缫丝废水处理工艺实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
缫丝行业产生的废水含有大量氮、磷等营养物质,易造成水体富营养化,严重影响人类生活和工、农业生产。目前对缫丝废水处理的研究多限于COD_(Cr)的去除和丝胶的回收利用,缺乏对缫丝废水脱氮除磷的研究。本文根据缫丝行业废水水质特点进行分类治理。首先用酸析法对汰头废水进行预处理,使大部分丝胶蛋白沉淀,然后用SBR工艺进行正交实验,找出SBR工艺运行的最佳条件,研究影响SBR工艺脱氮除磷的主要因素。研究得出如下主要结论:
     (1)利用正交实验研究酸析法处理汰头废水去除有机物最佳条件是:pH值为4.2、沉淀时间3小时,温度和搅拌时间对去除效能无显著影响,但温度较高和延长搅拌时间,不利于蛋白质的析出。汰头废水COD_(Cr)、TN、NH_4~+-N、TP浓度为8997mg/L、971.3mg/L、358.5mg/L、189.2mg/L,通过酸析法处理COD_(cr)、NH_4~+-N、TN和TP去除率达77.15%、73.6%、75.63%和74.97%。
     (2)利用正交实验确定了SBR工艺的最佳运行条件是:厌氧搅拌3小时,第一次曝气6小时,缺氧搅拌3小时,第二次曝气1小时,然后沉淀排泥排水,运行周期为14小时。在最佳运行条件下,当进水COD_(cr)、TN、TP浓度分别为468mg/L、44.7 mg/L、6.8 mg/L时,出水浓度可以分别达到25.2 mg/L、6.1 mg/L、0.49 mg/L,去除率分别达到94.62%、86.35%、92.79%。
     (3)温度对SBR系统脱氮除磷有较大影响,在20-35℃,对有机物的去除和脱氮除磷效果较好。pH值等于7.0、温度为30℃,废水COD_(Cr)、TN、TP浓度为525mg/L、48.3mg/L、7.6mg/L,经SBR法处理后,去除率分别达到92.85%、84.33%、92.75%。
     (4)进水pH值对COD_(Cr)、TN、TP的去除率的影响不同,在实验条件范围内,对COD_(Cr)的去除率基本没有影响、对TP的影响较小,对TN去除率的影响很大,pH在6.5-8.0,SBR工艺有良好的脱氮除磷能力。
     (5)C/N对COD_(Cr)的去除基本没有影响,对TN、TP的去除率影响很大。当C/N小于8时,碳源是脱氮除磷的限制性因子,当C/N大于10时,碳源就不再是脱氮除磷的限制性因子了。
     (6)好氧阶段DO浓度对COD_(Cr)去除率的影响较小,DO浓度对TP的去除率影响较大,因此要保证COD_(Cr)、TN、TP均能高效去除时,好氧阶段DO不宜过高,一般为1.5-3mg/L。
The wastewater generated in filature industry contains large amounts of nitrogen, phosphorus and other nutrients,could easily lead to eutrophication,seriously affecting human life and industrial and agricultural production.Current researches on filature wastewater treatment were largely confined to the removal of COD_(Cr) and the recovery of sericin,lacking the systematic study of nitrogen and phosphorus removal.In this paper,filature wastewaters were separated and treated respectively according to their characteristics.First acid-out method was used to treat the high concentration filature wastewater to subside the majority of sericin protein,and then SBR technology was used to treat the filature wastewater.The orthogonal experiments were carried out to find the best operating conditions for SBR process.The major factors affecting nitrogen and phosphorus removal were also investigated..The main conclusions are described as follows:
     (1) According to the orthogonal experiment results,to remove organic the pre-processing conditions of high concentration filature wastewater by acid-out method are:pH value of 4.2,deposition time of 3 hours.Temperature and stirring time hava no significant impact on the removal of organic,but high temperature and the extension of stirring time are not conducive to precipitation of proteins.The concentrations of filature wastewater are COD_(Cr)8997 mg/L,TN971.3 mg/L,NH_4~+-N358.5 mg/L,TP 189.2 mg/L.By acid-out treatment the removal efficiency of COD_(Cr), NH_4~+-N,TN and TP are 77.15%,73.6%,75.63%and 74.97%respectively.
     (2) The optimal operating conditions for SBR precess were determined by orthogonal experiment:anaerobic stirring 3 hours,the first aeration 6 hours,hypoxia stirring 3 hours,the second aeration 1 hour,and then discharge of water and sludge after precipitation,and one period 14 hours in all.Under the operating conditions, when the influent concentrations of COD_(Cr),TN,TP were 468 mg/L,44.7 mg/L,6.8 mg/L,the effluent concentrations would be 25.2mg/L,6.1mg/L,0.49mg/L respectively,and removal rates reached 94.62%,86.35%,92.79%.
