分子量对高效减水剂吸附分散性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国正值大规模建设时期,对混凝土高效减水剂的需求巨大,2009年其用量达484万吨。高效减水剂的应用推进了建筑节能降耗,提高了混凝土工程的耐久性,具有重大的经济和社会效益,但是对混凝土高效减水剂的分子结构及其吸附分散作用机理还缺乏深入系统的研究。本文针对高效减水剂具有水溶性高分子表面活性剂的结构特点和表面物化行为,采用超滤膜技术将高效减水剂按分子量大小切割成3~4个级分,然后对各个级分进行结构表征和分散性能研究,最后结合其在水泥颗粒上的吸附动力学、热力学、吸附膜厚度及吸附后形成zeta电位探讨了分子量对高效减水剂的吸附分散作用机理的影响规律,为进一步优化高效减水剂的合成工艺和深入理解其分散作用机理提供了方向和参考。
     本文研究了五种高效减水剂,包括改性造纸黑液高效减水剂(GCL1-JB)、萘系高效减水剂(FDN)、脂肪族高效减水剂(SAF)、氨基磺酸系高效减水剂(ASP)和聚羧酸高性能减水剂(PC)。研究结果表明:
     (1)不同分子量级分的特性粘度差距较大,GPC的测试结果也表明超滤实现了按分子量切割为不同级分的目的,并且各级分的分子量分布变窄。元素分析测试结果表明,随着级分分子量的增大,单位质量磺化度降低,单分子磺酸根含量增加。
     (2)上述五种高效减水剂对水泥的分散性能都是随级分分子量的增大而增强。不同类型的减水剂随着级分分子量的增大,分散性能提高的程度不同,脂肪族减水剂的提高程度最大。0.5%掺量下,达到流动度250 mm左右,掺SAF所需水灰比为0.31,掺大分子量级分(SAF-D)所需水灰比仅为0.21。达到同样流动度,掺0.2%的聚羧酸高性能减水剂所需水灰比约为0.25。水灰比为0.21时,掺0.2%大分子量聚羧酸高性能减水剂级分(PC-C)的水泥净浆流动度为268 mm。
     (3)随着级分分子量的增大,SAF、FDN、和ASP的吸附量增大,zeta电位绝对值和吸附膜厚度增加。大分子量分子吸附到水泥颗粒表面能够产生较大的静电斥力和空间位阻,因而具有较强的分散性能。研究表明,大分子量脂肪族减水剂分子吸附的吉布斯自由能绝对值较大,优先吸附到水泥颗粒表面,具有较高的zeta电位和较厚的吸附膜厚度与其分子结构和吸附形态有关。大分子量分子具有较多的单分子磺酸根和较好的分子链柔性,因而分子在溶液中蜷曲,能在水泥颗粒表面形成多点的环圈式构型和具有多层电荷的空间结构,产生较高的静电斥力和较强的短程空间位阻,对水泥颗粒的分散性能更强。
Recently, demand of concrete water reducer become huge as large-scale of constructionin China is doing. For example, the consumption of water reducer reached 4.84 million tons in2009. The application of superplasticizer can reduce building energy consumption andimprove the durabilityof the project, so it brings significant economic and social benefits. Butthe study of synthesis and dispersion mechanism of superplasticizer is not enough.Superplasticizer is water-soluble polymer with structural characteristics and surfacephysico-chemical properties of surface active agents. In this paper, superplasticizer was cuttedinto 3~4 fractions by ultrafiltration membrane technology, then the structure of fractions arecharacterized and dispersion propertities of each fraction were also studied. Adsorptionkinetics, thermodynamics, zeta potential and adsorbed layer thickness data of differentfractions after being adsorbed on cement particles were to sheld light on dispersionmechanism of superplasticizer fractions. Conclusions here may provide useful direction andreference for optimizing the synthesis craft and in-depth understanding dispersion mechanismof superplasticizer.
     In this paper, five superplasticizers, including the modified pulp black liquorsuperplasticizer (GCL1-JB), naphthalene sulfonate formaldehyde condensate superplasticizer(FDN), sulfonated acetone formaldehyde condensate superplasticizer (SAF), amino acidphenol formaldehyde condensate superplasticizer (ASP) and polycarboxylate superplasticizer(PC) were studied.The results show that:
     (1) Different molecular weight fractions of superplasticizer had distinct difference inintrinsic viscosity. GPC test result showed that dividing the superplasticizers into fractions ofdifferent molecular weight was achieved by ultrafiltration membrane technology, andmolecular weight distribution of fractions got narrower. Elemental analysis result showed thatfractions’molecular weight were higher, degree of sulfonation would be lower, and thesingle-molecule sulfonic group content was higher.
