自适应原理和现代数字信号处理技术在输电线路中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自适应保护的基本思想是使保护尽可能地适应电力系统的各种变化,改善保护性能,即能够适应电力系统各种运行方式和复杂故障类型,有效地处理故障信息,从而获得更可靠的保护。本文介绍了自适应保护的基本概念、分类方法、研究的意义及在电力系统中的应用等问题。并详细地讨论了自适应技术在故障选相、突变量距离保护、自动重合闸等中的应用。
     现代数字信号处理技术是分析电力系统故障信息的有力工具,已经在电力系统各个领域取得了广泛应用,同时也为自适应技术在继电保护中的应用提供了强有力的手段。数学形态学(MM)是继小波分析后又一个新型的数字信号处理工具。是一门建立在集论基础之上的学科,它是几何形态分析和描述的有力工具,被广泛应用于信号、图像分析和处理等工程领域。不同于很多其它的信号处理技术,数学形态学面向的是信号的时域波形而不是从频域或时频域入手。作为一种非线性变换,形态学滤波器通过改变信号或图像的一些局部几何特征,便可以提取有用的信息做特征分析和描述。形态变换主要为比较运算及少量的加减运算,可以认为,与传统的数字滤波算法相比,形态学滤波单元仅占用很少的保护处理时间,它在继电保护乃至电力系统其它领域具有良好的应用前景。
     针对传统电流突变量和电压突变量选相元件不能同时满足强弱电源系统侧保护要求的缺点,提出一种新的突变量选相原理。该选相元件在电压突变量基础上引入单相电流突变量进行极化,不但能自动适应系统运行方式的变化,尤其在系统正负序阻抗不等导致传统突变量选相元件失效的场合,更能体现出其优越性。值得指出的是,该选相元件对单相短路故障和相间短路(接地)判断均有很高的灵敏度。
     EMTDC仿真结果表明,即使在正负序严重不对称的场合,该元件也具有很好的选择性。当系统参数大范围变化时,该选相判据也能实现正确选相,比传统突变量选相方案具有更高的可靠性。
     针对传统突变量距离保护在两侧系统电势相位差较大时发生外部短路等情况有可能误动的缺点,首先分析了传统解决办法的局限性,提出了两种借助同步相量测量技术提供的信息,根据系统实时参数自适应调整保护动作门槛的新算法。方法一通过理论证明,确定了原有判据发生误动的边界条件,在此基础上,提出了以α=90°为边界切换动作门槛的新判据,方法二则通过精确计算,确定保护不误动的动作门槛,从而在故障时通过计算实时调整保护的定值。两种新的判据对于保护区整定在本线路内的突变量距离保护,其动作可靠性和灵敏度都得到了提高。ATP仿真结果验证了判据的有效性,本论文的工作也为同步相量测量技术在继电保护中的应用途径提供了一种新的思路。
     提出了一种基于电流行波极性同时适用于线路方向保护和母线保护的综合保护(简称IDR)新方案。其中的线路保护功能只是IDR的一个跳闸输出,可看作为虚拟方向保护(简称VDR)。在获取连接在同一母线上的各条输电线路的暂态电流信号的基础上,采用数学形态学分析其极性的能量以确定故障方向。当采集的所有线路电流的极性相同时,可以判断为母线故障。否则,可以通过其中一条线路的VDR判断为该线路的正向故障。另外,这种新的方向保护可以和传统的方向保护、距离保护、母线电流差动保护构成主保护多重配置方案。
     目前,大多数自适应重合闸方案中,均采用故障相的高频能量进行瞬时性和永久性故障的区分。针对单窗能量函数难以用单一阀值区分故障以及传统滤波器难以有效抑制高频噪声的缺陷,提出了两种双窗函数暂态能量比的判据。如果滤波器效果良好,该判据在信号平稳段的输出接近1,在信号奇异时刻附近,能量比明显增强,便于整定。为了更有效提取高频能量,采用论文提出的两种新的数学形态学算子GMMG和COOCG,对高频能量信号进行滤波,EMTP仿真研究表明,由采用两种算法构成的自适应重合闸方案都能提高判别的可靠性,具有实用价值。
     论文最后对本文的全部理论和应用研究成果进行了系统的总结,指出了自适应保护技术及数学形态学算法本身在电力系统继电保护的应用中有待进一步研究的问题。
The self-adaptive protection aims at achieving the best performance in the event of changes of power system operation modes. This paper introduces the basic concept of adaptive protection, as well as the issues of classification, the meanings of research and the applications in power systems. Besides, the applications of adaptive technique in the field of phase selector, superimposed distance protection, as well as auto-reclosure are dissucssed in details.