     (3) Temperature has significant impact on nitrogen and phosphorus removal efficiency.At 20-35℃,higher nitrogen and phosphorus removal rates can be reached. Under the conditions of temperature 30℃,pH value 7.0,wastewater concentration of COD_(Cr)525mg/L,TN48.3mg/L,TP7.6mg/L,the removal rates of COD_(Cr),TN,TP reached 92.85%,84.33%,92.75%repectively.
     (4) The influent pH value has different impact on the COD_(Cr),TN,TP removal efficiency.Under the experimental conditions the influent pH had little effect on COD removal efficiency,week effect on TP removal efficiency and stronger effect on TN removal efficiency.SBR process possesses a good capacity of nitrogen and phosphorus removal with pH 6.5-8.0,.
     (5) C/N has little impact on the removal of COD_(Cr),significant influence on TN, TP removal rate however.When the C/N is less than 8,the carbon source is the restrictive factor to nitrogen and phosphorus removal.When the C/N is greater than 10,the carbon source is no more the restrictive factor on nitrogen and phosphorus removal.
     (6) The DO concentration during aerobic process has less impact on the removal rate of COD_(Cr),and greater impact on the removal rate of TP.To ensure the higher removal rates of COD_(Cr),TN,TP,the DO concentration of aerobic phase should not be too high,generally 1.5-3mg/L.
引文
[1]唐琳,廖梦虎.2007年茧丝绸行业运行分析及展望[J].丝绸,2008,(4):1-3.
    [2]王家德,朱征豪.缫丝行业废水排放特点及其防治对策[J].环境污染与防治,2002,24(4):216-218.
    [3]郭夏楠.杭州丝绸印染厂废水处理系统[J].丝绸技术,1997,5(4):20-23.
    [4]廖梦虎.用生物降解技术处理缫丝生产污水[J].丝绸,2002(11):20-23.
    [5]范顺高.缫丝厂滞头废水生化治理[J].丝绸,1999,(10):19-22.
    [6]徐亚同.高浓度汰头废水的处理与资源化研究[J].中国环境科学,1992,(12):67-70.
    [7]王浙明,韩新伟,史惠祥.厌氧-A/O接触氧化工艺处理丝厂高浓度有机废水[J].工业水处理,2002,22(1):52-54.
    [8]周建勇.制丝业污水治理的常用技术与展望[J].丝绸,2002(5):31-32.
    [9]崔萍,安慧,刘旭辉等.缫丝企业废水处理技术研究进展[J].安徽农业科学,2009,37(14):6573-6576.
    [10]陈水平.缫丝废水的治理和回收利用[J].污染防治技术,1994,7(4):37-38.
    [11]潘廷松.丝胶的提纯及其在纺织品加工中的应用研究(硕士论文)青岛:青岛大学,2004,3:16.
    [12]代君君,范涛,吴传华等.丝胶蛋白粉的制备及其物理性质初探[J].中国农学通报,2008,24(4):16-18.
    [13]段亚峰,杨晓瑜.缫丝厂废水处理与丝胶蛋白质的回收利用[J].丝绸,2000(1):16-17.
    [14]杨卫明,石颐.酸析木素法处理造纸黑液的改进与应用[J].环境工程,1997,2:3-6.
    [15]戴友芝.碱法草浆黑液酸析回收木质素[J].环境科学与技术,1995,1:40-42.
    [16]唐新德.酸化法提取木素在造纸黑液治理中的应用探析[J].环境工程,1996,14(2):12-14.
    [17]周长玲等,草浆黑液硫酸酸析的木素的工艺条件[J].东北林业大学学报,2000,28(1):45-47
    [18]邹文中,谢来苏,隆言泉等.麦草烧碱-A/O法黑液碱木素的特性和酸化沉淀过程[J].中国造纸,1993,(4):40-44.
    [19]Rigoni-stern S,Szpyrkow Icz L,Zilio-Grandi L.Treatment of silk and lycra printing wastewaters with the objective of water reuse[J].Water Science and Technology.1996,33(8):95-104.
    [20]黄金秀.混凝沉淀法处理缫丝废水的研究[J].安徽师范大学学报(自然科学版),2000,23(1):64-65.
    [21]何长见,青长乐.物化混凝—粉煤灰过滤法对丝厂废水处理的研究[J].重庆环境科学,1995,17(1):22-26.
    [22]丁皓.PAS/DDF复合混凝剂对丝绸精练废水的处理研究[J].丝绸,2008,(11):40-42.
    [23]顾毓刚,吕敏.绢纺生产废水的处理工艺研究[J].上海化工,2002,15:7-8.
    [24]罗达天,龙开渝.制丝废水污染治理方案介绍[J].四川丝绸,2007(2):26-29.
    [25]Rccd B E,Matsumoto M R,Jensen J N et al.Physicochemical processes[J].Water Environment Research,1998,70(4):449-473.
    [26]段亚峰,沈耀明,冀勇斌.丝绸废水的膜法处理与丝胶蛋白质回收技术[J].纺织学报,2005,26(2):24-26.