     (2) From the results obtained from the study on the effect of fractions of fivesuperplasticizers on the dispersion of cement paste, it was found that the higher molecularweight fractions, the better the water-reducing dispersion performance. SAF fractions of high molecular weight enjoyed better dispersion performance than other type superplasticizers。When dosage of water reducers was 0.5%, and fluidity of cement paste reached 250 mm,water-cement ratio of SAF was 0.31, but water-cement ratio of high molecular weight SAFfraction (SAF-D) was only 0.21. When fluidity of cement paste was up to 250mm and dosageof polycarboxylate superplasticizer was 0.2%, corresponding water-cement ratio was 0.25.And when water-cement ratio was 0.21 and dosage of polycarboxylate superplasticizer withhigh molecular weight was 0.2%, fluidityof cement paste was up to 268 mm.
     (3) From the results obtained from the study of adsorption characteristics of SAF, FDNand ASP fractions, it was found that the higher molecular weight fraction, the larger amountof it on cement particles would be adsorbed, and so were zeta potential and adsorbed layerthickness. High molecular weight fraction adsorbed to the surface of cement particles inducedgreater electrostatic repulsion and steric hindrance, so the cement system would show betterdispersion performance. Further study of SAF showed that high molecular weight fractionwas of higher absolute value of Gibbs free energy, zeta potential and adsorbed layer thickness,and might preferentially adsorbed onto the cement particles, which was related to it’smolecular structure and adsorption configuration. High molecular weight molecule withhigher sulfonic group content per chain and better molecular chain flexibility, was proposed tobe coil configuration in solution, which enhanced interaction with the cement particles. Andhigh molecular weight molecule adsorbed on cement particles formed loop on cementparticles to show multi-charge structure which induced higher electrostatic repulsion andstrong short-range steric, and as a result dispersion performance of cement paste was greatlyincreased.
引文
[1]黄兰谷,黄其兴,吴忠孚等.混凝土外加剂[M].北京:中国建筑工业出版社.2004:2
    [2]谢慈仪.混凝土外加剂作用机理及合成基础[M].西南师范大学出版社.1993:1
    [3] Devallencounrt C., Saiter J.M., Fafet A.,et al. Thermogravimentry/Fourier transforminfrared coupling envestigations study the thermal stability of melamine formaldehyderesin[J]. European Ploymer Journal, 2001, 37:1083-1090
    [4]李崇智.新型聚羧酸系减水剂的合成及其性能研究[D].清华大学博士学位论文,2004
    [5]胡红梅,马保国,何柳.萘系高效减水剂的优化合成与改性[J].武汉理工大学学报,2005, 27(9):39-41
    [6]要秉文,罗永会,王彦平.基于萘系高效减水剂的多元复合改性研究[J].化学建材,2006,22(4): 39-41
    [7]宋波,魏金尤.聚羧酸改性萘系高效减水剂的制备与性能[J].新型建筑材料,2003,12:4-5
    [8]陈建奎.混凝土外加剂的原理与应用[M].北京:中国计划出版社.1997:222-223
    [9]魏明.磺化木质素蜜胺甲醛超塑化剂SLMF的合成及作用机理研究[D].华南理工大学博士论文,2009
    [10] Kamoun A., Jelidi A., Chaabouni M.. Evaluation of the performance of sulfonatedesparto grass lignin as a plaster-water reducer for cement[J]. Cement and ConcreteResearch, 2003, 33(7): 995-1003
    [11] Yasuyuki Matsushita, Seiichi Yasuda. Preparation and evaluation of lignosulfonates as adispersant for gypsum paste from acid hydrolysis lignin[J].Bioresource Technology,2005,96:465-470
    [12]邱学青,王斌,楼宏铭,等.酸析木素的接枝磺化改性及减水增强作用[J].华南理工大学学报:自然科学版, 2007, 35(4): 11-15
    [13]楼宏铭,刘青,张海彬,等.造纸竹浆黑液的接枝磺化工艺制备高效减水剂[J].高分子材料科学与工程,2009,25(6): 103-106
