987,1-10
    [8]张宇峰等.印染废水处理技术的研究进展.工业水处理,2003,23(4):23-23
    [9]肖羽堂,王继徽.纺织印染废水的吸附脱色技术研究进展.重庆环境科学,1996,18(5):24-28
    [10]张剑波,冯金敏.离子吸附技术在废水处理中的应用和发展.环境污染治理技术与设备.2000,1(1):46-51
    [11]Panday K.Copper(Ⅱ)removal from aqueous solutions by fly ash. Water.Res, 1985,19(7):869-873
    [12]zenkov V.Color removal from dye containing effluents by treatment with powerderedcoal,Tr-Mosk.Khim-Tekhonl.Inst.im.D.I.Mendeleeva,1981,119:78-80
    [13]赵东源.天然蒙托土对印染废水吸附的研究.环境污染与防治,1993,15(5):23-27
    [14]Meyer V.Diseoloring dye wastewater with natural materials. Wat. Sci.Tech,1992. 26(5/6):102-105
    [15]马知方,董永如.物化处理印染废水新工艺探讨.印染,1996,22(12):29-31
    [16]杨贵芝,王宁,李志红,等.退浆废水超声波处理新工艺.环境工程,2000,12(2):10-11
    [17]Tesuka M,Jwasaki M.Oxidative degradation of organic Pollutants in waste byglow discharge electrolysis.Proceeding of Asia-Pac Conference Plasma Seience and Technology,1996 Tokyo:423-427
    [18]魏在山,徐晓军,宁平等.气浮法处理废水的研究及其进展.安全与环境学报,2001,1(4):14-18
    [19]朱建平.吸附气浮法脱除染料离子的研究,环境工程,1993,11(1):10-12
    [20]Guo Huachen, Chen Xueming and Yue Polock.Eleetro coagulation and electroflotation of restaurant wastewater.Journal of Environmental Engineering, 2000,(9):858-863
    [21]Gehr R,Wartz C Z and Offringa G.Removal of trihalomethane Precursors from eutrophic Water by dissolved air flotation.Water Res,1993,27(1):41-49
    [22]熊志刚.废水污染处理方法及其进展简介.环境与开发,2001,16(13):49-50
    [23]张林生,张胜林,夏明芳等.印染废水处理技术及典型工程.北京:化学工业出版社,2005
    [24]季民,张宏伟,杨秀文.染色废水混凝脱色机理的研究.中国给水排水,1992,8(5):4-8
    [25]孔安庆,吴奇藩,王超.印染废水混凝脱色机理.中国给水排水,1995,11(3):31-33
    [26]缪旭光.几种常用无机絮凝剂处理印染废水试验及评述.环境导报,1995,(5):13-16
    [27]李硕文,陈杨,戴育红.聚硅酸硫酸铝制备及在染色废水处理中的应用.环境科学研究,1994,7(3):31-35
    [28]邱瑾,张孙讳.印染废水的脱色治理方法的比较研究.环境污染与防,1994,16(5):14-16
    [29]李旭祥,朱伟,王建安.改性淀粉絮凝剂处理印染废水.化工环保,1994,14(5):313-314
    [30]李硕文,崔真,汪全盛,等.絮凝氧化法处理印染废水的研究.工业水处理,1989,9(2):28-30
    [31]袁淑琴,李伟森,赵红,等.新型电解槽处理印染废水.工业水处理,1995,15(3):33-36
    [32]Naumczyk J,SzPyrkowiez L,Grandi F Z.Eleetroehemical treatment of texile wastewater.Water Seience and Technology,1996,33(7):17-24
    [33]贾金平,杨骥,廖军.活性炭纤维电极法处理染料废水的探讨.上海环境科学,1997,16(4):19-22
    [34]Vlyssisdes A G Loizidon M,Karlis P K,et al.Electrochemical oxidation of texile dye wastewater using a Pt/Ti eleetrode.J.Hazardous Materials,1999,70(12):41-52
    [35]Jia J P,Yang J,Liao J,et al.treatment of dyeing wastewater with ACF electrodes.Water Research,1999,33(3):881-884
    [36]赵少陵,贾金平.活性炭纤维电解法处理印染废水的应用研究.上海环境科学,1997,16(5):24-27
    [37]Kirk D W,Sharifian H,Foulkes F R.Anodic oxidation of aniline for wastewater treatment. J.Appl.Electrochem,1994,(39):1857-1862
    [38]尚国平,袁月梅,龚广参,等.改进的电解-气浮法处理印染废水.化工环保,1993,13(5):285-287