    [27]才亮,凌敏,李利明.应用膜技术处理煮茧废液及回收丝胶蛋白研究[J].广西工学院学报,2008,19(2):54-56.
    [28]姜国斌.利用厌氧生物发酵法处理缫丝企业废水[J].辽宁城乡环境科技,2007,(1):27-28.
    [29]李东,李仕军.缫丝厂生产废水处理浅议[J].广西轻工业,2007,(9):95-96.
    [30]刘玉琼,曾毓初,钟国明等.缫丝废水综合利用与无害化处理技术的研究[J].工业水处理,2007,27(7):23-26.
    [31]Fahm y M.Anaerobic-ae robic fluidized bed biotreat mentof sulphite pulpbleaching effluents-Ⅰ:G lobal parameters.Wat Res,1994,28(9):1987-1996.
    [32]Fahm y M.Anaerobic-aerobic fluidized bed biotrea tm entof sulphite pulp bleaching effluents-Ⅱ:Fa te of individualchlorophenolic compounds.W at Res,1994,28(9):1997-2010.
    [33]潘宁,王忠,侯娜.制丝生产废水治理的研究[J].山东农业大学学报(自然科学版),2005,36(2):244-246.
    [34]傅德龙,郭茂新,周慧华,徐向红.厌氧—好氧处理汰头废水[J].环境污染与防治,1994,16(5):22-24.
    [35]钱伯兔,胡佩伦.厌氧-活性污泥法处理高浓度绢纺废水[J].新疆环境保护.2002.22(1):62-63.
    [36]诸葛斌,张一波.绢纺废水处理工程设计运行的问题及改进[J].中国环境管理,2002.5:46-47.
    [37]莫钟川,唐文浩.缫丝生产废水的特征及处理方法的研究[J].安徽农业科学,2006,3(414):3432-3433.
    [38]王浙明,韩新伟,史惠祥.厌氧-A/O接触氧化工艺处理丝厂高浓度有机废水[J].工业水处理,2002,22(1):52-54.
    [39]Irvine R.L.Organic loading study of full scalese quenching batch reactors[J].JWPCF,1985,57:84-854.
    [40]刘大义.SBR法处理缫丝生产废水.环境工程,2004,22(4):30-33.
    [41]李乃炜,王礼同,石慧.气浮-SBR法在缫丝废水处理中的应用[J].环境工程,2006,24(2):23-24.
    [42]徐明仙,周红艺,黄新文等.SBR法处理缫丝废水的研究[J].浙江工业大学学报,2001,29(2):191-193.
    [43]国家环境保护总局,《水和废水监测分析方法》编委会.水和废水监测分析方法[M].第四版.北京:中国环境科学出版社,2002,12:210-284.
    [44]段亚峰,沈耀明,冀勇斌.丝绸废水的膜法处理与丝胶蛋白质回收技术[J].纺织学报,2005,26(2):24-26
    [45]李海红,仝攀瑞,于翔等.丝绸废水中蛋白质回收及超滤处理[J].纺织高校基础科学学报,2004,17(3):255-258.
    [46]Cech JS & Hartman P(1993)Competition bewteen polyphosphate and polysaccharide accumulating bacteria in enhanced biological phosphate removal systems[J].Wat.Res.27:1219-1225.
    [47]Crocetti GR,Hugenholtz P,Bond PL,Schuler A,Keller J,Jenkins D & Blackall LL(2000)Identification of polyphosphateaccumulatnig organisms and design of 165 RNA-directed probes for their detection and quantitation.APP1.Environ.Microbiol 66:1175-1182.
    [48]Marais G.V.R.,Loewental R E.,Siebritz I.P.Obervation supporting phosphorus removal by biological excess uptake review[J].Wat.Sci.Tech.,1983,15:15-41.
    [49]沈耀良,王宝贞.废水生物处理新技术-理论与应用[M].北京:中国环境科学出版社,1999,157-159.
    [50]刘章富,熊杨,侯铁等.同步生物除磷脱氮的几种实用新工艺[J].中国给水排水,2002,18(9):65-68.
    [51]李建萍,王存政,李辉等.粉煤灰处理含氟废水的正交试验研究[J].世界地质,2004,23(3):279-282.
    [52]杨崇豪,宋继琴.用正交实验法研究超细滑石粉对混凝的作用[J].华北水利水电学院学报,2001,22(1):63-66.
    [53]沈耀良.废水处理新技术:理论与应用[M].北京:中国环境科学出版社,1999:20-202.
    [54]许保玖,龙腾锐.当代给水与废水处理原理(第二版)[M].北京:高等教育出版社,2000:530-550.
    [55]朱还兰,史家梁,徐亚同等.SBR生物除磷工艺的研究.上海环境科学,1993,12(8):8-13.
    [56]郑兴灿.污水生物除磷技术的工作机理述评[J].环境科学,1990,11(1):50-55.
    [57]高宇.SBR生物除磷的研究进展[J].重庆工商大学学报《自然科学版》,2005(2):30-34.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700