    [14] Grabiec M.. Contribution to the knowledge of melamine superplasticizer effect on somecharacteristics of concrete after long periods of hardening[J]. Cement and ConcreteResearch. 1999, 29: 699-704
    [15]杨东杰,黄玉芬,邱学青等.三步法合成磺化三聚氰胺脲醛树脂的工艺研究[J].精细化工. 2002,19(增刊): 118-121
    [16]张胜民,单松高,曹婉俊,等.改进型SM系高效减水剂制备及其对混凝土性能的影响[J].建筑材料学报,1999,2 (2):167-170
    [17]邱学青,易聪华,魏民等.三聚氰胺改性木质素磺酸盐高效减水剂的制备方法及其应用[P]. CN200810198271.7, 2008.9
    [18]王中华.合成条件对磺化丙酮-甲醛缩聚物性能的影响[J].油田化学,1992,9(1):59-61
    [19]张清川.亚硫酸盐对SAF-Ⅱ减水剂合成及性能研究[J].化学建材,1995,(1): 27-28
    [20]李永德. AHS混凝土高效减水剂合成与应用[J].化学建材, 1996,(5):219-221
    [21]庞金兴,张超灿,熊焰,等. SAF的合成机理及分散性能研究[J].武汉理工大学学报,2002,(6):29-31
    [22]张智,杨东杰,易聪华等.磺化丙酮甲醛缩合物合成参数对其减水分散性能的影响[J].新型建筑材料,2009,7:79-82
    [23]冯乃谦.氨基磺酸系高效减水剂的研制及其混凝土的特性[J].混凝土与水泥制品,2000, 2:5-8
    [24]冯乃谦,刑锋,陸酉教.氨基磺酸系高效减水剂的试验与应用[J].混凝土,2002,(9):28-30
    [25]蒋新元,邱学青,欧阳新平等.氨基磺酸系高效减水剂ASP性能研究[J].化学建材,2003,3:39-43
    [26]欧阳新平,邱学青,杨东杰等.氨基磺酸-苯酚-甲醛缩合物合成工艺研究[J].现代化工,2003,增刊:106-109
    [27]邱学青,蒋新元,欧阳新平.氨基磺酸系高效减水剂的研究现状与发展方向[J].化工进展,2003, 22(4):336-340
    [28]陈国新等.不同方法改性氨基磺酸系高效减水剂的研究[J].新型建筑材料,2007,5:31-33
    [29]缪昌文,冉千平,洪锦祥等.聚羧酸系高性能减水剂的研究现状及发展趋势[J].中国材料进展, 2009, 28(11):36-45
    [30]李崇智,李永德,冯乃谦.聚羧酸系高性能减水剂的研制及其性能[J].混凝土与水泥制品, 2002,(2): 3-6
    [31]孙振平,赵磊.聚羧酸系减水剂的合成研究[J].建筑材料学报,2009,12(2):127-131
    [32]丁晓川.醚类聚羧酸系减水剂的合成[J].科技创新导报,2005:17-18
    [33]孙振平,黄雄荣.烯丙基聚乙二醇系聚羧酸类减水剂的研究[J].建筑材料学报,2009,12(4):407-412
    [34]胡红梅,姚志雄,黄春泉,等.国内外聚羧酸系高性能减水剂的性能比较[J].厦门大学学报(自然科学版),2009,48(4):538-542
    [35] Asaga K., Roy D.M.. Rheological properties of cement mixes: IV. Effects ofsuperplasticizers on viscosity and yield stress[J].Cement and Concrete Research, 1980,10(2): 287-295
    [36] Martini S. A., Martini S. A., Nehdi M.. Coupled effects of time and high temperature onrheological properties of cement pastes incorporating various superplasticizers[J].Journal of materials in civil engineering, 2009, 21(8): 392-401
    [37] Sakai E., Kasuga T., Sugiyama T., et al. Influence of superplasticizers on the hydrationof cement and the pore structure of hardened cement[J]. Cement and Concrete Research,2006, (36) :2049-2053
    [38]李崇智等.氨基磺酸系高效减水剂的试验研究[J].混凝土,1999,4:34-38
    [39]赵晖,邓敏,吴晓明,等.氨基磺酸单环芳烃型高效减水剂的制备及其在水泥颗粒表面的作用机理[J].化工进展2007,26(9):1299-1305
    [40]李崇智,师海霞,章银祥,等.新世纪的高性能减水剂[J].混凝土,2001,5:3-6
    [41] Kazuo Y., Tomoo T., Shunsuke H., et al. Effects of the chemical structure on theproperties of polycarboxylate-type superplasticizer[J]. Cement and Concrete Research,2000, 30:197-207
    [42] Winnefeld F., Becker S., Pakusch J., et al. Effects of the molecular architecture ofcomb-shaped superplasticizers on their performance in cementitious systems[J]. Cementand Concrete Composites, 2007, 29:251-262
    [43]吴玲英.造纸黑液高效磺化用作混凝土高效减水剂的应用研究[D].华南理工大学硕士学位论文,2008
    [44] Pei Meishan, Yang Yongqing, Zhang Xiuzhi. Synthesis and the effects of water-solublesulfonated acetone–formaldehyde resin on the properties of concrete[J].Cement andConcrete Research, 2004,34:1417-1420
    [45]魏民,邱学青,易聪华,等.不同工艺制备蜜胺型高效减水剂的研究[J].新型建筑材料,2008, 10:58-62
    [46]欧阳新平,邱学青,杨东杰,等.氨基磺酸-苯酚-甲醛缩合物合成工艺研究[J].现代化工,2003,增刊:106-109
    [47]温勇,罗岭,朱景伟,等.聚醚型高效聚羧酸减水剂结构与性能关系研究[J].混凝土,2008, 230(12):57-58
    [48]廖国胜.新型聚羧酸类化学减水剂合成的几个关键问题研究探讨[J].国外建材科技,2004,25(2):48-50