     Mordern signal processing technique, as a powerful tool to analyze the fault information of the power systems, has been widely applied in various fields. And it also provides a powerful means for self-adptive technology to be used in protective relaying. Mathematical morphology (MM) is one of the latest techniques in advanced signal processing fields. MM is developed from set theory and integral geometry, and is widely used in geometrical analysis and description. It is concerned with the shape of a waveform in time domain rather than frequency. Morphological filters are nonlinear signal transformation that locally modifies geometrical features of signals and image objects. Morphological calculation needs only the comparison and addition operations without multiplication, the computational complexity, therefore, is much smaller than conventional digital filter algorithms. Thus, it has the excellent foreground in protection and even the other areas of power system.
     A novel superimposed phase selector aiming at improving the performance of phase selector in the event of a wide range change of power system operation mode is presented in this dissertation. In this new scheme, the fault component of phase-phase voltage difference is polarized with the fault component of the third phase current. With this arrangement, this element not only adapts to various operating modes of power systems, but is superior to the traditional superimposed phase selectors. For instance, the superimposed phase-phase current difference based phase selector or the superimposed phase-phase voltage difference based phase selector, in terms of selectivity and sensitivity. The advantages of this phase selector can be highlighted especially in the case of the positive-sequence impedance not being equal to the negative-sequence impedance. In addition, this phase selector can reliably identify the single-phase-earth fault and the phase-to-phase fault. The results of EMTDC simulation tests show that the outstanding phase selection performance can be achieved even when the negative-sequence system impedance is extremely unequal to the positive-sequence system impedance. Besides, this phase selector has higher reliability compared to the traditional superimposed based schemes.
     Aiming at the defects of the conventional superimposed distance relay, for instance, the mal-operation resulting from an external earth fault occurring while the transmission system operates at large power angle, two novel self-adaptive superimposed distance protection scheme is proposed. Utilizing information of the wide area phasor measurement units (PMU), the two schemes can adjust the operation threshold dynamically, depending on the real-time parameter measurement of two equivalent power systems. In the first scheme, the boundary conditions of mal-operation of previous criteria are deduced in theory. Then, a new criterion to swithch the threshold value depending onα=90°is put forward. In the second scheme, the accurate threshold value for operation is caculated in theory, is used to adjust the setting in real time. By virtue of this arrangement, the reliability and sensitivity of the superimposed distance protection of Zone I are improved. The effectiveness of the new criterion is verified with the results of ATP simulations. Besides, the work of this paper also provides a new path to introduce the PMU technique into the protective relaying.
     A new integrated directional relaying principle for transmission line and busbar is presented. This novel directional relay, which integrates the protective functionality of line directional protection and busbar protection, is implemented with the polarity comparison of the current travelling waves. The function of line directional protection of the integrated directional relay (IDR), which is actually the protective decision of IDR, is defined as the virtual directional protection (VDP). Using morphological gradient to characterize the initial current travelling wave into spike signal the direction of a fault can be determined by the polarity comparison of the formulated spike signals. A busbar fault can be detected if all the compared spike signals have the same polarities. Otherwise, a forward fault will be identified by the VDP of one of the transmission lines connected to this busbar. In addition, the integrated directional relay is used to consist of the duplicated main protection scheme combined with the classical directional protection, classical distance protection and differential protection of busbar. By virtue of the individual protection principles and the measurements, the proposed duplicated protection scheme is promising to obtain higher reliability compared with the conventional schemes.
     At present, most self-adaptive auto-reclosure schemes are dependent on the high-frequence power energy information sampled from the transmission lines to distinguish between the instant faults and the permanent fault. Aiming at the defects of the conventional schemes, for instance, the single-window transient energy ratio based scheme is difficult to identify the fault using the single threshold value and the high-frequency noise can not effectively decrease by the conventional filter, two individual criteria of dual-window transient energy ratio (ER) are proposed. This ER approaches to 1 during the steady state whereas it increases greatly around the time instants at which the signal appears the singularity. Therefore, the setting of the criterion is easy. To effectively extract the high-frequency energy of the modal information, two different morphological algorithms (GMMG and COOCG) are put forward. EMTP based simulation results show that the GMMG and COOCG based auto-reclosure scheme improves the reliability of discrimination and is promising to be used in the real power systems.