    [39]Lin S H,Peng C F.Continuous treatment of textile wastewater by combined coagulation,electrochemical oxidation and activated sludge.Water Research, 1996,30(3):587-592
    [40]汪群慧.复极性粒子群电极用于印染废水的处理.南京化工学院学,1990,12(3):69-71
    [41]韩洪军.铁屑-碳粒法处理工业废水.环境保护,1991,(1):17-18
    [42]陈繁忠,李穗中.废水净化的电化学技术进展.重庆环境科学,1997,19(6):19-21
    [43]祁梦兰.铁屑过滤-混凝组合工艺处理印染废水.环境工程,1993,11(3):3-6
    [44]杨卫林,周集林,杨凤林.微电解法降解染料的研究.上海环境科学,15(7):30-31
    [45]李胜利,李劲.用高压脉冲放电等离子体处理印染废水的研究.中国环境科学,1996,16(1):73-76
    [46]Luo G S,Yu M J,Jiang W B,et al.Electroextration separation ofdyestuffs.Separation Science and Technology,1999,34(5):781-791
    [47]徐瑞银,王殿芳.用于染料废水光降解处理的催化剂及其作用机制.北京石油化工学院学报.2004,12(2):26-31
    [48]张会芳,文晨.TiO2光催化分解酸性G和活性艳红K-2G的研究.化工时刊,2004.18(1):37-39
    [49]朱永法.多空薄膜型光催化剂及其环境净化研究.宁夏大学学报(自然科学版),2001,22(2):217-218
    [50]涂代惠,史长林.TiO2膜光催化氧化法深度处理印染废水.中国给水排水,2003.19(2):53-55
    [51]陈晓青,刘崎.钛/铟复合材料的光催化性能研究.工业水处理,2004,24(10):39-41
    [52]刘崎,陈晓青.掺镧纳米二氧化钛的光催化性能研究.上海化工.2004,(4):10-12
    [53]杜鸿章,尹承龙.难降解高浓度有机废水催化湿式氧化净化技术:Ⅱ反应工艺条件的研究.水处理技术,1997,23(2):83-87
    [54]崔淑兰,王峰云.铁屑-双氧水氧化法处理印染废水.环境保护,1990,12:10-11
    [55]陈芳艳,唐玉斌.Fenton试剂氧化处理印染废水.抚顺石油学院学报,2002,22(3):19-21
    [56]陈文松,韦朝海.Fenton氧化-混凝法处理印染废水的研究.工业水处 理,2004,24(4):39-41
    [57]卢宁川,府灵敏.臭氧处理印染废水的方法研究.江苏环境科技,2002,15(2):1-2
    [58]余祚洁.我国印染废水污水治理现状与最佳治理技术.环境科学丛刊,1985,6(1):10-20
    [59]孙天华,林少宁,余智梅,陈亮.生物铁法处理高浓度难降解印染废水的研究.中国环境科学,1991,11(2):138-142
    [60]王显楼,等.涤纶生产基本知识.纺织工业出版社出版,1993年,第二版
    [61]寿越穗,王近近,周小东,等.化纤织物碱减量碱液的回用技术.环境污染与防治.1996,18(2):32-33
    [62]郭茂新,周慧华.碱减量废水处理技术试验研究.工业用水与废水,2003,31(2):23-25
    [63]官宝红,徐根良,赵德明等.对苯二甲酸废水的处理技术.水处理技术,2002,28(3):129-133
    [64]刘艺.碱减量印染废水处理技术的研究:[硕士学位论文].上海:东华大学,2004
    [65]Macarie H,Noyola A,Guyot J P.Anaerobic treatment of a petrochemical wastewater from a terephalic acid plant.Water Science and Technology,1992,25(7):223-225
    [66]Kleerebezem R,Ivalo M,Pol L W H,Lettinga G.High rate treatment of telephthalate in anaerobic hydrid reactors.Biotecthnology Progress,1999,15(3):347-357
    [67](美)AMOCO公司,精对苯二甲酸装置实习讲义(污水处理部分)
    [68]李刚,申立贤.精对苯二甲酸生产废水处理技术.中国沼气,1995,13(4):1-6
    [69]李军,杨秀山等.微生物与水处理工程.北京:化学工业出版社,2002:50-63
    [70]周培国,傅大放.微电解工艺研究进展.环境污染治理技术与设备.2001,2(4):18-23-10
    [71]Feitz A.J.,Joo S.H.,Guan J.,et al.Oxidative transformation of contaminants using colloidal zero valent iron.Colloids and Surfaces A:Physicochem.Eng.Aspects.2005, 265:88-94
    [72]代秀兰.微电解技术处理含铬电镀废水研究及其应用.工业水处理.2005,25(1):69-71
    [73]周迟骏,周洁,赵东霞.偶氦染料曝气微电解脱色过程机理及工艺.化工进展.2005,24(9):1029-1032,1036
    [74]Ghauch,A.,Gallet,C.,Charef,A.,Rima,J.,Martin-Bouyer,M.,Reductive degradation of carbaryl in water by zero-valent iron.Chemosphere.2001,42,419-424

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700