    [49] Piotte M..Characterization of poly(naphthalenesulfonate) salts by ion-pairchromatography and ultrafiltration[J].Journal of ChromatographyA, 1995,704:377-385
    [50] Kima Byung-Gi. Compatibility between cements and superplasticizers in highperformance concrete: Influence of alkali content cement and of molecular weight ofPNS on the properties of cement pastes and concretes[D]. Canada Sherbrooke,2000.
    [51]季春伟,汤世伟,朱云雀,等.聚醚单体结构同聚羧酸高性能减水剂性能关系研究[C],混凝土外籍剂会议论文集, 2010.04:197-203
    [52]马保国,谭洪波,孙恩杰,等.聚羧酸系高性能减水剂的构性关系研究[J].化学建材,2006,22 (2):36-38
    [53]王建伟,颜廷和,李岱龙.超滤在食品中的应用及发展前景[J].食品研究与开发,2007,28 (5):168-170
    [54]张锋,武法文.超滤在中药提取物分离纯化中的应用[J].机电信息,2009,35:31-34
    [55] Karakulski A., Kozlowski A., Morawski W.. Purification of oily wastewater byultrafiltration [J]. SeparationsTechnology, 1995, 5(4): 197-205
    [56] Wallberg O., Ann-Sofi J., Roland W.. Ultrafiltration of kraft black liquor with a ceramicmembrane[J]. Desalination, 2003, 156(1-3): 145-153
    [57] Drioli E., Romano M.. Progress and new perspectives on integrated membraneoperations for sustainable industrial growth[J]. Industrial & Engineering ChemistryResearch 2001,40, 1277-1300
    [58]邱学青,杨东杰,吴湘伟,等.不同分子量木素磺酸钙减水剂的性能研究[J].混凝土与水泥制品,1999,107,(3):7-10
    [59]庞煜霞,邱学青,杨东杰等.木质素磺酸钙对硬化水泥抗压强度的影响[J].精细化工,2006,23(5):502-505
    [60]郑大锋,邱学青,楼宏铭,等.不同相对分子质量木质素磺酸钙在盾构砂浆中的应用[J].化工学报,2007, 58(1):2382-2387
    [61] Seb?k T., Stráen O.. Relationships between the properties of ligninsulphonates andparameters of modified samples with cement binders. Part II. Study of relationshipsbetween molar parameters of ligninsulphonates and characteristics of the samples tested[J]. Cement and Concrete Research,1999, 29:591-594
    [62] Seb?k T., Stra?ne?l O.. Relationships between the properties of ligninsulphonates andparameters of modified samples with cement binders Part IV. Influence of sulphonatedcompounds and sulphonation characteristics on the properties of mortarsamples[J].Cement and Concrete Research, 2000,30:511-515
    [63]付尽国,杨东杰,张智等.不同相对分子质量的蔗渣木质素磺酸镁对水泥砂浆性能的影响[J].新型建筑材料,2008,11:1-4
    [64]苏文华,廖永德,邹敦华,等.提高木质素磺酸镁减水性能的方法探讨[J].造纸科学与技术,2003,3:45-46
    [65] Pierre C.A., Carquille J.M.. Lamarche, Adsorption d'un polycondensat d'acidenaphtalene sulfonique (PNS) et de formaldehyde sur le dioxyde de titane[J]. Cement andConcrete Research, 1988, 18(1):18-28
    [66] Basile F.,et al. Influence of different sulfonated naphthalene polymers on the fluidity ofcement paste, third cement/ACI International conference on superplasticizer and otherchemical admixtures in concete Ottawa Ed.V.M.Malhotra,ACI SP-119-11,209-220
    [67] Costa U.. Application of HLPC in the characterization of naphthalene-basedsuperplasticizers. Process 9th International conference chemical cements, IV(2):619-626
    [68] Roy D.M., Váradi G., Tamás F.D., et al. Application of GPC for the analysis of theoligomer distribution of naphthalene-based superplasticizers[J].Cement and ConcreteResearch, 1984, 14(3):439-442
    [69] M. Piotte. Characterization of poly(naphthalenesulfonate) salts by ion-pairchromatography and ultrafiltration[J].Journal of ChromatographyA, 1995,704: 377-385
    [70] Cunningham J. C., Dury B. L., Gregory T.. Adsorption characteristics of sulphonatedmelamine formaldehyde condensates by high performance size exclusionchromatography[J].Cement and Concrete Research, 1989, 19(6):919-928.