     All the theoretical innovations and application studies are summarized in Chapter 8, where a few prospective issues about self-adaptive technology and MM worthy studying are also proposed.
引文
[1] G. Andersson, P. Donalek, R. Farmer, et al., Causes of the 2003 major grid blackouts in north America and Europe, and recommended means to improve system dynamic performance, IEEE Trans. Power Systems, vol. 20, no. 4, pp. 1922-1928, Nov. 2005.
    [2] T. S. Sidhu, D. A. Tziouvaras, A. P. Apostolov, et al. Protection issues during system restoration, IEEE Trans. Power Delivery, vol. 20, no. 1, pp. 47-56, Jan. 2005.
    [3]葛耀中,继电保护技术的新进展,继电器,1998,Vol.26,No.1,pp1-7
    [4]贺家李,葛耀中,超高压输电线路故障分析与继电保护,北京:科学出版社,1987
    [5]王梅义著,高压电网继电保护运行技术,北京:电力工业出版社,1981
    [6]朱声石著,高压电网继电保护原理与技术,北京:中国电力工业出版社,第2版,1995
    [7]华中工学院编.电力系统继电保护原理与运行.北京:水利电力出版社,1981.
    [8]张忠.基于数字信号处理器(DSP)的新型高压输电线路保护装置的研究.华中理工大学硕士学位论文,2000.
    [9]葛耀中.数字计算机在继电保护中的应用[J].继电器,1978(3).
    [10]杨奇逊.微型机继电保护基础.北京:中国电力出版社,1998.
    [11]贺家李.电力系统继电保护技术的现状与发展[J].中国电力,1999,Vol.32,No.10,pp38-40.
    [12]葛耀中.新型继电保护与故障测距原理与技术.西安:西安交通大学出版社,第1版,1996.
    [13]贺家李,宋从矩.电力系统继电保护原理.北京:水利电力出版社,第6版,1991.
    [14]陈德树.计算机继电保护原理与技术.北京:水利电力出版社,1992.
    [15] C. Cahatterjee, R. L. Kashyap and G.Boray. Estimation of close sinusoids in colored noise and model discrimation. IEEE Trans. Acoust. , Speech, SignalProcessing, Vol. ASSP-35, 1987, pp 328~337.
    [16] M. H. Sheu, J. F. Wang, J. S. Chen, A. N. Suen, Y. L. Jeang, J. Y. Lee, A data-reuse architecture for gray-scale morphologic operations, IEEE Trans. Circuits and Systems II: Analog and Digital Signal Processing, vol. 39, no. 10, pp. 753-756, Oct. 1992.
    [17] P. Maragos. Differential morphology: multiscale image dynamics, max-min difference equations, and slope transforms, Image Processing, 1994. Proceedings. ICIP-94., IEEE International Conference, vol. 2, pp. 545-549, Nov. 1994.
    [18] F. Cheng, A. N. Venetsanopoulos. An adaptive morphological filter for image processing, IEEE Trans. Image Processing, vol. 1, no. 4, pp. 533-539, Oct. 1992.
    [19] P. Sun, Q. H. Wu, A. M. Weindling, A. Finkelstein, and K. Ibrahim, An Improved Morphological Approach to Background Normalization of ECG Signals, IEEE Trans. on BIOMEDICAL ENGINEERING, vol. 50, No. 1, pp. 117-121, Jan. 2003.
    [20] G. K. Matsopoulos, S. Marshall, J. N. H. Brunt, Multiresolution morphological fusion of MR and CT images of the human brain, IEE Proceedings, Vision, Image and Signal Processing, vol. 141, no. 3, pp. 137-142, June. 1994.
    [21]赵梦华,葛耀中.微机式自适应保护的研究和开发[J].电力系统自动化,1999,23(3).
    [22]范春菊,郁惟镛.自适应电流速断保护[J].电力系统自动化设备,1999,19(3).
    [23]苏洪波,尹项根.高灵敏度的三次谐波发电机定子接地保护[J].电力系统自动化,1997,21(3).
    [24]孙长文,吕艳萍,骆德昌.基于短路功率方向和通信方法的自适应电流速断保护[J].继电器,2004,10(32).
    [25]杨程.基于瞬时值的自适应电流差动保护动作判据的研究[J].广东电力,2006,1(19).
    [26]李营,杨奇逊.微机式方向母线保护[J].电站设备自动化,1992,14(2).
    [27]王冬青,刘沛.基于CORBA的混杂MAS广域后备保护系统设计[J].高电压技术,2006,10(32).
    [28]曹国臣,韩蕾,祝滨.大电网分布式自适应继电保护的实现方法[J].电力系统自动化,2000,7.
    [29]朱永利,宋少群.基于广域网和多智能体的自适应协调保护系统的研究[J].中国电机工程学报,2006,16(26).
    [30]曾耿晖,刘玮.继电保护在线整定系统的探讨[J].继电器,2004,17(32).
    [31]郑恩让,杨润贤,高森.关于电力系统FFT谐波检测存在问题的研究[J].继电器,2006,18(34).
    [32]江亚群,何怡刚.基于自适应短时傅立叶变换的电频率跟踪测量算法[J].电子测量与仪器学报,2006,2(20).
    [33]林湘宁,刘沛,杨春明,刘世明.基于小波分析的超高压输电线路无通信全线速动保护方案[J].中国电机工程学报,2001,6(21).
    [34]林湘宁,刘沛,程时杰.电力系统振荡中轻微故障识别的小波算法研究[J].中国电机工程学报,2000,3(20).
    [35]林湘宁,刘沛,程时杰.超高压输电线路故障性质的复值小波识别[J].中国电机工程学报,2000,2(20).
    [36]王晓华,费永锋,刘勇超,王晓东,张鹏飞. ARMA谱估计方法在电力系统低频振荡模式分析中的应用[J].水电能源科学,2006,6(24).
    [37]立晶,裴亮,郁道银,曹茂永.一种用于电力系统谐波与间谐波分析的超分辨率算法[J].中国电机工程学报,2006,15(26).
    [38]林湘宁,刘沛,杨春明,刘世明.利用改进型波形相关法鉴别励磁涌流的研究[J].中国电机工程学报,2002,5(22).
    [39]林湘宁,刘沛,杨春明,刘世明.基于相关分析的故障序分量选相元件[J],中国电机工程学报,2002,5(22).
    [40]袁荣湘,陈德树,张哲.高压输电线路新型差动保护的研究[J],中国电机工程学报,2000,4(20).
    [41] Sun P, Zhang J F, Zhang D J, et al. Morphology Identification of Transformer Magnetizing Inrush Current. IEEE Electronics Letters,2002,38(9),437~438
    [42]郑涛,刘万顺,肖仕武等.一种基于数学形态学提取电流波形特征的变压器保护新原理[J].中国电机工程学报,2004, 24(7), 18~24.
    [43]岳蔚,刘沛.基于数学形态学消噪的电能质量扰动检测方法[J].电力系统自动化,2002, 26(7), 13~17.
    [44]束洪春,王晶,陈学允.动态电能质量扰动的多刻度形态学分析[J].中国电机工程学报,2004, 24(4),63~67.
    [45]林湘宁,刘沛,刘世明等.电力系统超高速保护的形态学-小波综合滤波算法[J].中国电机工程学报,22(9), 19~24.
    [46] Wu Q H, Zhang J F, Zhang D J. Ultra-high-speed Directional Protection of Transmission Lines Using Mathematical Morphology. IEEE Trans on Power Delivery, 2003, 18(4), 1134~1139.
    [47]林湘宁,刘沛,高艳.基于故障暂态和数学形态学的超高速线路方向保护[J].中国电机工程学报,2005, 25(4), 13~17.
    [48]刘云鹏,律方成,李成榕等.基于数学形态学滤波器抑制局部放电窄带周期性干扰的研究[J].中国电机工程学报,2004, 24(3), 169~173
    [49]王楠,律方成,刘云鹏等.自适应广义形态滤波方法在介质在线检测数据处理中的应用研究[J].中国电机工程学报,2004, 24(2), 161~165.
    [50] Zhang D J, Li Q, Zhang J F, et al. Improving the accuracy of single-ended transient fault locations using mathematical morphology. IEEE/CSEE International Conference on Power System Technology, Kunming, China, 2002,2,788~792.
    [51]刘云鹏,律方成,李成榕等.形态学-小波综合滤波器抑制局放现场干扰[J].高电压技术, 2004, 30(2), 29~31.