    [77]王宏伟,王善拔.水泥与减水剂相容性问题雏议[J].混凝土与水泥制品,2001,2:9-11
    [72] Jolicoeur C. Chemical admixture cement interactions: phenomenology and physic-chemical concepts [J]. Cement and Concrete Composites, 1998, 20 (2-3): 87-101
    [73] Plank J., Hirsch C.. Impact of zeta potential of early cement hydration phasesonsuperplasticizer adsorption[J].Cement and Concrete Research, 2007,37:537-542
    [74] Chandra S., Bjornstrom J.. Influence of cement and superplasticizers type and dosageonthe fluidity of cement mortars-Part I[J]. Cement and Concrete Research, 2002,32:1605-1611
    [75] Seb?k T., Krejc? J., Musil A., et al. Contribution to the explanation of the actionprinciples of organic plasticizers[J]. Cement and Concrete Research, 2005,35:1551-1554
    [76] Robert J. F., Yves F. H.. A simplified view on chemical effects perturbing the action ofsuperplasticizers[J]. Cement and Concrete Research, 2001, 31:1169-1176
    [77] Kima Byung-Gi, Jianga Shiping, Jolicoeurb C., et al. Adsorption behavior of PNSsuperplasticizer and its relation to fluidity of cement paste[J]. Cement and ConcreteResearch, 2000, 30:887-893
    [78] Plank J., Sachsenhauser B..Experimental determination of the effective anionic chargedensity of polycarboxylate superplasticizers in cement pore solution[J]. Cement andConcrete Research, 2009, 39(1):1-5
    [79] Plank J., Fatima D.B., Nils Recalde L.. Modification of the molar anionic charge densityof acetone-formaldehyde- sulfite dispersant to improve adsorption behavior andeffectiveness in the presence of CaAMPS?cement fluid loss polymer [J].Journal ofApplied Polymer Science, 2009, 111(4): 2018-2024
    [80] Houst Y. F., Bowen P., Perche F., et al. Design and function of novel superplasticizersfor more durable high performance concrete (superplast project)[J]. Cement andConcrete Research, 2008, 38:1197-1209
    [81] Uchikawa H., Hanehara S., and Sawaki A. D.. Replay to the discussion by SusantaChatterji of the paper“The role of steric repulsive force in the dispersion of cementparticles in fresh paste prepared with organic admixture”[J]. Cement and ConcreteResearch, 1997, 27(9):1453-1455
    [82] Madsen F., Peppas N A.. Complexation graft copolymer networks: swelling properties,calcium binding and proteolytic enzyme inhabitation[J].Biomaterials, 1999,20(18):1701-1708
    [83]赵国玺.表面活性剂物理化学[M].北京:北京大学出版社.1991.4
    [84] Joliceour C. M. Admixtures used to enhance placing characteristics of concrete [J].Cement and Concrete Composites, 1998, 20:103-112
    [85] Plank J., Sachsenhauser B.. Experimental determination of the effective anionic chargedensity of polycarboxylate superplasticizers in cement pore solution[J]. Cement andConcrete Research, 2009, 39(1):1-5
    [86] Plank J..实验测定影响PCE超塑化剂的吸附行为和吸附分散效果的热力学参数[C].第九届超塑化剂及其它混凝土外加剂国际会议译文集.2009.4:338-351
    [87] Michael J., Pullin C.A, et al. Effects of photoirradiation on the adsorption of dissolvedorganic matter to goethite[J].Geochimica et CosmochimicaActa,2004, 68(18):3643-3656
    [88] J. Dijt C., Cohen Stuart M. A., Fleer G. J.. Competitive adsorption kinetics of polymersdiffering in length only. Macromolecules, 1994, 27, 3219-3228
    [89] Fu Zengli, Maria M.. Santore. Kinetics of competitive adsorption of PEO chains withdifferent molecular weights[J]. Macromolecules, 1998, 31:7014-7022