    [52]刘云鹏,律方成,李成榕等.局部放电灰度图像数学形态谱的研究[J].中国电机工程学报,2004, 24(5),179~183.
    [53] A.A Girgis A.A Sallam A.Karim El-Din. An Adaptive Protection Scheme for Advanced Series Compensated(ASC) Transmission Lines.IEEE Transaction on Power Delivery April 1998.Vol.13,No 2 .
    [54] A.K.Jampala.S.S Venkata MJ .Damborg. Adaptive Transmission Protection Concepts and Computational Issues .IEEE Transaction on Power Delivery January 1989.Vol.4.No.1.
    [55] G.D,Rockefeller.C.L.Wagner.J.R.Linders. Adaptive Transmission RelayingConcepts for Improved Performance.IEEE Transaction on Power Delivery.October 1988.Vol.3.No.4.
    [56] Gao Shibin.He Weijun.Chen Xiaochun. Study on Microprocessor-based Adaptive Protective Relay for Heavy Duty Electric Traction System.Developments in Power System Protection.Sixth International Conference.1997.
    [57] J.S.Thorp.M.AdamiakW.C Kotheimer,et al. Feasibility of Adaptive Protection and Control.IEEE Transaction on Power Delivery July 1993.Vol.8.No 3 .
    [58]葛耀中,自适应继电保护及其前景展望[J].电力系统自动化,1997,9(21)。
    [59]吴云.基于光纤+SDH+IP技术的继电保护及故障信息传输系统[J].电力系统自动化, 2004 1(28).
    [60]金延.华中电力光纤网络传输继电保护业务分析[J].电力系统通信, 2003.6.
    [61]肖晋宇等.电网广域动态安全监测系统及其动态模拟试验[J].电网技术, 2004.6(28).
    [62]张鹏飞等.基于PMU实测摇摆曲线的暂态稳定量化分析[J].电力系统自动化, 2004 20(28).
    [63]颜泉等.基于PMU的多馈入交直流系统的分散协调控制[J].电力系统自动化, 2004 20(28).
    [64]许剑冰等.基于系统同调性的PMU最优布点[J].电力系统自动化, 2004 19(28).
    [65]丛伟,潘贞存,丁磊,高湛军.基于“三道防线”的广域保护系统及其在电力系统中的应用研究[J].电网技术,2004,18(28).
    [66]陈德树.大电网安全保护技术初探[J].电网技术,2004,9(28).
    [67]段献忠,何飞跃,辛建波,潘垣.基于信息网络综合传输的电力系统运行与控制[J].电网技术,2004,9(28).
    [68]蔡运清等.广域保护(稳控)技术的现状及展望[J].电网技术, 2004 8(28).
    [69]陈皓.自适应技术在电力系统继电保护中的应用[J].电力自动化设备,2001,10(21).
    [70]郭齐,向力,孙嘉.电力调度数据省级网与国家骨干网连接的几点思考[J].电力系统自动化,2004,8(28).
    [71]石俊杰,孟碧波,顾锦汶.电网调度自动化专业综述[J].电力系统自动化,2004,8(28).
    [72]陈允平,龚庆武,马宁,康健.基于人工神经网络的智能型自适应保护(I)原理和模型结构[J].1998,2(31).
    [73] Serizawa Y,Myoujin M. Wide-area differential backup Protection employing broadband communications and time transfer system[J].IEEE Trans.on Power Delivery,1998,13(4).
    [74] Tomita Y,Fukui C. A cooperative protection systems with an agent mode[J].IEEE Trans.on Power System,1998,13(4):1060-1066.
    [75]焦邵华,刘万顺,杨奇逊.基于故障产生的电压暂态高频分量的模糊选相新原理[J].电力系统自动化,1999,23(9)。
    [76]李斌,李永丽,盛鵾,等.带并联电抗器的超高压输电线单相自适应重合闸的研究[J].中国电机工程学报,2004,24(5):52-56。
    [77]索南加乐,孙丹丹,付伟,等.带并联电抗器输电线路单相自动重合闸永久故障的识别原理研究[J].中国电机工程学报,2006,26(11):75-81。
    [78]李岩,陈德树,尹项根,等.新型自适应欧姆继电器的研究[J].中国电机工程学报,2003,23(1):80-83.
    [79]林湘宁,刘沛,杨春明,等.基于相关分析的故障序分量选相元件[J].中国电机工程学报,2002,22(5):16-21.
    [80]索南加乐,许庆强,李小斌,等.超高压输电线路的发展性故障判别元件[J].中国电机工程学,2006,26(4):93-98.
    [81]段建东,张保会,周艺,等.基于暂态量的超高压输电线路故障选相[J].中国电机工程学报,2006,26(3):1-6.
    [82]俞波,杨奇逊,李营,等.同杆并架双回线保护选相元件研究[J].中国电机工程学报,2003,23(4):38-42.
    [83]邹力,刘沛,赵青春.级联形态梯度变换及其在继电保护中的应用[J].中国电机工程学报,2004,24(12):113-118.
    [84]杨赢,郁惟慵,邰能灵.基于单端暂态能量的双回线路故障选相方法[J].电网技术.2005,29(13):64-68.
    [85]陈济良.西门子7SJ系列微机保护继电器小电流接地系统单相接地故障保护原理的分析[J].电网技术,2004,28(24):48-51.
    [86]苗友忠,孙雅明,杨华.中性点不接地配电系统馈线单相接地故障的暂态电流保护新原理[J].中国电机工程学报,2004,24(2):28-32.
    [87]贾清泉,杨奇逊,杨以涵.基于故障测度概念与证据理论的配电网单相接地故障多判据融合[J].中国电机工程学报,2003,23(12):7-11.
    [88]杨明玉,王世旭,张举.基于数学形态学梯度的快速选相方案[J].电网技术,2006,30(7):64-68.
    [89]陈卫,尹项根,陈德树,等.基于补偿电压故障分量的纵联方向保护原理与仿真研究[J].中国电机工程学报,2005,25(21):92-97.
    [90]洪健山,郝小欣,吴斌.自适应接地保护的研究[J].中国电机工程学报,2001,25(11):50-54.
    [91]朱声石.突变量距离继电器.中国电机工程学会第二次继电保护及安全自动装置学术讨论会.1979,10
    [92]沈国荣.突变量阻抗继电器.中国电机工程学会第四次继电保护及安全自动装置学术讨论会,1986,10
    [93]隋凤海,陈涛,李钢.论突变量距离继电器[J].电力系统自动化,1995,19(11):34-36.
    [94]邰能灵,林韩,陈金祥,等.改进的比幅式工频变化量距离继电器方案[J].电力系统自动化,2006,30(9):56-58.
    [95]陈卫,尹项根,陈德树,张哲,等.基于补偿电压的突变量方向判别原理[J].电力系统自化,2002,26(14):49-51.
    [96]刘世明,林湘宁,杨春明.工频变化量距离继电器的统一表达方式[J].电网技术,2002,26(5):23-27.
    [97]李刚,王少荣,夏涛,等.电力系统广域动态监测中的功角直接测量技术[J].电力系统自动化,2005,29(3):45-49.
    [98]林湘宁,刘沛.自适应振荡闭锁判据的实现[J].电力系统自动化,2004,28(7):49-53.
    [99] R. Wilson. A generalized wavelet transform for Fourier analysis: The multi-resolution Fourier transform and its application to image and audiosignal analysis. IEEE Trans. on Inform. Theory, 1992, 38, 674~690
    [100] D.C. Robertson, O.I. Camps, J.S. Mayer et al. Wavelets and electromagnetic power system transients. IEEE Trans. on Power Delivery, 1996, 11(2), 1050~1058
    [101] W. A. Wilkinson, M. D. Cox. Discrete wavelet analysis of power system transients. IEEE Trans. on Power System, 1996,11(4),2038~2044
    [102] N. Delprat. Asympototic wavelet and gabor analysis extraction of instantaneous frequencies. IEEE Trans. on Inform. Theory, 1992, 38(2), 644~652
    [103]王哲.基于小波分析的高压变压器局部放电在线监测.电力系统自动化,1998,2(4) ,19~23
    [104]董新洲,贺家李,葛耀中.小波变换在行波故障检测中的应用.98’CUS-EPSA, 1063~1068
    [105]董新洲,葛耀中,徐丙垠.输电线路暂态信号电流行波的故障特征及其小波分析. 97‘CUS-EPSA, 1026~1031
    [106]杨桦,任震,赵宏伟.基于小波分析的电力系统短期负荷预测. 96‘CUS-EPSA, 173~178
    [107]谢宏,陈志业,牛懂晓.基于小波分解与气象因数影响的电力系统日负荷预测模型研究.中国电机工程学报, 2001, 21(5), 4~10
    [108]杨桦,任震.直流输电系统暂态信号的小波分析法. 97‘CUS-EPSA, 494-497
    [109] S. Santoso, E.J. Powers. Power quality assessment via wavelet transform analysis. IEEE Trans. on Power Delivery, 1996,2, 924~930
    [110] A.W. Galli, G.T. Heydt. Comments Power Quality Assessment Using Wavelets. 1995 North American Power Symposium, Bozeman, M.T.