    [90] David B., Shondeep L. Sarkar. The superplasticizer adsorption capacity of cement pastes,pore solution composition, and paramerers affecting flow loss[J]. Cement and ConcreteResearch, 1995,25(7):1414-1434
    [91] Cunningham J. C., Dury B. L., T. Gregory. Adsorption characteristics of sulphonatedmelamine formaldehyde condensates by high performance size exclusionchromatography[J].Cement and Concrete Research, 1989, 19(6):919-928
    [92] Geffroy C., Persello J., Foissy A.. Molar mass selectivity in the adsorption ofpolyacrylates on calcite [J]. Colloids and Surfaces A: Physicochemical and EngineeringAspects, 2000,162:107-121
    [93] Yamada K., Hanehara S., Honma K.. Effect of the chemical structure on the properties ofpolycarboxylate type superplasticizer[J]. Cement and Concrete Research, 2000, 30 (2):197-207
    [94] Ferrari G., CerulliT., Clemente P., et al. Influence of carboxylic acid carboxylic esterratio of carboxylic acid ester superp lasticizer on characteristics of cement Mixtures[C] //6 th CANMET/ACI International Conference Superplasticizers and Other ChemicalAdmixtures in Concrete. New Orleans:American Concrete Institute, 2000: 505-520
    [95] Winnefeld F., Becker S., Pakusch J., et al. Effects of the molecular architecture ofcomb-shaped superplasticizers on their performance in cementitious systems [J], Cementand Concrete Composites, 2007, 29:251-262
    [96] Flatt R. J.. Dispersion forces in cement suspensions[J].Cement and Concrete Research,2004,34:399-408
    [97] Bjmstrm J. and Chandra S..Effect of superplasticizers on the rheological properties ofcements Materials and Structures, 2003, 36(12) :685-692
    [98]彭家惠,张建新,陈明凤,等.石膏减水剂作用机理研究[J].硅酸盐学报,2003,31(11):1031-1036
    [99] Andersen P. and Roy D.M., The effect of superplaticizer molecular weight on it'sadsoption on. and dispersion of, cement[J].Cement and Concrete Research,1988,(18):980-986
    [100] Uchikawa H., Hanehara S. and Sawaki D.. The role of steric repulsive force in thedispersion of cement particles in fresh paste prepared with organic admixture[J].Cement and Concrete Research, 1997,27(1):37-50
    [101] Kauppi A., Andersson K. M., Bergstrfm L..Probing the effect of superplasticizeradsorption on the surface forces using the colloidal probe AFM technique[J].Cementand Concrete Research 2005 ,(35): 133-140
    [102] Houst Y. F.. Design and function of novel superplasticizers for more durable highperformance concrete (superplast project). Cement and Concrete Research, 2008,38:1197-1209
    [103]蒋新元,邱学青,欧阳新平.氨基磺酸系高效减水剂表面与分散性能研究[J].混凝土,2004,4:42-44
    [104]蒋新元,邱学青,欧阳新平等.氨基磺酸系高效减水剂的表面性能及作用机理研究[J].混凝土与水泥制品,2004,136(2):9-12
    [105]刘青.黑液接枝磺化工艺的优化及用作高效减水剂研究[D].华南理工大学硕士论文,2009
    [106] Yasar E, Erdogan Y, Kilic A. Effect of limestone aggregate type and water–cementratio on concrete strength [J]. Materials Letters, 2004, 58(5): 772-777
    [107] Aitcin P C, Neville A. How the water–cement ratio affects concrete strength [J].Concrete International, 2003, 25(8): 51-58
    [108]彭家惠.建筑石膏减水剂与缓凝剂作用机理研究[D].重庆大学博士学位论文,2004
    [109]郑大峰,邱学青,楼宏铭. XPS测定减水剂吸附层厚度[J].化工学报,2008,59(1): 256-259

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700