    [111] G.T. Heydt, A.W. Galli. Transient power quality problems analyzed using wavelets. IEEE Trans. on Power Delivery, 1997,12(2), 908~915
    [112] S.Santoso, E.J. Powers, W.M. Grady. Power Quality Disturbance Data Compression Using Wavelet Transform Methods. IEEE Trans. on PWRD, 1997, 12(3), 1250~1258
    [113] F.M. Magnago , A. Abur. Fault Location Using Wavelets, IEEE Trans. on PWRD, 1998, 13(4), 1475~1480
    [114]董新洲.小波理论应用于输电线路行波故障测距研究.博士学位论文,西安交通大学,1996
    [115] Onnis Chaari, Michel Meunier, Francoise Brouaye. Wavelet: A New Tool for the Resonant Grounded Power Distributed Systems Relaying. IEEE Trans. on PWRD, 1996, 11(3), 1301~1308
    [116]董新洲.基于小波变换的行波故障选相研究:(Ⅰ)(理论基础),电力系统自动化,1998,22(12), 24~26
    [117]董新洲.基于小波变换的行波故障选相研究:(Ⅱ)(仿真试验结果),电力系统自动化,1999, 23(1), 20~23
    [118]操丰梅,苏沛浦,夏瑞华.小波变换在小电流较低系统单相接地故障选线中的应用. 98’CUS-EPSA,993~997
    [119]余晓丹,王钢,贺家李.小波变换在超高压输电线路暂态保护中的应用研究. 98‘CUS-EPSA, 918~924
    [120] David Chan, Tat Wai , Xia Yibin. A novel technique for high impedance fault identification. IEEE Trans. on Power Delivery, 1998, 13(3), 563~571
    [121]吴青华,张东江.形态滤波技术及其在继电保护中的应用.电力系统自动化,2003, 27(7), 45~49
    [122] D. Wang, and D. C. He, Fast implementation of 1-D grayscale morphological filters, IEEE Trans. on Circuits Syst. I, vol. 41, No. 9, pp. 634-636, Sept. 1994
    [123]唐长青,黄诤.数学形态学方法及其应用,北京:科学出版社,1990
    [124]龚炜,石青云,程德民.数字空间中的数学形态学-理论及其应用,北京:科学出版社,1997
    [125] Maragos. P, Schafer. R. W. Morphological Filters Part I: Their set theoretic analysis and relations to linear shift invariant filters. IEEE Trans. on Acoustics, Speech and Signal Processing,1987,35(8):1153~1169
    [126] Maragos. P, Schafer. R. W. Morphological Filters Part II: Their relations to median, order-statistics, and stack filters, IEEE Trans. on Acoustics, Speech and Signal Processing,1987,35(8), 1170~1184
    [127] Wu Q H, Zhang J F, Zhang D J, Ultra-high-speed Directional Protection of Transmission Lines Using Mathematical Morphology. IEEE Trans on Power Delivery, 2003, 18(4):1134~1139
    [128] A.G. Phadke, J.S. Thorp. Computer Relaying For Power Systems. John Wiley&Sons Inc., New York, 1988.
    [129] Chamia, M, and Liberman, S. Ultra High Speed Relay for EHV/UHV Transmission Lines - Development, Design and Application. IEEE Trans. PAS-97, 2104-2112, 1978
    [130] Johns, A. T. New Ultra-high Speed Directional Comparison Technique for the Protection of EHV Transmission Lines. Proc. IEE, 127 (C). 228-239, 1980
    [131] Vitins, M. A Fundamental Concept for High Speed Relay. IEEE Trans. PAS-100, pp.163-168, 1981
    [132] Bo, Z. Q.,, Johns, A. T. Transient Based Protection - A New Concept in Power System Protection. the IPST'97, International Conference on Power System Transients, University of Washington, Seattle, USA, June, 1997
    [133] Bo, Z. Q., Jiang, F., Weller, G., Dai, F. T.,et. Al. Positional Protection Technique for Power Transmission Lines. IPEC’99,International Power Engineering Conference, Singapore, May, 1999
    [134] Gale P. F., Crossley P. A., XU B. Y., et. Al. Fault Location Based on Travelling Wave. IEE Pul. 368, 1993. pp. 54-59
    [135] Lee H.. Development of Accurate Travelling Wave Fault Locator Using the Global Positioning System Satellites. Trans. CEA E&O Div., Vol. 32, 1993, Paper No. 93-SP-102
    [136] Bo, Z. Q., Aggarwal, R. K., Johns, A. T. A New Approach to Transmission Protection Using Fault Generated High Frequency Current Signals. 12th Power Systems Computation Conference, Dresden, 19-23 August, 1996, Germany
    [137] Jiang, F., Bo, Z. Q., Chin, et. al. Positional Protection of Transmission Lines Using Wavelet Transform. the UPEC'99, University Power Engineering Conference, Sept., 1999, Leicester, UK
    [138] Protective Relays-Application Guide. Stafford (UK): GEC Measurement, 1987, p. 273
    [139] Z Q Bo, F Jiang, Z Chen, X Z Dong, G Weller, M A Redfern. Transient Based Protection for Power Transmission Systems. IEEE PES Winter Meeting, Jan. 2000, Singapore, pp.1245-1251.
    [140] E. H. Shehab-Eldin, P. G. Mclaren,Travelling-wave distance protection-problem areas and solutions. IEEE Trans. On Power Delivery, Vol. 3, pp. 894-902, July 1988
    [141] C. Christopoulos, D. W. P. Thomas, A. Wright, Scheme, based on travelling-waves, for the protection of major transmission lines. IEE Proceedings, Vol. 135, Pt. C, No. 1, pp 63-73, Jan. 1988
    [142] S. H. Sheng, C. H. Zhao, A novel morphological filtering method for the ECGS signal distorted by noises. Proceedings of Instruments and meters (In Chinese), Vol. 2, No.1, pp. 4-7, 1998
    [143] Redfern, M.A. Terry, S.C.; Robinson, F.V.P. et. al. The application of distribution system current transformers for high frequency transient based protection, IEE Conference Publication, Eighth IEE International Conference on Developments in Power System Protection, Vol.1, 2004, pp. 108-111
    [144]胡科.自适应重合闸的研究.华北电力大学硕士论文,2004:12~13
    [145]葛耀中.在单相自动重合闸过程中判别瞬时性故障和永久性故障的方法.西安交通大学学报,1984,18(2):179~183
    [146] Ge Yaozhong, Sui Fenghai, Xiao Yuan. Prediction methods for preventing single-phase re-closing on permanent fault . IEEE Trans. on Power Delivery,1989, 4(1):114~121.
    [147]葛耀中.微机式自适应单相重合闸的判据和算法.继电器,1995,(2):7~9
    [148]葛耀中,肖原.超高压输电线自适应三相自动重合闸.电力自动化设备,1995,(2):10~18
    [149] Djuric M.B,Terzija V.V. A New Approach the Arcing Faults Detection for Fast Autoreclosure in Transmission Systems. IEEE Trans on Power Delivery, 1995,10(4):48~53
    [150] Fitton D.S, Johns A.T. Design and Implementation of an Adaptive Single-pole Autoreclosure Technique for Transmission Lines Using Artificial Neural Networks, IEEE Trans on Power Delivery, 1996, 11(2):357~364
    [151] Z Q Bo,R K Aggarwal,A T Johns,B H Zhang, Y Z Ge. A New Concept in Transmission Line Reclosure Using High Frequency Fault Transients. IEE Proc Gener. Transm. Distrib., Part C. 1997,144(5):1~6
    [152] Z Q Bo,R K Aggarwal,A T Johns. A Novel Technique to Distinguish Between Transient and Permanent Faults Based on the Detection of Current Transients. APSCOM-97,the International Conference on Advance in Power System Control Operation&Management.November,1997,Hong Kong:216~220
    [153] A.T. Johns, R.K. Aggarwal, Y.H. Song. Improved techniques for modelling fault arcs on faulted EHV transmission syatems,.IEE Proc-Gener, Transm.Distrib, Vol.141,No.2,March 1994.
    [154]李斌,李永丽,曾治安等.基于电压谐波信号分析的单相自适应重合闸.电网技术,2002,26(10):54~57

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700